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Figure 5.3 The energy barrier calculated by the CINEB method for Σ3, Σ9, and Σ19 GBs

in silicon under stress-free state. For comparison, energy barrier for dislocation

motion in bulk (without GB) is shown.
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CHAPTER 6. A SPATIAL DECOMPOSITION PARALLEL ALGORITHM

FOR A CONCURRENT ATOMISTIC-CONTINUUM SIMULATOR AND

ITS PRELIMINARY APPLICATIONS

Reproduced from ’Chen, H., Xu, S., Li, W., Ji, R., Phan, T. and Xiong, L., 2018. A spatial de-

composition parallel algorithm for a concurrent atomistic-continuum simulator and its preliminary

applications. Computational Materials Science, 144, pp.1-10.’

6.1 Abstract

This paper presents the development of a spatial decomposition parallel algorithm and its imple-

mentation into a concurrent atomistic-continuum (CAC) method simulator for multiscale modeling

of dislocations in metallic materials. The scalability and parallel efficiency of the parallelized CAC

are tested using up to 512 processors. With a modest computational resource, a single crystalline

f.c.c. sample containing 10.6 billion atoms is modeled using only 4, 809, 108 finite elements in a

CAC model at a fraction of the cost of full molecular dynamics (MD). The simulation demonstrates

a nearly ideal scalability of the newly parallelized CAC simulator. The parallel efficiency of the

newly parallelized CAC is shown to be higher than 90% when using 512 processors in the high per-

formance computing cluster at Iowa State University. This parallel efficiency is comparable to the

state-of-the-art atomistic simulator. Moreover, the newly parallelized CAC simulator employing a

uniform coarse mesh is capable of capturing important atomistic features of dislocations, including

dislocation nucleation, migration, stacking faults as well as the formation of Lomer-Cottrell locks,

in a billion-atom system. The spatial decomposition-based parallelization algorithm developed in

this work is general and can be transferable to many other existing concurrent multiscale simulation

tools.
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6.2 Introduction

Many material behaviors and engineering processes are multiscale in nature. Understanding those

behaviors and processes across a broad range of length scales are important for the development

of novel engineering structures and materials. For example, the plastic deformation of metallic

materials spans a wide range of lengths scales ranging from dislocation nucleation at the atomic

scale to the formation of multiple slip bands, planar dislocation arrays, and dislocation cells at the

microscale, and to the observable effect of permanent deformation at the macroscopic level [1]. It is

believed that the multiscale nature of plasticity precludes direct simulations using a formulation ap-

propriate only for one single length scale [2]. For instance, a fully atomistic simulation can provide

atomistic details of plastic deformation, such as dislocation interactions, dislocation networks [3,4].

However, it requires a formidable computational cost if a prediction of the macroscopic-level plastic

deformation is desired. By contrast, the continuum-level theoretical and computational framework,

such as crystal plasticity finite element method (CPFEM), are applicable to simulating the plastic

behavior in materials at the macroscopic level. Nevertheless, these approaches lack a predictive

capability from the bottom up because they ignore the atomistic discrete nature of materials. In the

past decades, taking the advantage of atomistic simulations and continuum-level methods, exten-

sive efforts have been dedicated to the development of multiscale methods for modeling plasticity

[5]. Existing multiscale methods generally fall into two categories: sequential and concurrent ap-

proaches. In sequential methods, MD simulations are deployed to calibrate the constitutive models

and parameters for higher order models. For example, to simulate material plasticity, information

about dislocation nucleation, the strength of dislocation junctions, dislocation mobility, and dis-

location interactions from atomistic modelling are used to develop short-range interaction rules.

These rules are then feed into continuum-level models such as dislocation dynamics [6-8]. One

major challenge of such sequential approach is how to average the fine scale information and how

to input the averaged information into the higher scale models. In contrast, concurrent methods

directly combine a fine-scale description of materials with a higher order material description within

one computer model [9-14]. Examples of such concurrent methods for multiscale plasticity include
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the coupled atomistic and discrete dislocation formulation [15-19], coupled discrete dislocation and

continuum crystal plasticity [2], and the multiresolution molecular mechanics [20]. A comprehensive

review of concurrent multiscale methods can be found in Refs. [21, 22].

A direct combination of a fine-scale model, e.g., MD, with a higher order model, such as finite

element (FE), within one computational framework introduces an unrealistic numerical interface

into the computational model. Due to the mismatch of material descriptions between MD and FE,

an atomistic/continuum interface needs to be constructed through a careful numerical implemen-

tation. Most of the efforts are then devoted to construct such numerical interface by matching

or bridging the atomistic and continuum descriptions such that defects can pass from MD to FE.

Different from other concurrent multiscale methods which directly combines MD and FE, the re-

cently developed concurrent atomistic-continuum (CAC) method is based on a new atomistic field

formalism that unifies the atomistic and continuum description of materials within one theoretical

framework [23]. The coarse-grained (CG) domain in CAC admits dislocation nucleation and mi-

gration on the boundaries within the gaps between elements without the need of adaptive mesh

refinement [23]. CAC has been successfully applied to simulate a variety of material behaviors,

such as slip transfer of dislocations across grain boundaries [24,25], dislocations bowing out from

Frank-Read sources [26], dislocation-void interaction [27], dislocations and fracture in strontium ti-

tanate [28,29], dynamic crack propagation [30], fast moving dislocations [31], and phonon dynamics

in a 1-D polyatomic chain [32]. It is noted that, because the original version of the CAC simulator

was not massively parallelized, those applications were mainly limited to material behavior from

the atomistic to the nanoscale.

