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Table 4.2: Metrics used to analyze and evaluate the annotation datasets 

Analysis Metrics* 

Metric Description Formula 

Duplication (%) Proportion of duplicate annotations in a dataset # of Total Annotations-# of Unique Annotations# of 
Total Annotations 

Redundancy (%) Proportion of redundant terms in a dataset 
∑𝑀𝑀𝑦𝑦=1

# of Ancestral terms annotated to Gene(𝑦𝑦)
# of total Annotations to Gene(𝑦𝑦) × 100

𝑀𝑀  

Coverage (%) Proportion of Genes annotated in a dataset 
# of Genes with ≥ one GO annotation 

# of Genes 

Specificity Specificity of the Annotation for a given gene 
∑𝑁𝑁𝑥𝑥=1 # of Ancestral terms inferred for Annotation(𝑚𝑚)

# of total Annotations  

Comparison 
 Metric Description Formula 

hPr Hierarchical Precision calculated by 
evaluating against the gold standard 

GO terms predicted in AS ∩ GO terms annotated in GS 
GO terms predicted in AS 

hRc Hierarchical Recall calculated by 
evaluating against the gold standard 

GO terms predicted in AS ∩ GO terms annotated in GS 
GO terms annotated in GS 

hF1 Harmonic mean of hPr and hRc 
2 ×     hPr ×hRc 

hPr+hRc 
*Analysis and Comparison metrics used here have been described in detail in  methods (Defoin-Platel et al., 2011). 
†See APPENDIX D.   for precise steps to calculate hPr and hRc.  
Notations used as follows, N:  Total # of Annotations, M:  Total # of Genes, AS:  Annotation Set, GS:  Gold Standard. 
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Figure 4.7: Evaluation metrics calculated for na1 gene for each dataset 
Metrics hPr, hRc, and hF1 for existing (Gramene and Phytozome) datasets as well as the maize-
GAMER aggregate and component datasets. hPr, hRc, and hF1 are shown in green, orange, and 
periwinkle, respectively. 
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Abstract 

Summary 

Annotating gene structures and functions are crucial steps to making a newly assembled 

genome useful. The public gene ontology (GO) annotations generated and released for plants 

(and other species) are valuable for many research applications, including interpreting large-scale 

expression profiling studies,  prioritizing candidate gene for functional analysis, etc. We have 

developed a high-throughput and reproducible pipeline for genome-scale GO annotation of plant 

genes called GOMAP for Gene Ontology Meta Annotator for Plants. The GOMAP pipeline is 

based on methods we used to improve functional annotations for the B73 maize reference 

genome. These methods were generalized for application across any sequenced plant genome 

and the pipeline was containerized to increase portability for the system and reproducibility for 

generating an annotation product. The GOMAP pipeline is optimized for HPC environments, and 

a beta-version has been released and demonstrated by annotating gene function for three 

additional maize lines. The pipeline is now being deployed for annotating maize, rice and cotton. 

Availability and implementation 

The beta-version of GOMAP is available as a Singularity version for reproducible 

annotation of plant genes, and as an open source development version for custom work. 

Instructions to obtain the Singularity container are accessible online at  https://gomap-

https://gomap-singularity.readthedocs.io/en/latest/
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singularity.readthedocs.io/en/latest/ and instructions for accessing the source code is available 

through https://github.com/Dill-PICL/GOMAP. 

Introduction 

The availability and accessibility of long-read sequencing technology has enabled the 

widespread adoption of this technology for plant genome assembly (Jiao et al., 2017; Rhoads & 

Au, 2015). The number of whole-genome sequencing (WGS) datasets generated by long-read 

sequencing has increased steadily over the past few years. Prior to 2015, only 19 plant long-read 

WGS datasets were published in NCBI Short Read Archive (SRA) database, whereas over 2,500 

such datasets are currently available (Table 5.1). The number of species sequenced using long-

read sequencing technology for the same period has increased from 14 to 124. This means that 

the number of high-quality de novo assembled plant genomes has also increased during the same 

time period. Just as better computational tools for genome assembly were required to reach this 

level of high-throughput, high-quality genome assembly, better computational tools for gene 

structure prediction and functional prediction are necessary to improve the usability of these 

high-quality assemblies. 

Computational tools for functional annotation of genes leverage the knowledge derived 

from experimental characterization of gene functions and predict function for uncharacterized 

genes. From its inception in 1998, the Gene Ontology (GO) consortium has provided a common 

vocabulary that describes gene function (Ashburner et al., 2000). GO terms are organized as a 

directed,  acyclic graph composed of nodes that are well-defined terms and edges that assert 

relationships between the terms (Ashburner et al., 2000). GO consists three different ontologies, 

namely biological process, cellular component, and molecular function. Each of these provide 

terms to describe different aspects of gene function. GO is widely used as a controlled functional 

annotation vocabulary and serves as an interpreter for many types of experimental data. Many 

https://gomap-singularity.readthedocs.io/en/latest/
https://github.com/Dill-PICL/GOMAP
https://github.com/Dill-PICL/GOMAP


134 
 

 

tools have been developed to assign GO terms to genes based to various types of gene features, 

and numerous statistical methods have been developed to perform GO term enrichment analysis 

to find shared functions among genes that exhibit similar expression patterns (Grossmann, Bauer, 

Robinson, & Vingron, 2007; Jiang et al., 2016; McLean et al., 2010; Radivojac et al., 2013; 

Young, Wakefield, Smyth, & Oshlack, 2010).  

The maize-GAMER project was our effort to explore various methods and tools available 

for GO annotation and to evaluate the annotations and compare them to existing public 

annotation sets using a manually curated high-confidence dataset (Wimalanathan, Friedberg, 

Andorf, & Lawrence-Dill, 2018). The maize-GAMER project produced a  high-coverage, 

reproducible GO annotation dataset for maize. Various GO annotation methods were evaluated 

for performance and accuracy during maize-GAMER project and only reproducible and state of 

the art methods were used for the annotation of GO terms. To enable better reproducibility and 

portability, we have generalized and streamlined the methods used in maize-GAMER and 

implemented a pipeline to annotate GO terms to other plant genomes. We call this pipeline Gene 

Ontology Meta Annotator for Plants (GOMAP). 

Methods 

GOMAP uses sequence-similarity, domain-presence and mixed-method pipelines to 

annotate GO terms to the plant protein sequences given by the user. The user is expected to 

annotate gene models from a whole genome assembly and filter the longest translated sequence 

for each gene model. GOMAP annotates the input sequences using the three types of methods 

mentioned above and produces a single unique and non-redundant GOMAP aggregate dataset 

(Figure 5.1). The datasets and tool version used in GOMAP have been listed in Table 5.2 and 

Table 5.3. 
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GO Annotation methods used in GOMAP 

GOMAP uses sequence-similarity, domain-presence and mixed-method pipelines to 

annotate GO terms to the plant protein sequences given by the user. The user is expected to 

annotate gene models from a whole genome assembly and filter the longest translated sequence 

for each gene model. 

The sequence similarity searches are performed against two plant datasets, Arabidopsis 

and UniProt. The Arabidopsis dataset consisted of translated transcript sequences obtained from 

TAIR (Table 5.2). A first set of annotations are generated by using BLAST search to obtain 

reciprocal-best-hits between input and Arabidopsis sequences, and inheriting curated GO terms 

from Arabidopsis to the input sequence (Figure 5.2). A second set of annotations are obtained by 

utilizing a similar approach, but instead of Arabidopsis the search is performed against the 

protein sequences for the top 10 annotated plants species in UniProt database. The species were 

ranked by the number of protein sequences with curated GO annotations in UniProt. 

The InterProScan5 pipeline is used to detect the valid domains present on the input 

sequences, and assign GO terms to input sequences. InterProScan uses 14 types of protein 

signatures to detect putative domains in the input sequences, and assign GO terms (Jones et al., 

2014). The InterProScan only reports the valid domains and GO annotations so the annotations 

were not filtered for this step. 

Two mixed-method pipelines are used to annotate GO terms to the input sequences, 

namely Argot2.5 and PANNZER (Falda et al., 2012; Koskinen, Törönen, Nokso-Koivisto, & 

Holm, 2015). Each of these tools require preprocessed input sequences before they can be used 

to annotate GO terms (Figure 5.3). Argot2 requires the BLAST hits of the input sequences to the 

UniProt database and Pfam hits identified by HMMER search against Pfam domain database 
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(Finn et al., 2014; Finn, Clements, & Eddy, 2011; UniProt Consortium, 2015). PANNZER only 

requires the BLAST hits to UniProt database for the annotation process. 

Design of the GOMAP-Singularity Container 

The GOMAP pipeline was designed and developed with the purpose of building a 

containerized version. Singularity works well in high performance computing (HPC) 

environments and has been used to containerize complicated pipelines and tools for better 

portability and ease of use (Kurtzer, Sochat, & Bauer, 2017). Several challenges were 

encountered during the construction of the Singularity container. The first challenge was the size 

of the pipeline. The second challenge was the runtime the pipeline took to complete. 

Minimizing GOMAP-singularity size 

GOMAP local installation uses around 110 GB of disk space for local installation. Most 

of the size is due to the inclusion of tools and associated data for the tools (Table 5.2 and Table 

5.3). The singularity container size increased to 60-70 GB when all the tools and data were 

included in the container. This made developing, optimizing and testing the pipeline a challenge. 

The tools and associated data necessary for GOMAP was separated from the container and stored 

in CyVerse data commons (Merchant et al., 2016). GOMAP pipeline has a specific step to 

download and setup the tools and data necessary to a location specified by the user within the 

container. 

Utilizing MPI to parallelize tasks 

The runtime for the GOMAP pipeline on a single machine or a single node in HPC for 

~40000 protein sequences ranges from 10-14 days. The time depends on several parameters, 

such as input sequence lengths and node configuration. The step that takes most time is the 

BLAST search against UniProt sequence database, which takes 8-10 days. The time limit for a 

single job on the HPC environments vary between 2-5 days, and most of them have a limit of 2 
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days. After the time limit jobs are killed. UniProt BLAST step of the GOMAP pipeline is 

designed to recover from crashes, so it can be restarted until completion. This would still take the 

2 weeks for GOMAP to complete. The singularity container is compatible with several message 

passing interface (MPI) libraries, which are used to parallelize the tasks and run the job on 

multiple nodes in HPC. GOMAP pipeline was optimized using MPI libraries to enable the use of 

multiple nodes on clusters. Using MPI and 10 nodes the runtime of the UniProt BLAST step was 

reduced to 14-15 hours. 

Basic steps to run the GOMAP-singularity Pipeline 

GOMAP-singularity has 7 discrete steps, and these steps are as listed in Table 5.4. After 

the initial setup, GOMAP can run the first three steps concurrently, to complete sequence-

similarity, domain-presence, and UniProt BLAST steps. This reduces the overall time for 

GOMAP to complete. Next steps mixed-method preprocessing, mixed-method and aggregation 

steps require output from previous steps and cannot be run concurrently. Users can choose to use 

bash scripts that are distributed with the container to run the container if they do not want to 

configure the GOMAP installation themselves. The detailed instructions for running the 

container are available at https://gomap-singularity.readthedocs.io/en/latest/. 

Results 

The GOMAP-Singularity container was tested by annotating GO terms to three maize 

genomes from different inbred lines. The Pittsburgh Supercomputing (PSC) - Bridges HPC 

cluster was used to run GOMAP. Each compute node on PSC Bridges is equipped with 28-core 

processors and 128GB RAM. The analysis was performed on single nodes for the un-parallelized 

steps and was run on 10 nodes for the parallelized steps. The time taken for each step is given in 

Table 5.5.  The number of protein coding genes is as follows Mo17 had 38,620, W22 had 

40,690, and PH207 had 40,557 gene sequences. Each dataset was slightly different from each 

https://gomap-singularity.readthedocs.io/en/latest/
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other in terms of gene length and number of sequences. The differences among the time taken to 

run each step are mostly due to domain step and the difference is significant between Mo17 and 

W22 datasets (Figure 5.4). The differences in the time taken cannot be accounted for merely by 

the number of input sequences. For example, although, PH107 and W22 have the same number 

of input sequences, the running time is longer for W22. The maize annotation datasets are 

currently being checked for quality prior to public release. 

Discussion 

We have developed the GOMAP pipeline for GO annotation of gene models annotated to 

new plant genome assemblies. The methods that have been produced used in the pipeline were 

selected from the methods that were used for maize-GAMER project and have been evaluated 

using curated dataset. The containerization of the pipeline along with the parallelization of the 

most time-consuming UniProt BLAST step, has enabled the pipeline to annotate new plant 

genomes under two days using 10 nodes on the PSC Bridges cluster. A conservative estimate 

puts the UniProt BLAST step at approximately 7 days on PSC Bridges for approximately 40000 

sequences, if the step was run on a single node compared to the 14 hours for 10 nodes. Splitting 

individual GOMAP steps has enabled concurrent execution that will make the real time 

completion shorter than the totals shown in Table 5.5. Depending on the time it takes on the 

Argot2 web server, that whole annotation process should be completed under 24 hours for 

~40,000 input sequences. The domain and mixed method steps could be parallelized that would 

further decrease the runtime. 

Each of GO annotation methods used in GOMAP have advantages and disadvantages. 

Sequence similarity methods provide an easy and direct inheritance of GO terms from genes in 

other species. For an experimentalist, the direct link is invaluable and enables critical evaluation 

of the GO terms annotated and enables them to generate testable hypotheses. However, 
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sequence-similarity methods annotate lower number of GO terms. Domain-presence methods 

provide a balanced approach that produce more GO annotations than sequence-similarity and are 

still based on sequence domains that can be used to find genes in other species. This enables 

critical evaluation and testable hypothesis for biological experiments. GO annotations produced 

by domain-presence methods, due to the higher number, are also more suitable for the 

interpretation of high-throughput experiments. Both sequence-similarity and domain-presence 

methods annotate only less than half the genes is annotated. This presents a challenge when 

interpreting data from high-throughput experiments. State of the art mixed-methods, as 

determined by the CAFA competition, have better or comparable prediction accuracy to other 

methods. More interestingly they provide more annotations and annotate more genes than both 

other methods. The higher number of annotations makes them more suitable for interpreting 

datasets from large-scale experiments. The utilization of advanced statistical and computational 

methods makes it difficult to make direct connections to genes from other species. 

The tools used in GOMAP have been implemented based on the evaluation with an 

unbiased dataset obtained from MaizeGDB. The mixed-method tools used in GOMAP were the 

top performing methods in the first iteration of CAFA (Radivojac et al., 2013). Currently the 

second and third iteration of the CAFA competition have been completed. More cutting-edge 

tools have been developed in each iteration (Jiang et al., 2016). With the use of gold-standard 

dataset more tools could be evaluated and integrated into GOMAP in the future. Several other 

pipelines exist for GO annotations, but only a few are plant-specific (Amar et al., 2014; 

Zwaenepoel et al., 2018). Other plant-specific GO annotation pipelines available do not focus on 

predicting genome-scale GO terms, and instead mainly focus on subsets of gene ontology 

(Zwaenepoel et al., 2018). GOMAP provides annotations for the all genes and all functions. 
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In summary, the reproducible methods used and evaluated by the maize-GAMER project 

have been integrated as the GOMAP pipeline that can annotate GO terms to plant proteins. 

GOMAP has been successfully used to annotate GO terms to gene models from other sequenced 

maize inbred lines and is currently being applied to rice, cotton, and wheat. 
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Tables 

Table 5.1: The number of long-read sequencing datasets published in the NCBI SRA database 

Year Datasets Plant 
Species 

before 2016  11   7  
2016  641   28  
2017  1,000   37  
2018  1,310   65  
Total  2,962   124  

Number of long-read sequencing datasets in the NCBI Short Read Archive (SRA) were 
determined by querying with the following parameters. Platform = “pacbio smrt”[platform] or 
“oxford nanopore”[platform], organism = (“Embryophyta”[Organism]), molecule type = “biomol 
dna”[Properties], dataset type = “strategy wgs” 

Table 5.2: Public datasets used in GOMAP 

Database Type Format Version Species 
TAIR Protein Sequences fasta TAIR 10 Arabidopsis thaliana 
TAIR GO Annotations gaf 2.0 TAIR 10 (20170410) Arabidopsis thaliana 
Gramene 49 Gene Annotations gff3 5b+ Zea mays 
Gramene 49 GO Annotations gaf 2.0 5b+ Zea mays 
Phytozome 11 GO Annotations tsv 5b+ Zea mays 
Uniprot Protein sequences fasta 20170410 All species 
Uniprot Protein sequences fasta 20170410 All plants 
Uniprot GO Annotations gaf 2.0 20170410 All plants 
Pfam HMMs hmm 27.0 All species 
PANTHER HMMs hmm 10.0 All species 
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Table 5.3: Software tools used in GOMAP 

Software Type Version Citation 
NCBI-BLAST Sequence 

similarity 
2.6.0 (Altschul, Gish, Miller, Myers, & Lipman, 

1990) 
HMMER HMM scanning 3.1b1 (Finn et al., 2011) 
InterProScan5 GO Annotation 5.15-55.0 (Jones et al., 2014) 
PANNZER GO Annotation 1.1 (Koskinen et al., 2015) 
Argot2 GO Annotation 2.5 

(Server) 
(Falda et al., 2012) 

FANN-GO GO Annotation 1 version (Clark & Radivojac, 2011) 
AIGO GO Evaluations 0.1.0 (Defoin-Platel et al., 2011) 