In order to perform large-scale CAC simulation of material behaviors using hundreds of pro-

cessors, this work aims to develop a massively parallelized CAC simulator that can be applied to

predict dislocation activities in a submicron-sized specimen without smearing out its atomistic na-

ture. A spatial decomposition (SD) algorithm is developed and implemented. This algorithm takes

full advantage of the local nature of the SD procedure and shows a good parallel efficiency without

any limitation on the number of processors. The remainder of this paper is organized as follows. In
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section 2, the formulation and the algorithm of the CAC method are briefly reviewed. In section

3, the SD algorithm as well as its efficiency and scalability are presented in details. In section 4,

simulations of dislocation activities in a single-crystalline face-centered cubic (f.c.c.) sample with

the same computational set-up as that in Ref. [23] is presented to benchmark the newly parallelized

CAC. In section 5, the scalability of the algorithm is demonstrated and compared against the fully

atomistic simulator, the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

[33]. In section 6, CAC simulations of the activities of submicron-long dislocation lines in a sample

containing billions of atoms are presented. This paper ends with a brief summary and discussion.

6.3 A brief review of the CAC method

The theoretical foundation of CAC is an atomistic field formalism proposed by Chen [34,35], in

which a crystalline material is viewed as a continuous collection of lattice points, while embedded

within each point is a unit cell containing a group of discrete atoms [36]. Chen [34,35] defined the

continuum-level physical quantities from the atomic scale and formulated the microscopic balance

equations of the physical quantities including mass density, linear momentum density, and the

internal energy density.

It is noted that, the continuum description of those physical quantities is by means of continuous

functions in terms of x and t in the physical space. Microscopic dynamic quantities in classical

N -body dynamics, on the other hand, are functions of (r, p), i.e., the positions and momenta of

atoms, in phase space:

r =
{
Rk, k = 1, 2, 3, . . . , n

}
,

p =
{
mkV k, k = 1, 2, 3, . . . , n

}
. (1)

where Rk is the position vector and V k is the velocity of the kth atom, mk is the atomic mass, and

n is the total number of atoms in the system. In the atomistic field formalism, the quantities in

the phase space and the physical space descriptions can be linked through utilizing the localization
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function δ[34-36], i.e.,

ρ (x) =
n∑
k=1

mkδ(Rk − x), (2)

ρ (x) v (x) =
n∑
k=1

mkV kδ(Rk − x), (3)

where ρ is the microscopic local mass density and ρv is the momentum density in physical coordi-

nate. Taking the time derivatives of Eqs. [2-3], Chen [34,35] formulated the microscopic balance

equations of the mass and linear momentum. In particular, for a monoatomic crystal under no

external forces, the balance equation of linear momentum can be re-written as [23]

ρẍ = fint (x) (4)

where

fint=
n∑
k=1

∑
i

δ
(
Rk − x

)
Fik (5)

is the internal force density, Fik is the atomic force acting on atom k by atom i and δ is a Dirac

δ-function.

It is daunting to directly compute Fik for all the atomic pairs. Thus, one critical step in

numerical implementation of the atomistic field formalism is to efficiently and accurately calculate

the internal force density fint in equation [5]. Xiong et al. [23] performed a FE implementation of

the atomistic field formalism and the numerical procedure was coined as CAC, which discretizes

the computational domain into piecewise elements. Gaussian quadrature was deployed to perform

the spatial integration to calculate the internal force density [23]. Later, Yang et al. [28] and Xu et

al. [24] modified the quadrature rules and demonstrated that the generalized stacking fault energy,

core structure and the stress field around a mixed dislocation in CAC models are comparable with

that from MD. In this paper, the integration scheme in Ref. [24] is employed. A computational

domain is discretized into piecewise elements (Fig. 1). Each element is in a rhombohedral shape

and contains a collection of lattice cells. The displacement within the element is approximated by

u = Φξ (x)Uξ (6)
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where Uξ are finite element nodal displacements, Φξ (x)is the standard tri-linear shape function. In

the numerical integration scheme, the internal force on node ξ is calculated as follows [23, 24]:

f ξint =

∑
µ ωµΦξµF

µ∑
µ ωµΦξµ

(7)

where Fµ is the force on the integration point µ, ωµ is the weight, and Φξµ is the value of the

shape function Φξ at the integration point µ. The weight ωµ is determined by the number of atoms

that the integration point represents. In details, for those integration points located on nodal sites,

ωµ = 1; for those on the element edges, ωµ = Nl − 2; for those on the surface, ωµ = (Nl − 2)2;

and for those within the interior of the elements, ωµ = (Nl − 2)3. Here, Nl is the number of atoms

along the edge of each coarse element. It is clear that the CAC model will degenerate into full

MD simulations when Nl = 2 and µ = 8. Such an atomic-scale mesh is referred as the finest

mesh in CAC method and will function as a fully atomistic domain. In this paper, uniform coarse

elements are used to discretize the material sample and the number of integration points within

each element is set as µ = 27, which corresponds to the ‘1NN’ case in Ref. [24]. For Nl ≤ 3, a

collocation integration procedure is used and µ = 8.