 

Table 5.4: Steps to run the GOMAP-singularity container 

Step Description Depends on previous 
step 

setup Download and extract data from CyVerse Data 
Commons 

NA 

seqsim Runs sequence similarity steps No 
domain† Run InterProScan5 No 
mixmeth-blast‡ Run the BLAST step against UniProt No 

mixmeth-
preproc 

Convert output from UniProt BLAST Yes 
Run HMMER Yes 

mixmeth† 
Submit jobs to Argot2.5 webserver Yes 
Run PANNZER Yes 

aggregate Get all GO annotations, clean and generate aggregate 
dataset 

Yes 

‡This step has been parallelized for HPC, †This step can be parallelized but has not been done yet 
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Table 5.5: The number of nodes used for each step and the run time for each GOMAP step 

 Nodes Mo17 W22 PH207 
Number of Genes  38,620 40,690 40,557 
Step     
seqsim 1 2h45m 3h41m 2h40m 
domain 1 15h46 20h23m 18h4m 
mixmeth-blast 10 14h54m 20h23m 14h54m 
mixmeth-preproc 1 4h26m 4h48m 3h16m 
mixmeth 1 2h25m 2h11m 2h20m 
aggregate 1 0h10m 0h10m 0h10m 
Step 1 2h45m 3h41m 2h40m 
Total  40h26m 47h4m 41h19m 

† The domain step for PH207 was calculated by averaging the times for the domain step from the 
other two inbreds.
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Figures and Legends 

 

Figure 5.1: Overview of the GOMAP pipeline 

The types of methods and major steps used for the GOMAP pipeline are shown here. Sequence-similarity methods are colored in 
yellow, domain-presence methods are blue, and mixed-methods are green.  Outputs from these methods are combined, duplicates and 
redundancies are removed, and an aggregate dataset is the final dataset produced.  
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Figure 5.2: GO annotations using sequence-similarity to Arabidopsis 

Detailed steps the approach to annotate GO terms using sequence similarity to Arabidopsis 
dataset. The same steps are performed against the top 10 annotated species in UniProt as well. 
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Figure 5.3: Mixed-method based GO annotation of the input sequences 

This figure illustrates the detailed steps of how the input sequences are annotated using the  
mixed-methods Argot2 and PANNZER. The input sequences are preprocessed initially, by a 
BLAST step to UniProt and HMMER step to Pfam database. The output from the preprocessing 
is used by Argot2 and PANNZER for GO annotation. 
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Figure 5.4: Comparison of GOMAP runtimes for annotating maize genomes 

This figure provides a comparison of runtimes for each step for the three maize genomes 
annotated using GOMAP, namely Mo17, W22, and PH207. Each step of the GOMAP pipeline is 
colored as per the legend, and the steps are given in the order of execution. The domain step for 
PH207 was calculated by averaging the times for the domain step from the other two inbreds. 
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CHAPTER 6.    GENERAL CONCLUSIONS 

Summary 

The research presented in this thesis has focused on methods to assign function to maize 

genes. We have improved methods in both experimental and computational approaches to assign 

gene function. 

We have used high-throughput sequencing technology to characterize maize mutants. We 

applied short-read sequencing technology to positionally clone maize genes. We developed the 

BSA-GBS method for rough-mapping to identify causal loci in maize mutants and utilized WGS 

methods to fine-map and clone genes in maize mutants. We have also used long-read sequencing 

technology to place transgene T-DNAs on the maize genome. A molecular protocol to enrich 

genomic T-DNA flanks to multiplex and sequence multiple T-DNA insertions in the same 

experiment was designed as part of the project. 

Computational methods are indispensable for high-throughput gene function annotation 

and utilize the existing data from experimental and curatorial approaches in other species for this 

purpose.  We have annotated gene function using GO terms to the gene models in the maize 

reference genome using reproducible methods in the maize-GAMER project. The dataset 

increased the number of genes annotated and the number of annotations, with comparable quality 

to existing datasets. The critical component of this endeavor was the evaluation of the GO 

annotation methods using manually curated high-confidence GO annotations. The methods 

evaluated and used in the maize-GAMER projects were assembled into a streamlined pipeline 

called GOMAP. The GOMAP pipeline was containerized using singularity to enable portability 

and reproducibility. We have parallelized GOMAP and significantly reduced the runtime on 

HPC. 



151 
 

 

Contributions to collaborative projects of significance 

There were several collaborative projects that I participated in during my time as a 

graduate student. While these projects are not within the scope of the thesis, they are significant 

in terms of my training and research outcomes. They are listed here with modified abstracts from 

published work or short descriptions and include my personal contribution to each project. The 

projects are listed in chronological order of participation. 

MaizeGDB expression analysis tool based on MapMan 

MaizeGDB is a highly curated, community-oriented database and informatics service to 

researchers focused on the crop plant and model organism Zea mays ssp. mays. MaizeGDB hosts 

several tools for examining maize data, such as BLAST, genome browser, and expression 

analysis tools. MapMan was developed at the Max Planck Institute for Molecular Plant 

Physiology in Potsdam, Germany (Usadel et al., 2009). The MapMan software suite allows the 

visualization of a variety of functional genomics datasets (gene expression, protein, enzyme, and 

metabolite levels) in the context of a large number of well characterized biochemical processes 

and metabolic pathways. The microarray expression dataset from 60 maize tissues from Sekhon 

et al. was processed and incorporated into the MapMan Web interface at MaizeGDB (Sekhon et 

al., 2011). The interface allowed users to visualize expression values for single tissue or compare 

expression between two tissues. 

My contribution to this project was the processing of the datasets, and integration of the 

MapMan web module into MaizeGDB for visualization. This involved a collaboration between 

MaizeGDB and technical staff from MapMan. This work has been part of MaizeGDB 

publication in Nucleic Acids Research (Andorf et al., 2016). 

http://f1000.com/work/citation?ids=383912&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2762685&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2762685&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3036606&pre=&suf=&sa=0
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Gene network variation and alternative paths to convergent evolution in turtles 

Diversification of the turtle’s shell comprises remarkable phenotypic transformations. For 

instance, two divergent species convergently evolved shell‐closing systems with shoulder blade 

(scapula) segments that enable coordinated movements with the shell. We expected these 

unusual structures to originate via similar changes in underlying gene networks, as skeletal 

segment formation is an evolutionarily conserved developmental process. We tested this 

hypothesis by comparing transcriptomes of scapula tissue across three stages of embryonic 

development in three emydid turtles from natural populations. We found that alternative 

strategies for skeletal segmentation were associated with interspecific differences in gene co‐

expression networks. 

The participation in this project was facilitated by BCB Lab, which is volunteered 

consultation provided to researchers who request bioinformatics help. Me and a fellow BCB 

student Haibo Liu worked on the initial analysis of the RNA-seq produced for this project. This 

included RNA-seq QC, genome alignment, Haibo Liu performed differential expression analysis, 

and I constructed de novo transcriptome assemblies for the detection of novel species-specific 

transcript isoforms. This work has been published in Evolution and Development (Cordero et al., 

2018). 

The maize W22 genome provides a foundation for functional genomics and transposon 
biology 

The maize W22 inbred has served as a platform for maize genetics since the mid 

twentieth century. To streamline maize genome analyses, we have sequenced, and de novo 

assembled a W22 reference genome using short-read sequencing technologies. We show that 

significant structural heterogeneity exists in comparison to the B73 reference genome at multiple 

scales, from transposon composition and copy number variation to single-nucleotide 

http://f1000.com/work/citation?ids=5640997&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5640997&pre=&suf=&sa=0
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polymorphisms. The generation of this reference genome enables accurate placement of 

thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and 

forward genetics studies. 

My contribution to this project was the placement of Ds elements to the genome and the 

comparison of Ds and Mu insertion locations between the W22 and B73 genomes. This involved 

obtaining Ds genomic flanks from NCBI and adapting and running an alignment pipeline 

developed for the Ac/Ds mutagenesis project on the W22 and B73 genomes and post-processing 

of the alignments. This work has been published in Nature Genetics (Springer et al., 2018). 

Primer Server - A web application to design primers for the amplification of unique DNA 
targets in complex genomes 

Polymerase Chain Reaction (PCR) is a technique to amplify a specific DNA region. PCR 

primers are short, single-stranded DNAs that define the section of DNA to be amplified. Two 

primers are used in each PCR reaction, designed so that they flank the target region. Critically, 

off-target binding may lead to experimental failure or worse, to misleading results. Thus, 

potential primers that amplify genomic DNA must be examined for off-target binding across the 

genome. The purpose was to make a user-friendly tool that can design PCR primers efficiently 

and accurately as well as visualize the designed primers. Our web-based bioinformatics tool 

selects optimal primer sequences within the starting material by using a C module called 

primer3plus and then prioritizing and/or eliminating potential primers based on BLAST. This 

tool has an easy-to-use interface which was designed using Angular2, and an efficient server-side 

code written in Python. While similar tools exist, our tool is more user-friendly, efficient and 

uses extensive form validation to minimize errors in the user input. 