6.4 Parallelization Algorithm

The CAC simulator is parallelized through the Message Passing Interface (MPI) using the spatial

decomposition algorithm. The main idea of this algorithm is to evenly divide the total volume of

the system into small boxes with equal volume, e.g., the red solid box in Fig. 1. Each small box is

assigned to a processor. Specifically, we use a regular 3-dimensional meshing topology [33] in which

the simulation box is divided into Dα parts along α (α = x, y, z) direction. The total number of

processors is p = DxDyDz and each processor is indexed asd = dxDyDz + dyDz + dz. The sub-box

owned by the d -th processor is indexed as dα along the α direction . Element i with the center

position ric = (rix, riy, riz) = 1
mΣrin is mapped to processor d(ri) in an array. The computational
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domain along each direction is subdivided into Dx,Dy and Dz in an equal size
d (ric) = dx (rix)DyDz + dy (riy)Dz + dz (riz) ,

dα (riα) =
[
riαDα
Lα

]
(α = x, y, z) ,

(8)

in which Lα is the simulation box size along the α direction. The box belonging to each processor

is called the “local box” of that processor in comparison with the enlarged “ghost box” introduced

later.

Each processor computes and updates the forces, positions and velocities of FE nodes within its

own domain at each time step. Elements moving outside of the box will be assigned to the new box

during the simulations. The information of elements in the neighboring boxes is sent to the local

box through MPI Send and MPI Irecv command, i.e., the information of some elements in the

red dotted box inside the nearby processors is sent to the local processor for computing the force on

the nodes of the local elements. Here an enlarged box is defined and referred as a “ghost box” [33]

which has all dimensions larger than the local box of lc (Fig. 1). It should be pointed out that the

data structure and the communication in the spatial decomposition is local in nature. This will in

principle lead to a high parallel efficiency if each processor contains a similar number of elements.

In contrast, in other parallel algorithms, such as the force decomposition method [33, 37, 38],

globalized vectors are used and the communication of the globalized vectors (all-to-all) is required.

As a consequence, the simulation employing such force decomposition becomes significantly slow

when the number of degree of freedom increases. This leads to a decrease of the parallel efficiency

in large-scale simulations [33].

In each processor, three dimensional arrays are constructed for storing the positions, velocities and

forces of FE nodes. The first dimension of each array is the number of elements, the second is

the number of nodes per element (8 for 3D and 4 for 2D), and the third is 3 for 3D or 2 for 2D,

respectively. Nodal positions of elements with their center positions falling into the ghost box are

sent from the neighboring processors and updated at each time step. Those nodal positions received

from neighboring boxes are directly inserted at the end of the local vectors without sorting. The

lists of elements received from the nearby processors are recorded in the following several time



120

steps. The neighbor lists will be only updated when any of the FE nodal displacement is larger

than a skin parameter. Such a technique has been employed in the MD simulator LAMMPS [33].

The positions of the atoms within each element are interpolated using the shape functions in Eq.

3 [23-24].

The parallelization starts with reading the input data file. Figure 2 shows that the FE nodal

coordinates are read by the master processor, noted as CPU0, step by step to avoid creating

global data structures in all of processors. At each step, CPU0 reads a fixed number of element

coordinates: ln. In this work, we choose ln as 1024 in order to balance the input reading and

the information communication between processors. Thereafter, CPU0 will broadcast the data

to all the other processors, noted as CPUs, in the communication world using the MPI Bcast

command. In each processor, a vector of the same size of ln is allocated in order to receive data

broadcasted by CPU0. With this information, each processor will determine whether the position

of the element center, ric , falls into its own local box. Those elements falling into the local box will

be assigned to the processor and the information associated with them is stored at the end of the

existing position vectors. In this way, only local data structures will be needed. The same strategy

is applied to the output of results during the simulation.

Figure 3 shows the communication scheme between processors [33]. This strategy is the same as

what has been implemented in LAMMPS because each element can be considered as a “coarse

atom” [39]. Here the elements received from nearby processors are noted as ghost elements. The

cutoff for ghost elements is set as rs = rc+max(lc). Firstly, the positions of FE nodes falling within

the cutoff length rs of CPU1’s box is sent to CPU2 as shown in Fig. 3a followed by the reverse

communication. The same procedure is repeated along the north/south direction in Fig. 3b. The

only difference is that messages sent to the adjacent CPU now contain not only local elements but

also ghost elements received from previous communications. This process is then repeated along the

up/down dimension. When rs > Lα/Dα , here Lα and Dα have the same meaning as that in Eq.8,

those elements in
[
rsDα
Lα

]
+1 neighboring boxes are needed. Thus the communication procedure will

be performed for
[
rsDα
Lα

]
+1 times. The advantage of this scheme is to minimize the communication
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data [33] although the coding process becomes tedious. That is, each processor acquires only the

elements that are within a distance rs of its “local box”. All the received elements are placed as

contiguous data into the local data structure without rearranging. During the communication, a

full scan of the data structure is only conducted when there is a need to decide the information of

which element should be sent. Such a scan creates a list of elements that compose of each message.