This was a collaborative project with an undergraduate student Takao Shibamoto in the 

Vollbrecht lab. My contribution to the project was software design, and the development of the 

http://f1000.com/work/citation?ids=5613327&pre=&suf=&sa=0
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primer filtering and analysis tool (primerDAFT), a python package to design and filter primers. 

This has been presented by Takao at the National Conference on Undergraduate Research 

(NCUR) 2018 (Iowa State University, 2018). 

Large-scale transcriptomics study on the effect of drought on early maize inflorescence 
development 

 
When water availability is limited during the early growing season, early season drought 

stress disturbs or blocks maize ear development, which negatively impacts yield. A large-scale 

RNA expression profiling study was conducted to understand the mechanisms by which early 

season drought stress impacts the developmental processes that define the architecture of the 

maize ear. A multi-institute experiment was conducted at the automated Pioneer (now known as 

Corteva) greenhouse in Johnston. A set of  multi-stage samples of ear and tassel were collected 

from drought stressed and well-watered plants. Samples were collected at multiple time points 

spanning over two weeks by dissecting over 1000 plants. The samples were used to generate a 

RNA-seq data for 24-samples (72 reps) and is currently being analyzed. 

As the member of the local team, my contribution to this project was to lead the effort to 

carry out the experiment at the Pioneer greenhouse. This included being the contact person for 

Pioneer personnel who working in the greenhouse, estimating seed planting and dissection dates 

to plan travel for out of state team members, and staging the tissue to confirm collection dates. I 

also led the tissue collection efforts to dissect, fix, and transport the tissues back to Ames from 

Pioneer’s facilities in Johnston. I was also involved in extracting RNA from the collected 

samples and oversaw the construction of libraries and sequencing to generate the RNA-seq data. 

  

http://f1000.com/work/citation?ids=5984431&pre=&suf=&sa=0
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APPENDIX A.    UREA GENOMIC DNA EXTRACTION PROTOCOL 

Protocol to extract genomic DNA from maize tissue adapted from the “Urea-based Plant 

DNA Miniprep” by [cite Chen and Dellaporta]. 

Urea Extraction Buffer: 

• 420 g Urea 
• 70 mL 5M NaCl 
• 50 mL 1M Tris-HCl pH 8 
• 40 mL 0.5M EDTA 
• 10 g n-lauroyl sarcosine 
• to 1.0 L with d.i. water 
• filter through 3mm filterpaper w. funnel 

4.4M NH4OAc, pH 5.2: 

• 105 mL d.i. water 
• 50.5 mLglacial acetic acid 
• 45 mL NH4OH (add slowly in fume hood) 

High-salt TE:: 

• 100mM Tris-HCl (pH 7.5); 10 mM EDTA (pH 8.0); 0.7M NaCl 
• 10 mL 1 M Tris-HCl pH 7.5 
• 2.0 mL 0.5 M EDTA 
• 14 mL 5M NaCl 
• 74 mL d.i. water 
Protocol 

1. Leaf tissue punches were ground in liquid nitrogen using a mortar and pestle. 

2. Ground, frozen leaf tissue (3-5 mL volume in 15 mL screw-cap falcon tube) was mixed 

with an “equal volume” (3-5 mL) of extraction buffer 

3. Tissue and buffer were mixed well by vortexing and shaking. 

4. Equal volume (3-5 mL) phenol:chloroform (2:1, where chloroform is 24:1 

chloroform:isoamyl alcohol) was added. 

5. The tube was mixed well and placed on platform shaker 15 minutes @80 rpm. 

6. Spin at 3000 rpm for 20 minutes. 
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7. Supernatant was poured off into a clean 14 mL falcon culture tube. 

8. 0.3 mL 4.4M NH4OAc (or 1/10th volume of the aqueous phase) was added and mixed 

9. An equal volume of room-temperature isopropanol was added. 

10. The snard of DNA was hooked using a bent glass pasture pipette. 

11. DNA was patted dry on a kimwipe and resuspend in 2 mL high salt TE (100mM Tris-HCl 

(pH 7.5); 10 mM EDTA (pH 8.0); 0.7M NaCl). 

12. 5uL RNAse A (10 mg/mL, DNAse free) was added and the mixure was incubated for 1 

hour or longer at 37C. 

13. Tubes were taken out and allowed to reach room temperature for 10 min. 

14. 5 mL Ethanol (100%) was added. 

15. DNA snard was hooked and placed into a 1.7 mL tube containing 1.0 mL of wash solution I 

(76%EtOH containing 0.2M NaOAc) for 5-10 minutes. 

16. DNA was transferred into another 1.7 mL tube containing 1.0 mL wash buffer II (76%EtOH 

containing 10mM NH4OAc) for 2-5 minutes. 

17. DNA was dried carefully on a Kimwipe and placed into a clean 1.7 mL tube containing 

200uL of TE . 

18. DNA was heated at 65C for 10 minutes and let sit overnight at 4C. 
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APPENDIX B.    BSA-GBS PROTOCOL 

This is the detailed description of the bulked-segregant-analysis by genotyping-by-

sequencing protocol, adapted from the original genotyping-by-sequencing method developed by 

Rob Elshire in Ed Buckler's lab. 

Barcodes selected for BSA-GBS 

ID Barcode 
1 AACT 
2 GATC 
3 TTCTC 
4 TCGTT 
5 ATGCCT 
6 ATATGT 
7 CATCGT 
8 ATTGGAT 
9 GAACTTC 
10 TGGTACGT 
11 TCTCAGTC 
12 CCGGATAT 

 
Adapter and PCR primer Sequences for BSA-GBS 

The adapter sequences and PCR primers sequences were optimized for Illumina 

Sequencing, and were taken from (Elshire el al 2011) GBS protocol, but a smaller selection of 16 

adapters were selected. Out of that 6 were used for the BSA-GBS trial. The adapters were 

synthesized at the Iowa State University DNA Facility and were cartridge purified. 
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Name Sequence Length 
adapter_1_F CWGAACTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 40 
adapter_1_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTT 37 
adapter_2_F CWGGATCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 40 
adapter_2_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTGATC 37 
adapter_3_F CWGTTCTCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 41 
adapter_3_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGAA 38 
adapter_4_F CWGTCGTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 41 
adapter_4_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACGA 38 
adapter_5_F CWGATGCCTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 42 
adapter_5_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGCAT 39 
adapter_6_F CWGATATGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 42 
adapter_6_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTACATAT 39 
adapter_7_F CWGCATCGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 42 
adapter_7_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGATG 39 
adapter_8_F CWGATTGGATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 43 
adapter_8_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCCAAT 40 
adapter_9_F CWGGAACTTCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 43 
adapter_9_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAAGTTC 40 
adapter_10_F CWGTGGTACGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 44 
adapter_10_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGTACCA 41 
adapter_11_F CWGTCTCAGTCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 44 
adapter_11_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTGACTGAGA 41 
adapter_12_F CWGCCGGATATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 44 
adapter_12_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTATATCCGG 41 
adapter_13_F CWGATCGTAAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 42 
adapter_13_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTTACGAT 39 
adapter_14_F CWGTCACAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 40 
adapter_14_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGA 37 
adapter_15_F CWGAATATGCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 43 
adapter_15_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCATATT 40 
adapter_16_F CWGACGACTACAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 44 
adapter_16_R ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTAGTCGT 41 
adapter_common_F CWGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 36 
adapter_common_R CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 33 
PCR_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 58 
PCR_R CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 61 
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Anneal adapters 

Prepare adapters 

• Suspend the adapters received in TE to make a 2uM solution 
• In a PCR plate/8-tube strip bring together the barcoded adapters 
• In a 0.2 ml tube bring together the common adapter 

Total volume 100ul Annealed Molarity: 50mM 

Component Conc Volume 
Top Strand 200 uM 25uL 
Bottom Strand 200 uM 25uL 
TE  50uL 
Total 50 mM 100uL 

Thermocycling parameters 

• 95 degrees for 2 minutes 
• Ramp to 25 degrees by 0.1 degree per second 
• Hold at 25 degrees for 30 minutes 
• Hold at 4 degrees forever 

Quantify Adapter Concentration with Qubit or Quantifluor 

Adapter stock solution 

Make a stock solution of the barcoded (BC) and Common adapter mix. The stock adapter 
solution is 3ng/uL of adapters. 

Material Volume/Mass 
BC Adapter 300 ng 
Common Adapter 300 ng 
TE 200uL 

Vortex and Spin 

Restriction Digestion 

We have to set up the restriction digestion of the genomic DNA with ApeKI. 

Digestion Master Mix 

Material 1x 12x 
NEB Buffer 3 2uL 24uL 
ApeKI 1uL 12uL 
Water 17uL 204uL 
Water 20uL 240uL 
• Add 100 ng of high molecular weight genomic DNA (10uL of 10ng/uL recommended or 

100 ng + water to 10uL) 
• Add 20uL of digestion master mix 
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• Incubate at 75C for 120 minutes 
• Hold at 4C 
Ligation 

The digested genomic fragments can be ligated to the adapters prepared earlier. 

Ligation master mix 

Material 1x 12x 
10x T4 DNA Ligase Buffer 5uL 60uL 
T4 DNA Ligase 1.6uL 19.2uL 
Water 7.4uL 88.8uL 
Total 14uL 168uL 
• Add 6uL of 0.6 ng/uL adapter solution, and this should be unique for each DNA sample. 
• Add 14uL of ligation master mix 
• Ligate at 22C for 60 minutes 
• Heat for 65C for 30 minutes 
• Hold at 4C 
Ligation Cleanup 

The Adapter ligated DNA fragments should be cleaned before the next step, and we used Aline 
PCRCleanDX beads to clean the Ligated fragments 

• Add 1.8x (90uL) Aline PCRCleanDX beads to each tube 
• Pipette 10 times or vortex the mixture 
• Incubate at room temp for 5 min 
• Place the reactions on a magnetic stand for 5-10 min 
• Remove the solution 
• Wash with 200uL of 70% ethanol while leaving the samples on the stand 
• Repeat ethanol wash 
• Leave to dry on the magnetic stand for 10 min 
• Elute in 20uL of TE (Take extra care with smaller elution volume) 
PCR for Illumina Library Construction 

The PCR is to be performed on individual DNA pools instead of combining all the samples as 
with the original GBS protocol. 
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PCR Master Mix 

Material 1x 12x 
Taq Master-mix 25 300 
PCR Primer F (12.5 uM) 1 12 
PCR Primer R (12.5 uM) 1 12 
Water 21 252 
Total 47 564 

PCR Protocol 

• Add 2uL of clean ligated DNA fragments 
• Add 47uL of PCR master-mix 
• Run PCR Protocol 

PCR Cycling Parameters 

1. 5 minutes at 72deg C 
2. 30 seconds at 94deg C 
3. 18 cycles of: 

1. 10 seconds at 94deg C 
2. 30 seconds at 65deg C 
3. 30 seconds at 72deg C 

4. 5 minutes at 72deg C 
5. Hold at 4deg C 
Library Clean-up 

The library should be cleaned up using the same process used for cleaning up the ligated 
fragments. Please refer to Aline bead-based clean-up instructions. 

The library should be size selected at this point to make sure that the adapter dimers are omitted 
before the next step, adapter dimers will amplify efficiently in the Illumina Sequencing and 
waste large proportion of reads. 

Check Quality and Quantity 

• The library quality can be checked by BioAnalyzer or Fragment Analyzer 
• The library can be quantified by Qubit or Quantifluor 

• Calculate the concentration of each barcoded 
Normalize and Combine Barcode Libraries for multiplex sequencing 

Follow best practices here 

• Calculate the average DNA size of each sample from the BioAnalyzer 2100 high-sensitivity 
DNA chip 

• Calculate ng/uL DNA concentration by Qubit 
• Calculate the nM concentration of each library using the average DNA size and ng/uL 

concentration 
• Dilute each sample to 2nM concentration 

https://support.illumina.com/bulletins/2017/03/best-practices-for-manually-normalizing-library-concentrations.html
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• Pool equal volume of each sample to prepare a multiplexed-library 
• Supply the necessary volume to the sequencing facility 
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APPENDIX C.    T-DNA FLANK AMPLICON LIBRARY CONSTRUCTION 

This is the detailed description of the protocol used to construct the PacBio libraries to 

identify the T-DNA flanking sequences in transgenic maize. 

Pool Setup 

The experiment was used to map insertions from multiple transgenic events in a single 

sequencing run. The protocol was used to map insertions for 20 transgenic events in a single 

sequencing run. The table below shows a pooling setup. 

 C1 C2 C3 C4 
R1 668.11.1 668.2.1 668.4.1 668.8.5 
R2 668.13.4 668.15.3 668.5.2 668.9.5 
R3 668.14.2 668.5.4 668.2.4 668.7.1† 
R4 668.15.1 668.3.1 668.8.1 707.26.1 
R5 668.3.4 668.8.2 668.14.2 668.15.11 

Tissue collection is optimized for maize genome, and approximately 300 leaf punches/per 

pool were collected. This number varied based on the number of events in each pool. Three 

individuals were punched for each event, and the final number of punches per individual varied 

between 20-25 punches for the columns and rows. 

†In LB1, The DNA extracted from the 707.26.1 event was pooled in C4 and R4 pools. In 

LB2 and RB1 the 707.26.1 event was prepared independently using different barcode 

(0054_Rev). 

DNA Extraction and Quantitation 

Genomic DNA was extracted from the collected leaf tissue using the modified Urea-

based protocol described in APPENDIX A.   (Cite Dellaporta). The DNA was quantified using 

the Promega Quantifluor dsDNA assay following manufacturer instructions. 
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DNA Fragmentation 

DNA (5 ug) from each pool was sheared using CovarisME220 ultrasonicator with 

miniTUBE (Red-PN 520066) following the conditions provided by the manufacturer 

(www.covaris.com/wp-content/uploads/pn_010301.pdf) . The sheared DNA is cleaned using a 

PCR clean-up column (Qiagen) and eluted in 60uL EB. 

T-DNA flank selection Protocol Steps 

1. DNA end repair and dA-tailing This step uses NEBNext® Ultra™ End Repair/dA-Tailing 
Module (NEB E7442) 

  Reaction Mix 

Item Amount 
Sheared DNA 55uL 
End Repair Buffer (10x) 6.5uL 
End Repair Enzyme mix 6.5uL 

  Thermo-cycling parameters 

Step Temperature Time 
Initial Denaturation 20°C 30min 
Denaturation 65°C 30min 

Cleanup This step requires the use of PacBio compatible SPRI beads. The item used was 

Aline Biosciences™ PCRClean DX® (C-1003), which were cleaned using PacBio instructions. 

The reaction was cleaned using 0.6x SPRI beads and eluted in 35uL of nuclease free 

water 

2. Adapter Ligation The adapters were ligated to the end repaired fragments from the previous 

step. T4 Ligase from NEB was used for this (NEB M0202) 

  Reaction Mix 
Item Amount 
Repaired DNA 34uL 
Adapters (15uM LA/30 SA) 10uL 
NEB ligation buffer (10x) 5uL 
T4 DNA Ligase 1uL 

   

http://www.covaris.com/wp-content/uploads/pn_010301.pdf
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  Thermo-cycling parameters 

Step Temperature Time 
Initial Denaturation 20°C 60min 
Denaturation 70°C 10min 

3. Clean up Add 100uL water to ligation mix, and clean using 0.5x SPRI beads and elute in 

50uL of nuclease free water 

4. T-DNA target enrichment 

  LB1: This was performed by linear amplification using biotinylated bLB or bRB primers. 

  Reaction Mix 

Item Amount 
Adapter Ligated DNA 2.5uL 
bLB Primer 2.5uL 
Q5 Master Mix (2x) 12.5uL 
Water 7.5uL 

  Thermo-cycling parameters 

Step Temperature Time 
Initial Denaturation 98°C 30s 
40 Cycles of   
   Denaturation 98°C 20s 
   Annealing 70°C 20s 
   Extension 72°C 30s 
Final Extension 72°C 2min30s 
Hold at 4°C Inf 

   

  RB2 and LB2: This was performed by Low cycle amplification with bLB or bRB + AP 

using Q5 master-mix from NEB 

  Reaction Mix 

Item Amount 
Adapter Ligated DNA 2.5uL 
bLB or bRB Primer 2.5uL 
bAP Primer 2.5uL 
Q5 Master Mix (2x) 12.5uL 
Water 5.0uL 
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  Thermo-cycling parameters 

Step Temperature Time 
Initial Denaturation 98°C 30s 
15 Cycles of   
   Denaturation 98°C 20s 
   Annealing 69°C 20s 
   Extension 72°C 30s 
Final Extension 72°C 2min30s 
Hold at 4°C Inf 

5. Cleanup Add 50uL water to ligation mix, and clean using 0.5x SPRI beads and elute in 

20uL of nuclease free water 

6. Target selection Target selection using Streptavidin Dynabeads kilobase BINDER 

(ThermoFisher cat# 60101) and resuspended in 20uL 

  Barcode PCR Reaction Mix 

Item Amount 
Beads and DNA 20uL 
Primer Mix 5uL 
Q5 Master Mix (2x) 25uL 

  Thermo-cycling parameters 

Step Temperature Time 
Initial Denaturation 98°C 30s 
15 Cycles of   
   Denaturation 98°C 20s 
   Annealing 70°C 20s 
   Extension 72°C 30s 
Final Extension 72°C 2min30s 
Hold at 4°C Inf 

7. Clean up Add 50uL water to ligation mix, and clean using 0.5x SPRI beads and elute in 

40uL of nuclease free water 

8. Quantification Quantify using Quantifluor dsDNA system, following manufacturer 

instructions 

9. Library characterization Measure the library size using Agilent BioAnalyzer 2100 using the 
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high-sensitivity DNA chip. 