During all the other timesteps, the lists can be used to directly sort the referenced elements and

buffer up the messages in an efficient manner.

Then the neighbor list of integration points is constructed for the evaluation of the internal force

density. Once the neighbor list is constructed, the internal force density associated with each

integration point can be calculated. The neighbor list construction in CAC is mainly divided into

two steps. The first step is to build the element neighbor list using a link-cell scheme. The cutoff

for the element neighbor list is the same as that used for communication: rs. The bin size used

here is rs/2 which maximizes the efficiency of the neighbor list construction [33]. The second step

is to build the neighbor list of integration points through searching the atoms interpolated from

the neighboring elements. Since each element contains several thousands of atoms, interpolation

of all atoms inside all elements will be demanding. Here, instead of performing a full-domain

interpolation, the second step is further divided into two sub steps. Before going into details, we

introduce one parameter: I = rc + lc/2, referred as the influence radius of an element (Fig. 1).

The distance between the atoms outside this radius and the atoms interpolated from this element

is larger than rc and thus there will be no interaction between them. The process for finding the

integration point i in Fig. 1 is described as following. Firstly, the distance between i and the

center position of each neighboring element will be calculated. If the distance is larger than I, the

atoms inside this element will not be interpolated. For example, the distance between the centroid

of element 1 and the integration point p in Fig. 1 is larger than I. This means that the distance

between any of atoms within element 1 and the integration point p will be larger than rc. In this

situation, all the atoms within element 1 will not be in the neighbor list of point p and will not

be interpolated. Under this treatment, only the positions of the atoms falling into the elements in
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yellow (Fig. 1) will be interpolated for constructing the neighbor list of the integration point p .

The next sub-step is to further subdivide each yellow element in Fig. 1 into n equal-sized segments

along each direction and n2 (n3 for 3D problems) smaller sub-elements in total. Each sub-element

has an influential radius: Isub = rc+ lc/(2n). When the distance between the sub-elements and the

integration points is smaller than Isub , the positions of the atoms will be interpolated for neighbor

list construction. As such, the interpolation in the neighbor elements will be only performed in

those sub-elements in green. Figure. 4 shows that the neighbor list construction time, tn , changes

with the splitting number n along each direction. The testing computer model used to produce the

data in Fig. 4 contains 10.6 billion atoms and is discretized into 3,145,963 coarse elements [23].

Each element contains 3, 375 atoms. Using 512 processors, the minimum neighbor building time is

2.1 seconds for this model. It is found that tn first decreases at an order of 3 , which is the same

as the number of elements to be interpolated, and then increases slightly with the increase of the

splitting number n. The increase of the neighbor list construction time is due to the time spent for

checking the distances between integration points and sub-elements when the splitting number n

become larger. With this information, an optimized value for element splitting can be determined

for the neighbor list construction.

6.5 Scalability of the massively parallelized CAC simulator

To investigate the scalability of the newly developed parallel algorithm, CAC models for cubic

f.c.c. samples with a dimension of 0.1µm× 0.1µm× 0.1µm and 0.5µm× 0.5µm× 0.5µm are tested.

The CAC model for a cuboid sample ensures that each processor contains similar number of coarse

elements and avoids unequal workload among different processors. The 0.5µm × 0.5µm × 0.5µm

sample as shown in Fig. 5 is the largest computer model explored in this work. This model contains

10.566 billion atoms and is discretized into 4, 809, 108 coarse elements. Each element contains 2197

atoms. The timestep is set as 5fs. Figure. 6 shows the relationship between the number of

processors and the averaged time cost for each timestep in different models containing different
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number of elements. The time cost is averaged over the total simulation time which includes the

reading, initialization, the neighbor list construction and also the FE nodal force calculation. The

computing timing of CAC using a single processor is taken as a reference point for calculating

the parallel efficiency when memory for single processor is large enough to store all global vectors.

It should be noted that, for problems when nel (number of elements) = 4, 809, 108, the memory

associated with one single processor is not enough and simulations should start with a certain

number of processors (for example, 16 for nel = 310, 425). The reference points are then the

timings of the starting number of processors. While the number of processors p increases, the size

of the domain covered by the “local box” decreases. This leads to a higher volume ratio between

the ghost box and the local box. That is, the ratio between the number of the elements containing

in the ghost box and that in local box: R, increases. For example, for nel = 38, 064 in Fig. 6,

R = 1 when P = 32 and R = 10 when P = 512. This will induce a small decrease of the parallel

efficiency. However, the spatial domain decomposition algorithm still retains a parallel efficiency

of 85% when P = 512. When nel ≥ 310, 425 in Fig. 6, a parallel efficiency of 92% can be achieved

when 512 processors are used. This is the maximum number of processors we can access using our

computing resource. Nevertheless, since all data sets and communications are localized in the SD

algorithm, the parallel efficiency remains high when P > 512 and will be comparable to that in

MD simulations using LAMMPS [33].