Target amplicon library construction 

10. Barcoded amplicons were pooled using the calculator (www.pacb.com/wp-

content/uploads/HLA-Pooling-Calculator.xls) 

11. A single PacBio library was constructed for each LB and RB amplicon pools following the 

PacBio-developed protocol (www.pacb.com/wp-content/uploads/2015/09/Unsupported-

Amplicon-Template-Preparation-Sequencing.pdf). 

 

http://www.pacb.com/wp-content/uploads/HLA-Pooling-Calculator.xls
http://www.pacb.com/wp-content/uploads/HLA-Pooling-Calculator.xls
http://www.pacb.com/wp-content/uploads/2015/09/Unsupported-Amplicon-Template-Preparation-Sequencing.pdf
http://www.pacb.com/wp-content/uploads/2015/09/Unsupported-Amplicon-Template-Preparation-Sequencing.pdf
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Primer and Adapter Sequences 

Adapter primers 

Adapter primers used for the ligation step after DNA shearing 

Primer Sequence 
Long Adapter (LA) AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 
Short Adapter (SA) /5Phos/ GATCGGAAGAGCG /3AmMO/ 

Target Enrichment Primers 

Two types of primers are used for initial target amplification and enrichment using streptavidin beads 

1. biotinylated T-DNA specific primers for left and right borders 

2. Adapter Primer 

Primer Sequence 
biotinylated Left Border (bLB) /bio/ GAAGCGAATTAGCTTGGCACTGG 
biotinylated Right Border (bRB) /bio/ TCGGGAAACCTGTCGTGCC 
Adapter Primer (AP) AATGATACGGCGACCACCG 
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Barcoded Primers 

Barcoded primers contain three parts of sequences 

1. 10-bp spacer 

2. Barcode (PacBio recommended sequence) 

3. T-DNA specific border (LB or RB) primer or Adapter primer 

 

Pool Barcode # Barcode ID Spacer Barcode Left Border Primer 
R1 1 0001_Rev AGCGATCGTA TCAGACGATGCGTCAT CCTGGCGTTACCCAACTTAATCG 
R2 2 0009_Rev AGCGATCGTA CTGCGTGCTCTACGAC CCTGGCGTTACCCAACTTAATCG 
R3 4 0017_Rev AGCGATCGTA CATAGCGACTATCGTG CCTGGCGTTACCCAACTTAATCG 
R4 7 0029_Rev AGCGATCGTA GCTCGACTGTGAGAGA CCTGGCGTTACCCAACTTAATCG 
C1 9 0034_Rev AGCGATCGTA ACTCTCGCTCTGTAGA CCTGGCGTTACCCAACTTAATCG 
C2 11 0038_Rev AGCGATCGTA TGCTCGCAGTATCACA CCTGGCGTTACCCAACTTAATCG 
C3 12 0040_Rev AGCGATCGTA CAGTGAGAGCGCGATA CCTGGCGTTACCCAACTTAATCG 
C4 15 0048_Rev AGCGATCGTA TCACACTCTAGAGCGA CCTGGCGTTACCCAACTTAATCG 
C5 17 0052_Rev AGCGATCGTA GCAGACTCTCACACGC CCTGGCGTTACCCAACTTAATCG 
Dwarf 18 0054_Rev AGCGATCGTA GCAGACTCTCACACGC CCTGGCGTTACCCAACTTAATCG 

 
  



 
 

 

171 

Barcoded Right Border Primers 

Pool Barcode # Barcode ID Spacer Barcode Right Border Primer 
R1 1 0001_Rev AGCGATCGTA TCAGACGATGCGTCAT AGAGGCGGTTTGCGTATTGGAGC 
R2 2 0009_Rev AGCGATCGTA CTGCGTGCTCTACGAC AGAGGCGGTTTGCGTATTGGAGC 
R3 4 0017_Rev AGCGATCGTA CATAGCGACTATCGTG AGAGGCGGTTTGCGTATTGGAGC 
R4 7 0029_Rev AGCGATCGTA GCTCGACTGTGAGAGA AGAGGCGGTTTGCGTATTGGAGC 
C1 9 0034_Rev AGCGATCGTA ACTCTCGCTCTGTAGA AGAGGCGGTTTGCGTATTGGAGC 
C2 11 0038_Rev AGCGATCGTA TGCTCGCAGTATCACA AGAGGCGGTTTGCGTATTGGAGC 
C3 12 0040_Rev AGCGATCGTA CAGTGAGAGCGCGATA AGAGGCGGTTTGCGTATTGGAGC 
C4 15 0048_Rev AGCGATCGTA TCACACTCTAGAGCGA AGAGGCGGTTTGCGTATTGGAGC 
C5 17 0052_Rev AGCGATCGTA GCAGACTCTCACACGC AGAGGCGGTTTGCGTATTGGAGC 
dwarf 18 0054_Rev AGCGATCGTA GATATATATCTCACAC AGAGGCGGTTTGCGTATTGGAGC 

Barcoded Adapter Primers 

Pool Barcode # Barcode ID Spacer Barcode Adapter Primer 
R1 1 0001_Rev AGCGATCGTA ATGACGCATCGTCTGA AATGATACGGCGACCACCG 
R2 2 0009_Rev AGCGATCGTA GTCGTAGAGCACGCAG AATGATACGGCGACCACCG 
R3 4 0017_Rev AGCGATCGTA CACGATAGTCGCTATG AATGATACGGCGACCACCG 
R4 7 0029_Rev AGCGATCGTA TCTCTCACAGTCGAGC AATGATACGGCGACCACCG 
C1 9 0034_Rev AGCGATCGTA TCTACAGAGCGAGAGT AATGATACGGCGACCACCG 
C2 11 0038_Rev AGCGATCGTA TGTGATACTGCGAGCA AATGATACGGCGACCACCG 
C3 12 0040_Rev AGCGATCGTA TATCGCGCTCTCACTG AATGATACGGCGACCACCG 
C4 15 0048_Rev AGCGATCGTA TCGCTCTAGAGTGTGA AATGATACGGCGACCACCG 
C5 17 0052_Rev AGCGATCGTA GCGTGTGAGAGTCTGC AATGATACGGCGACCACCG 
dwarf 18 0054_Rev AGCGATCGTA GATATATATCTCACAC AATGATACGGCGACCACCG 
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APPENDIX D.    maize-GAMER SUPPORTING MATERIALS 

Detailed Metrics 

Hierarchical Precision 

For gene 𝑔𝑔 with annotation 𝐴𝐴𝐿𝐿𝑖𝑖 in annotation set and annotation 𝐺𝐺𝐿𝐿𝑗𝑗  in the gold standard the 
ℎ𝑃𝑃𝑟𝑟 is calculated as follows  

ℎ𝑃𝑃𝑟𝑟(𝑔𝑔,𝐴𝐴𝐿𝐿𝑖𝑖,𝐺𝐺𝐿𝐿𝑗𝑗) =
𝐺𝐺𝑂𝑂𝐴𝐴𝐿𝐿𝑖𝑖 ∩ 𝐺𝐺𝑂𝑂𝐺𝐺𝐿𝐿𝑗𝑗

𝐺𝐺𝑂𝑂𝐴𝐴𝐿𝐿𝑖𝑖
 

Where: 

𝐺𝐺𝑂𝑂𝐴𝐴𝐿𝐿𝑖𝑖: GO terms inferred for annotation 𝐴𝐴𝐿𝐿𝑖𝑖 by propagating the GO hierarchy till the root 
term 
𝐺𝐺𝑂𝑂𝐺𝐺𝐿𝐿𝑗𝑗: GO terms inferred for annotation 𝐺𝐺𝐿𝐿𝑗𝑗 by propagating the GO hierarchy root term 

 

For a gene 𝑔𝑔 with annotation 𝐴𝐴𝐿𝐿𝑖𝑖 in annotation set in the GO ontology 𝑙𝑙 the ℎ𝑃𝑃𝑟𝑟 is 
calculated as followed. 

ℎ𝑃𝑃𝑟𝑟(𝑔𝑔,𝐴𝐴𝐿𝐿𝑖𝑖) = �
ℎ𝑃𝑃𝑟𝑟(𝑔𝑔,𝐴𝐴𝐿𝐿𝑖𝑖,𝐺𝐺𝐿𝐿𝑗𝑗)

|𝐺𝐺𝐿𝐿𝑔𝑔,𝑝𝑝|
𝑗𝑗∈𝐺𝐺𝐿𝐿𝑔𝑔,𝑛𝑛

 

Where: 

𝐺𝐺𝐿𝐿𝑔𝑔,𝑝𝑝 : GO terms annotated to gene 𝑔𝑔 in the ontology 𝑙𝑙 in gold standard 𝐺𝐺𝐿𝐿 

 

For gene 𝑔𝑔, ℎ𝑃𝑃𝑟𝑟 for ontology 𝑙𝑙 is calculated as follows 

ℎ𝑃𝑃𝑟𝑟(𝑔𝑔) = �
ℎ𝑃𝑃𝑟𝑟(𝑔𝑔,𝐴𝐴𝐿𝐿𝑖𝑖)

|𝐴𝐴𝐿𝐿𝑔𝑔,𝑝𝑝|
𝑖𝑖∈𝐴𝐴𝐿𝐿𝑔𝑔,𝑛𝑛

 

Where: 

𝐴𝐴𝐿𝐿𝑔𝑔,𝑝𝑝: GO terms annotated to gene 𝑔𝑔 in the ontology 𝑙𝑙 in the annotation set 𝐴𝐴𝐿𝐿. 

Note: Only genes with GO terms annotated in ontology 𝑙𝑙 in both 𝐴𝐴𝐿𝐿 and 𝐺𝐺𝐿𝐿 can be used for 
this calculation. 

 

ℎ𝑃𝑃𝑟𝑟 for a given annotation set 𝐴𝐴𝐿𝐿 for the ontology 𝑙𝑙 is calculated as followed 



173 
 

 

ℎ𝑃𝑃𝑟𝑟(𝐴𝐴𝐿𝐿,𝑝𝑝) = �
ℎ𝑃𝑃𝑟𝑟(𝑔𝑔)

|𝐴𝐴𝐿𝐿𝑝𝑝 ∩ 𝐺𝐺𝐿𝐿𝑝𝑝|
𝑔𝑔∈(𝐴𝐴𝐿𝐿𝑛𝑛∩𝐺𝐺𝐿𝐿𝑛𝑛)

 

Where: 

𝐴𝐴𝐿𝐿𝑝𝑝: Genes annotated in the annotation set 𝐴𝐴𝐿𝐿 in the ontology 𝑙𝑙 
𝐺𝐺𝐿𝐿𝑝𝑝: Genes annotated in the gold standard 𝐺𝐺𝐿𝐿 in the ontology 𝑙𝑙 

Hierarchical Recall 

For gene 𝑔𝑔 with annotation 𝐴𝐴𝐿𝐿𝑖𝑖 in annotation set and annotation 𝐺𝐺𝐿𝐿𝑗𝑗  in the gold standard the 
ℎ𝑅𝑅𝑅𝑅 is calculated as follows  

ℎ𝑅𝑅𝑅𝑅(𝑔𝑔,𝐴𝐴𝐿𝐿𝑖𝑖,𝐺𝐺𝐿𝐿𝑗𝑗) =
𝐺𝐺𝑂𝑂𝐴𝐴𝐿𝐿𝑖𝑖 ∩ 𝐺𝐺𝑂𝑂𝐺𝐺𝐿𝐿𝑗𝑗

𝐺𝐺𝑂𝑂𝐺𝐺𝐿𝐿𝑖𝑖
 

 Where: 

𝐺𝐺𝑂𝑂𝐴𝐴𝐿𝐿𝑖𝑖: GO terms inferred for annotation 𝐴𝐴𝐿𝐿𝑖𝑖 by propagating the GO hierarchy till the root 
term 
𝐺𝐺𝑂𝑂𝐺𝐺𝐿𝐿𝑗𝑗  & GO terms inferred for annotation 𝐺𝐺𝐿𝐿𝑗𝑗  by propagating the GO hierarchy root term 

 

For a gene 𝑔𝑔 with annotation 𝐺𝐺𝐿𝐿𝑖𝑖 in gold standard in the GO ontology 𝑙𝑙 the ℎ𝑅𝑅𝑅𝑅 is calculated 
as followed. 

ℎ𝑅𝑅𝑅𝑅(𝑔𝑔,𝐺𝐺𝐿𝐿𝑗𝑗) = �
ℎ𝑅𝑅𝑅𝑅(𝑔𝑔,𝐴𝐴𝐿𝐿𝑖𝑖,𝐺𝐺𝐿𝐿𝑗𝑗)

|𝐴𝐴𝐿𝐿𝑔𝑔,𝑝𝑝|
𝑖𝑖∈𝐴𝐴𝐿𝐿𝑔𝑔,𝑛𝑛

 

Where: 

𝐴𝐴𝐿𝐿𝑔𝑔,𝑝𝑝: GO terms annotated to gene 𝑔𝑔 in the ontology 𝑙𝑙 in annotation set 𝐴𝐴𝐿𝐿 

 

For gene 𝑔𝑔, ℎ𝑅𝑅𝑅𝑅 for ontology 𝑙𝑙 is calculated as follows 

ℎ𝑅𝑅𝑅𝑅(𝑔𝑔) = �
ℎ𝑅𝑅𝑅𝑅(𝑔𝑔,𝐺𝐺𝐿𝐿𝑗𝑗)

|𝐺𝐺𝐿𝐿𝑔𝑔,𝑝𝑝|
𝑗𝑗∈𝐺𝐺𝐿𝐿𝑔𝑔,𝑛𝑛

 

Where: 

𝐺𝐺𝐿𝐿𝑔𝑔,𝑝𝑝: GO terms annotated to gene 𝑔𝑔 in the ontology 𝑙𝑙 in the gold standard 𝐺𝐺𝐿𝐿. 

Note: Only genes with GO terms annotated in ontology 𝑙𝑙 in both 𝐴𝐴𝐿𝐿 and 𝐺𝐺𝐿𝐿 can be used for 
this calculation. 
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ℎ𝑅𝑅𝑅𝑅 for a given annotation set 𝐴𝐴𝐿𝐿 for the ontology 𝑙𝑙 is calculated as followed 

ℎ𝑅𝑅𝑅𝑅(𝐴𝐴𝐿𝐿,𝑝𝑝) = �
ℎ𝑃𝑃𝑟𝑟(𝑔𝑔)

|𝐴𝐴𝐿𝐿𝑝𝑝 ∩ 𝐺𝐺𝐿𝐿𝑝𝑝|
𝑔𝑔∈(𝐴𝐴𝐿𝐿𝑛𝑛∩𝐺𝐺𝐿𝐿𝑛𝑛)

 

Where: 

𝐴𝐴𝐿𝐿𝑝𝑝: Genes annotated in the annotation set 𝐴𝐴𝐿𝐿 in the ontology 𝑙𝑙 
𝐺𝐺𝐿𝐿𝑝𝑝: Genes annotated in the gold standard 𝐺𝐺𝐿𝐿 in the ontology 𝑙𝑙 

Reproducibility 

Datasets 

Table 6: Public datasets used in the project 

Database Type Format Version Species 
TAIR Protein Sequences fasta TAIR 10 Arabidopsis thaliana 
TAIR GO Annotations gaf 2.0 TAIR 10 (20170410) Arabidopsis thaliana 
Gramene 49 Gene Annotations gff3 5b+ Zea mays 
Gramene 49 GO Annotations gaf 2.0 5b+ Zea mays 
Phytozome 11 GO Annotations tsv 5b+ Zea mays 
Uniprot Protein sequences fasta 20170410 All species 
Uniprot Protein sequences fasta 20170410 All plants 
Uniprot GO Annotations gaf 2.0 20170410 All plants 
Pfam HMMs hmm 27.0 All species 
PANTHER HMMs hmm 10.0 All species 

Software Tools and Versions 

Table 7: Software tools used in the project. Exact parameters used are specified in Methods 
section of Chapter 4 

Software Type Version Citation 
NCBI-BLAST Sequence similarity 2.6.0 (Altschul, Gish, Miller, Myers, & Lipman, 1990) 
HMMER HMM scanning 3.1b1 (Finn, Clements, & Eddy, 2011) 
InterProScan GO Annotation 5.15-55.0 (Jones et al., 2014) 
PANNZER GO Annotation 1.1 (Koskinen, Törönen, Nokso-Koivisto, & Holm, 2015) 
Argot2 GO Annotation 2.0 (Web Server) (Falda et al., 2012) 
FANN-GO GO Annotation One version only (Clark & Radivojac, 2011) 
AIGO GO Evaluations 0.1.0 (Defoin-Platel et al., 2011) 
FASTX-Toolkit Fasta manipulation 0.0.13 (Gordon & Hannon, 2010) 
Annotation of Maize Genes 

Obtaining Input Datasets 

1. Query Sequences 
1. Downloaded maize RefGen_v3 5b+ protein sequences as a fasta file from 

Gramene 
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2. Longest translated protein sequence among the transcript models for each 
gene was retained to represent a gene 