Figure 7 presents the linear relationship between nel and the total CPU time, p ∗ tsu. Here tsu

is the time spent by each processor. This linear relationship means that the total computational

time is determined by the total number of elements. For all the cases in Fig. 7, the communication

time doesn’t exceed 8% of the total simulation time and more than 90% of the simulation time is

spent in the interpolation of the integration points, calculation of nodal force and updating nodal

positions. This implies that there will be no limit of the size of models as long as we can have access

to a large number of processors [33]. The high parallel efficiencies ensures that the SD algorithm

presented in this work can be at the same level as that in many existing massively parallelized MD

simulator [33].



124

6.6 Comparison with LAMMPS

In addition to the CAC computer model, the algorithm can also be applied to perform MD simula-

tions when the coarse mesh in the CAC model is reduced to the atomic scale [23]. In this situation, a

comparison between the CAC simulation time and LAMMPS [33] using exactly the same hardware

[40] is carried out. In a 1000-timestep simulation of a (0.1µm)3 cubic sample containing 83, 626, 608

atoms using 16 nodes in the Condo cluster at Iowa State University [41], LAMMPS took 454.8s

and the CAC took 480.2s. For a uniform coarse mesh in CAC, the computational workload ratio

between the coarse-grained model and MD simulations can be defined as below

Rup =
total number of integration points

total nmber of atoms
(8)

Here the theoretical speed-up is defined as Stheory = 1/Rup. The actual speed-up of the parallelized

CAC with respect to various Rup, closely follows the theoretical speed-ups in general, as shown in

Fig. 8. The largest speed-up we obtain is 33.3 when the uniform coarse element (2197 atoms per

element) is used in CAC.

1. A simple validation

CAC computer models of notched single-crystal copper specimens in a previous work [23] are used

to validate the correctness of the newly implemented parallel algorithm in CAC. A Lennard-Jones

(L-J) potential is used, with parameters ε0 = 0.167ev and σ0 = 2.3151Å. This model contains

1, 423, 107 atoms and is discretized into 4, 149 elements with each element containing 343 atoms.

Figure 9 presents the atomic rearrangements, dislocation structures, and stacking faults from the

newly parallelized CAC and also from MD. Two dislocations are emitted from the notch tips and

propagate into the specimen interior along {1 1 1} planes. The same non-symmetric dislocation

nucleation behavior is captured here [23]. Also, the Lomer-Cottrell or stair-rod locks [41] are

formed, which hinders further dislocation glide on the two slip planes and provides a barrier to

other dislocations [23]. This is also found in MD simulations [23]. We test this model with random

number of processors and results are the same. This demonstrates that the results are independent
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of the number of processors and the communications between processors are reliable in the massively

parallelized CAC code.

6.7 Numerical Examples

CAC furnished with the newly developed spatial decomposition algorithm is used to simulate

dislocations in a 0.25µm ∗ 0.25µm ∗ 0.53µm cubic sample with two notches on both sides as shown

in Fig. 10. This model contains 2, 307, 616, 753 atoms and is discretized into 1, 050, 349 elements

with each element containing 2197 atoms. A constant velocity of 1m/s is applied (corresponding

to a strain rate on the order of 106s−1) on the two vertical (z direction) ends of the sample with

the other surfaces traction free.

Figure 11 shows that dislocations nucleate around the notches [42]. Through the Burgers vector

analysis using the geometric method in OVITO [4], the emitted dislocations are found to be partial

dislocations with Burgers vector 1
6 [112] in the < 111 >-plane and 1

6 [121] in the (111)-plane. Dislo-

cations migrate in the sample with different velocities due to the free surface and elastic interactions

between dislocations [4]. During their migrations, the curvature of the dislocation lines decreases

to reduce the line energy of dislocations [43]. Eventually, the two dislocations lines interact with

each other as shown in Fig. 11e. The interaction angle was measured as 18.2o , which remains

constant until the two dislocations formed a Lomer-Cottrell lock [41].

It should be noted that dislocation lines along the thickness direction, i.e., the y-direction, in-

sects two free surfaces in the xz plane. In order to characterize the effects of free surfaces

on the dislocation core stress field, the shear stress distribution around the dislocation core at

y = −200, 0, 900 and 1200Å is quantified and presented in Figure 12. It is seen that the positive

shear stress component decreased when the dislocation core is approaching the free surface. That is,

the maximum positive shear stress decreases from ∼ 0.8GPa when y = −200Å to ∼ 0.2GPa when

y = 1200Å. Clearly, the stress around a dislocation core gradually decays when it gets closer to a

free surface. This result implies that dislocation core stress field in a finite-sized material sample is

actually size-dependent and will be only approaching the analytical solution of a dislocation core
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embedded within an infinite media when the core is reasonably far away, e.g. 120nm in this work,

from a free surface.

In order to demonstrate that the applicability of the newly parallelized CAC code to different

material systems in which use different interatomic potentials, one set of massively parallelized CAC

simulation using an embedded atom method (EAM) force field [44] is performed. This simulation

employs the Mishin-embedded atom method force field for single crystalline copper. In the CAC

simulator, the electron charge density is calculated only on the nodes of elements. The electron

charge density of those atoms within the element is interpolated from the electron charge density

on the FE nodes. A single crystalline cubic f.c.c. sample in a dimension of 70nm×70nm×70nm

containing 54, 683, 330 atoms is discretized into 24, 890 coarse elements (the Inset pictures in Fig.

13). A constant velocity of 1m/s is applied on the two ends of the sample with the other surfaces

traction free. The dislocations activities are analyzed using the dislocation extraction algorithm

in OVITO [45]. Figure 13 shows that dislocations nucleate from the free surfaces and propagate

into the interior of the sample. Similar with the simulation from the CAC model using the L-J

potential, dislocations also have Burges vector 1
6 [112], which are consistent with those found in the

full MD simulations of Cu under tension [46]. Those dislocations interact with each other, form

stair-rod lock structure [45] and then a dislocation forest as those in MD simulations [4]. This

preliminary simulation demonstrates that, despite the approximations introduced by the coarse

mesh in CAC, the atomistic nature associated with dislocation nucleation, interactions, and the

formation of sessile structures have been captured at a fraction of the cost of full MD simulations.

6.8 Summary and discussions

In this work, a SD parallel algorithm for a multiscale simulator, CAC, is developed and implemented.

Results obtained using the newly parallelized CAC simulator are directly compared with those

from MD simulations. It shows that the newly developed CAC simulator can effectively reproduce

dislocation nucleation, migration and the formation of Lomer-Cotrell lock formation as that in

MD simulations. Furthermore, the parallel algorithm has been tested in CAC using different



127

number of processors for different models. Using only 512 processors, CAC furnished with this

new algorithm exhibits an optimal scalability in computer models which contains up to 4, 809, 108

elements for 10, 565, 610, 276 atoms. This is beyond the reach of classical MD simulator using the

same computational resource. The parallel efficiency is shown to be more than 90% and is compared

with a well-established atomistic simulator, LAMMPS. For the CAC models with the atomic-

scale finite element meshes which reproduce the full MD simulation results, the parallel algorithm

achieves 97% efficiency of LAMMPS. To demonstrate the capability of the newly parallelized CAC

simulator, dislocation activities in a large sample containing 2, 307, 616, 753 atoms are simulated.

The maximum positive shear stress around a dislocation core in the finite-sized sample was found

to gradually decay when it get closer the free surface. It approaches the analytical solution for

the stress field around a dislocation core embedded in an infinite media when the core is at least

∼ 120nm away from the free surfaces.

It should be noted that the majority of existing concurrent multiscale method is based on domain

decomposition [2, 17-23], the present SD parallel algorithm can be applied to those methods and

provide a general framework for parallelizing many other multiscale materials simulators. In order

to use CAC to simulate more complicated phenomena such as dislocation interaction with obstacles

such as voids or grain boundaries, the atomic-scale finite element mesh nearby the obstacles needs

to be combined with coarse elements. The computer models with non-uniform meshes with different

element sizes in the newly parallelized CAC code will be tested in our future work.
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Figure 6.1 The schematic sketch for building the neighbor list of an integration point

p in an element centered at point O. The domain bounded by the solid red

lines is referred as a “local box” handled by a local processor. The domain

bounded by the dotted red line is referred as a “ghost box”. The information

associated with the elements (elements in blue) falling into the “ghost box”

but out of the “local box” is sent to the local processor. Here lc is the element

size which is the largest length of the diagonals and rc is the cutoff of the

interatomic potential. The domain in yellow covers the atomic interaction range

associated with an integration point p. In particular, within this interaction

range, the instantaneous position of each atom falling into the domain in green

is interpolated from the FE nodal positions.
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Figure 6.2 The process of reading input file and the information broadcasting to all the

processors.
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Figure 6.3 A scheme of the communications between processors in the parallelized CAC

simulator.
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Figure 6.4 The relation between the splitting number n and the time for the neighbor list

construction.
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Figure 6.5 CAC model of a 0.5µm cubic sample used to test the scalability.
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Figure 6.6 CPU timing (seconds/timestep) versus the number of processors used for dif-

ferent CAC computer models containing different number of elements.
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Figure 6.7 A relationship between the CPU timing and the number of elements assigned

to each processor.
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Figure 6.8 The speed-up of the CAC model with respect to computational workload ratio

(Rup)
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Figure 6.9 Snapshots of atomic arrangements, dislocations and stacking faults. (a) Results

from the newly parallelized CAC simulation. (b) Results from MD simulation.

Here only the atoms associated with dislocations and stacking faults are dis-

played in blue.
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Figure 6.10 CAC model for a billion-atom system to benchmark the spatial decomposition

algorithm.
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Figure 6.11 Dislocations nucleation and migration in a billion-atom sample by CAC.
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Figure 6.12 Shear stress (σxz) field around the cores of dislocation in different cutting

planes.
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Figure 6.13 CAC (24, 890 coarse elements) simulations of dislocations nucleation and mi-

gration in a single crystalline EAM-Cu containing 54, 683, 330 atoms: (a)

dislocations nucleate from the free surface on one side.; (b) the nucleated dis-

locations migrate into the interior of the sample; (c) the dislocation forests

are formed as more and more dislocations interact with each other to form

stair-rod locks [4, 23]. Here the dislocation analysis is conducted using two

different approaches. The dislocation structure in the left column is from the

dislocation extraction algorithm in OVITO [45]. This analysis shows that the

dislocations (green line) in this simulation are in Burges vector of 1
6 [112] and

the purple lines are the stair-rod locks. The dislocation structure in the right

column is from the centrosymmetry analysis [45], in which the atoms with

centrosymmetry parameter smaller than 0.1 are removed. The black lines

above are boundaries of the box.
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CHAPTER 7. GENERAL CONCLUSION

First, a conceptually novel approach and a specific crystal lattice instability criterion, which

predicts the initiation of the first order PTs in materials under general multiaxial loadings, are de-

veloped and validated. In contrast to the existing traditional instability criteria (such as zero moduli

or soft phonon modes), the developed approach includes an order parameter, which describes the

entire dissipative transformation process. The proposed criterion is rigorously derived utilizing the

second law of thermodynamics. The criterion is proven to represent material properties and is inde-

pendent of the type of the prescribed stress or strain measures. The criterion is validated through

hundreds of MD simulations, for direct and reverse PTs between Si I and Si II phases under various

combinations of three normal and three shear stresses. The correspondence between theory and

simulations is excellent, deviation does not exceed 2%. Most interestingly, all three shear stresses

do not affect instability, which directly follows from our theory but sounds very counterintuitive

compared to traditional approaches. The criterion is linear in all stress components and can be cal-

ibrated by simulations at only two different stress states. Thus, it represents a predictive analytical

tool, which determines how to combine six stress components to initiate various PTs in materials.

Traditional approaches do not supply an analytical expression and require numerical simulations

for each stress state. That is why there was no data in literature for PT criteria under more than

two stresses. The obtained results also significantly advance the generalized Landau-type theory for

PTs in terms of unexpected dependence of transformation strain, elastic and thermal parts of the

free energy as functions of an order parameter. Second, we performed a comprehensive DFT study

of the phase transition between semiconducting Si I and metallic Si II under all six components

of the stress tensor with normal stresses along 110, 111̄, and 001 directions. We investigated the

stress-strain curves, elastic lattice instabilities, the electronic band gap, and metallization. The key

results is that Si I to Si II PT can be described by the critical value of the modified transformation
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work obtained within a phase field formalism. Thus, with normal stress σ3 in 001 direction, the PT

criterion is linear in normal stresses, depends on σ1 +σ2; is independent of σ1−σ2 and shear stress

τ21 acting alone or with one more shear stress; contribution of all shear stresses can be described

through the theoretically predicted geometric nonlinear term (without any additional adjustable

constants). The PT criterion contains just two adjustable parameters, which can be calibrated by

instability stresses at two different stress states without shears. Those parameters can be fitted to

DFT results or experiment. Then our criterion accurately describes instability in a broad range

of variations of all six components of the shear tensor. While Si I to Si II occurs due to elastic

instability, the modified transformation work criterion is based on completely different principles

and assumptions. In particular, it considers the entire dissipative PT process described by the

transformation strain tensor and does not include the terms with a discontinuity in elastic moduli,

in order to avoid nonlinearity in normal stresses. Using these paradoxical results, we formulate

a problem of finding a fundamental relationship between the elastic instability and the modified

transformation work criterion, which will be studied in future works. The elastic instability analysis

for the simplest model with quadratic in E energy qualitatively reproduces our main results for

relatively low stresses. The PT pressure under hydrostatic condition is 20 times larger than under

uniaxial loading. Such a strong effect of nonhydrostaticity at least partially explains the significant

difference between the experimental PT pressure (9-12 GPa) and the instability pressure of 75.81

GPa, as well as a scatter in the experimental data under quasi-hydrostatic conditions.

Although the stress-strain curve is continuous, the electronic PT precedes the structural PT.

That means that under stresses there is a metallic Si I. Metallization can be caused by compressive

or tensile stresses, and the effect of nonhydrostatic stresses is extremely strong. In the (σ1,σ3)

plane it is described by a closed contour, which can be approximated by two straight lines and a

parabolic cap. Only one of the metallization lines is relatively close and approximately parallel to

the Si I to Si II PT line. Interestingly, metallization occurs deeply in the region of stability of Si I

and is not causing the Si I to Si II structural PT. Surprisingly, a stress-free Si II is metastable in

DFT. Although at zero pressure Si II has a higher enthalpy than Si I, both Si I and Si II correspond
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to local enthalpy minima and both have stable phonons. In addition, shear stress-strain curves are

obtained for different simple shears and their combinations at different normal stresses. A shear

instability competes with a tetragonal instability, which does not lead to Si II, but rather to pos-

sible amorphization or hexagonal diamond Si IV. Pressure and compressive normal stresses reduce

shear stresses below and at the shear instability strain. Under hydrostatic or near-hydrostatic

conditions, shear instability in Si I occurs earlier than tetragonal instability, which may result in

amorphization. Third, Using molecular dynamics (MD), special triaxial compression-tension states

were found for which stresses for instability of crystal lattice of silicon (Si) are the same for direct

and reverse phase transformations (PTs) between semiconducting Si I and metallic Si II phases.

This leads to unique homogeneous and hysteresis-free first-order PTs, for which each intermediate

crystal lattice along the transformation path is in indifferent thermodynamic equilibrium and can

be arrested and studied by fixing the strain in one direction. By approaching these stress states,

a traditional two-phase system continuously transforms to homogenous intermediate phases. This

also allows one to stabilize unique heterogeneous intermediate structures, which may possess un-

expected properties. Zero hysteresis and homogeneous transformation are the optimal property

for various PT applications, which reduce damage and energy dissipation. Further increases in

stresses substitutes the first-order PT with the unusual second-order PT, without intracell atomic

displacements and change in symmetry, and at large strains. Fourth, a SD parallel algorithm for

a multiscale simulator, CAC, is developed and implemented. Results obtained using the newly

parallelized CAC simulator are directly compared with those from MD simulations. It shows that

the newly developed CAC simulator can effectively reproduce dislocation nucleation, migration and

the formation of Lomer-Cotrell lock formation as that in MD simulations. Furthermore, the par-

allel algorithm has been tested in CAC using different number of processors for different models.

Using only 512 processors, CAC furnished with this new algorithm exhibits an optimal scalabil-

ity in computer models which contains up to 4,809,108 elements for 10,565,610,276 atoms. This

is beyond the reach of classical MD simulator using the same computational resource. The par-

allel efficiency is shown to be more than 90% and is compared with a well-established atomistic
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simulator, LAMMPS. For the CAC models with the atomic-scale finite element meshes which re-

produce the full MD simulation results, the parallel algorithm achieves 97% efficiency of LAMMPS.

To demonstrate the capability of the newly parallelized CAC simulator, dislocation activities in a

large sample containing 2,307,616,753 atoms are simulated. The maximum positive shear stress

around a dislocation core in the finite-sized sample was found to gradually decay when it get closer

the free surface. It approaches the analytical solution for the stress field around a dislocation core

embedded in an infinite media when the core is at least 120nm away from the free surfaces. It

should be noted that the majority of existing concurrent multiscale method is based on domain

decomposition, the present SD parallel algorithm can be applied to those methods and provide a

general framework for parallelizing many other multiscale materials simulators. In order to use

CAC to simulate more complicated phenomena such as dislocation interaction with obstacles such

as voids or grain boundaries, the atomic-scale finite element mesh nearby the obstacles needs to

be combined with coarse elements. The computer models with non-uniform meshes with different

element sizes in the newly parallelized CAC code will be tested in our future work. Fifth, In the

paper, the interactions between tilt GBs and a shuffle screw dislocation in silicon are investigated

using molecular dynamics. Results show that the dislocation transmits into the neighboring grain

for all GBs. For Σ3 GB, the dislocation goes through the GB directly. For Σ9 and Σ19 GBs, when

the dislocation is on heptagon site, the dislocation transmits the GB directly as well. However,

when the dislocation is on the pentagon site, it first cross slips to a plane on the heptagon site and

then transmits the GB. The energy barrier was calculated using the climbing image nudged elastic

band method. Results show that Σ3 GB generates the barrier at the level of the Peierls barrier. For

both Σ9 and Σ19 GBs, the barrier for dislocation transmission of heptagon sites is 0.6ev/nm, while

it is 1.9ev/nm for pentagon defects. Furthermore, we found that the critical shear stress for the

transmission is lowered from 5.3GPa to 2.9GPa for moving dislocation versus the static dislocation.

Since energy barrier for crossing the Σ3 is equal to the Peierls barrier for dislocation motion in

bulk, and for Σ9 and Σ19 GBs at the heptagon defects it is only slightly larger than the Peierls

barrier, perfect screw dislocations cannot pile up against these GBs and cannot reduce phase trans-
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formation pressure during plastic deformations. At last, interaction between shuffle 60o dislocations

and Σ3 and Σ9 GBs are investigated using atomistic simulations. Results show that a dislocation

pile-up along the GBs can activate the formation of an amorphous shear band in the neighboring

grain. For different GBs, two different mechanisms of amorphizations were observed. For GB with

relative small inclination angle, i.e., low-angle GBs, like Σ9 and Σ19 GBs, the intermediate phase

is formed through the rotation of a very thin band of the crystals accompanied by dis location

nucleations. However, for GBs with a large inclination angle, like Σ3, the intermediate phase is

an amorphous core. The amorphous shear band grows when more dislocations pile up at the GBs.

The critical shear stress needed for the formation of the amorphous shear band decrease linearly

with the number of dislocation pileup being increased. When the number of dislocations in a pileup

increases from 3 to 8, for Σ9 GB, the critical shear stress drops from 4.7GPa to 1.6GPa. For Σ3

GB, it drops from 4.6GPa to 2.1GPa. Comparing with the shear stress to form amorphous shear

band for perfect crystal both from MD (8.1GPa) and experimental (10GPa) results, dislocation

pileup along the GB can greatly reduce the shear stress for the formation of the amorphous shear

band. This new mechanism for forming amorphous shear band can have a potential application in

machining silicon in semiconductor industry. This mechanism may be also found in other covalent

materials.