3. Transcript model id was renamed to the gene model ID and generate a 
maize-filtered fasta file 

4. Made a BLAST database using the maize-filtered fasta file 
  makeblastdb -in ‘maize-filtered.fa' 

            -dbtype ‘prot' 
            -hash_index 
            -out ‘maize-filtered' 
            -title ‘maize-filtered' 
             

2. Arabidopsis 
1. Downloaded Arabidopsis transcript protein sequences from TAIR v10 
2. Made an arabidopsis-filtered fasta by filtering for the transcript model 

with the longest protein sequence to represent each gene and rename 
transcript model IDs to gene model IDs 

3. Made a blast database using the arabidopsis-filtered fasta file 
 

  makeblastdb -in ‘arabidopsis-filtered.fa' 
            -dbtype ‘prot' 
            -hash_index 
            -out ‘arabidopsis-filtered' 
            -title ‘arabidopsis-filtered' 
             

4. Downloaded the Arabidopsis GO annotation GAF file arabidopsis.gaf 
from TAIR v10 

5. Filter the GO annotations from arabidopsis.gaf to retain the annotations 
which have curated evidence codes and convert to a GAF file named 
filtered-arabidpsis.gaf 
 

a. Selected [EXP, IDA, IPI, IMP, IGI, IEP, ISS, ISO, ISA, ISM, 
IGC, IBA, IBD, IKR, IRD, RCA, TAS, IC] 

b. Omitted [IEA, ND, NAS] 
3. UniProt Plants 

1. Curated GO annotations for plants were downloaded from UniProt using 
QuickGO 

  wget  -O annot/tmp.gaf 
      "http://www.ebi.ac.uk/QuickGO/GAnnotation?\  
  format=gaf&limit=-1&q=!evidence=IEA,ND,NAS&tax=33090" 

       
2. GO annotations from Top 10 plant species with highest number of 

annotations from tmp.gaf were filter and saved to uniprot-hc-plant.gaf 
3. NCBI taxonomy IDs of the top 10 plant species at the time of 

downloading UniProt data are 
(15368, 29760, 3055, 3218, 3694, 3702, 3847, 39947, 4081, 4558) 

4. Plant Protein sequences with curated GO annotations were downloaded 
from UniProt using QuickGO tool 
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  wget  -O fa/tmp.fa 
      "http://www.ebi.ac.uk/QuickGO/GAnnotation?\ 
  format=fasta&limit=-1&q=!evidence=IEA,ND,NAS&tax=33090" 

       
5. Convert the IDs in tmp.fa to match the protein IDs in the uniprot-hc-

plant.gaf file and make a new fasta file tmp2.fa 
6. tmp2.fa was filtered for IDs present in the uniprot-hc-plant.gaf and save 

to uniprot-hc-plant.fa 
7. Make a BLAST database for the uniprot-hc-plant.fa 

  makeblastdb -in ‘uniprot-hc-plant.fa' 
            -dbtype ‘prot' 
            -out ‘uniprot-hc-plant' 
       

Sequence-Similarity methods 

1. Arabidopsis 
1. Used the maize-filtered fasta as query and searched against uniprot-hc-

plant blast database 
  blastp  -db ‘arabidopsis-filtered' 

        -query ‘maize-filtered.fa' 
        -max_target_seqs ‘20' 
        -out ‘mz-ara-aa.txt' 
        -outfmt ‘6 qseqid sseqid qlen qstart qend slen sstart se
nd  

  evalue bitscore score length pident nident gaps' 
-num_threads ‘16' 
       

2. Used the arabidopsis-filtered fasta as query and searched against maize-
filtered database 

  blastp  -db ‘maize-filtered' 
        -query ‘arabidopsis-filtered.fa' 
        -max_target_seqs ‘20' 
        -out ‘ara-mz-aa.txt' 
        -outfmt ‘6 qseqid sseqid qlen qstart qend slen sstart se
nd  

  evalue bitscore score length pident nident gaps'      
    -num_threads ‘16' 

       
3. Used custom R script to read ‘ara-mz-aa.txt’ & ‘mz-ara-aa.txt’ and 

obtained Reciprocal-Best-Hits (RBH) saved as ‘maize-v3-vs-
tair10.rbh.txt’ 
Specific parameters used within the script 
• BLAST hits were filtered by using an e-value cut off of 10e-10 form 
both datasets 
• Hits were ranked by the score in descending order 

4. Used custom R script to read ‘filtered-arabidpsis.gaf’ and maize-v3-vs-
tair10.rbh.txt inherited the curated GO terms from Arabidopsis to maize 
and created a ‘maize-arabidopsis.gaf’ file 
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2. UniProt Plants 
1. Used the maize-filtered fasta as query and searched against uniprot-hc-

plant database 
  blastp  -db ‘uniprot-hc-plant' 

        -query ‘maize-filtered.fa' 
        -max_target_seqs ‘20' 
        -out ‘mz-uniprot-aa.txt' 
        -outfmt ‘6 qseqid sseqid qlen qstart qend slen sstart se
nd  

  evalue bitscore score length pident nident gaps' 
-num_threads ‘16' 
       

2. Used the uniprot-hc-plant fasta as query and searched against maize-
filtered database 

  blastp  -db ‘maize-filtered' 
        -query ‘uniprot-hc-plant.fa' 
        -max_target_seqs ‘20' 
        -out ‘uniprot-mz-aa.txt' 
        -outfmt ‘6 qseqid sseqid qlen qstart qend slen sstart se
nd  

  evalue bitscore score length pident nident gaps' 
-num_threads ‘16' 
       

3. Used custom R script to read ‘uniprot-mz-aa.txt’ & ‘mz-uniprot-aa.txt’ 
and obtained Reciprocal-Best-Hits (RBH) saved as ‘maize-v3-vs-
uniprot.rbh.txt’ 
Specific steps and parameters used within the script 
• BLAST hits were filtered by using an e-value cut off of 10e-10 form 

both datasets 
• Hits were ranked by the score in descending order 
• RBH assignment was performed for each of the 10 plant species in 

uniprot-hc-plant.gaf and maize the steps were exactly similar to 
Arabidopsis 

4. Used custom R script to read ‘uniprot-hc-plant.gaf’ and maize-v3-vs-
uniprot.rbh.txt inherited the curated GO terms from Plants in Uniprot 
dataset to maize and created a ‘maize-uniprot.gaf’ file 

Domain-presence method 

1. InterProScan5 pipeline was downloaded an configured in a local server 
2. Necessary PANTHER database was downloaded added to the data location 
3. InterProScan5 pipeline was run on maize-filtered.fa file to assign putative 

domains and assign GO terms to genes 
 

  interproscan.sh -i ‘maize-filtered.fa' 
                -goterms 
                -f ‘tsv' 
                -o ‘maize-filtered.iprs.out' 
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4. A custom Rscript was used to convert ‘maize-filtered.iprs.out’ to ‘maize-
interproscan.gaf’ 

Mixed-method pipelines 

1. Common Pre-processing steps 
1. All protein sequences was downloaded from UniProt as uniprot.fa 
2. The uniprot.fa was used to make a blast database 

  makeblastdb   -in ‘uniprot.fa' 
              -dbtype ‘prot' 
              -out ‘uniprot' 
       

3. Pfam-A and Pfam-B HMM models were downloaded and uncompressed 
4. A Pfam-AB file was created by concatenating Pfam-A and Pfam-B 

  cat "Pfam-A.hmm" and "Pfam-B.hmm" > "Pfam-AB.hmm" 
hmmpress "Pfam-AB.hmm" 
       

2. Argot2 
1. “maize-filtered.fa” was split into smaller files with only 5000 sequences 

per file. Argot2 webserver allows a max 5000 sequences to be batch 
processed at a time. 

2. BLASTP was run against the UniProt database for each split file 
  blastp  -outfmt ‘6 qseqid sseqid evalue' 

        -num_threads ‘16' 
        -query ‘maize-filtered.1.fa' 
        -db ‘uniprot' 
        -out ‘maize-filtered.1.blast' 
        

3. Hmmer was used for each split file to search against the Pfam HMMs 
  hmmscan   --cpu ‘16' 

          --tblout ‘maize-filtered.1.hmmer' 
          ‘Pfam-AB.hmm' 
          ‘maize-filtered.1.fa' 
        

4. All output files were compressed as zip filess 
5. Output files from BLAST and Hmmer for each split fasta file was 

submitted as a new job for batch processing on the Argot2  website 
(http://www.medcomp.medicina.unipd.it/Argot2/) 

6. Argot2 Results for each part was downloaded and renamed according to 
input file names 

7. Argot2 results were converted to GAF 2.0 format using an Rscript 
8. This was saved as ‘maize-argot2.gaf’ file 

3. PANNZER 
1. PANNZER files and database were downloaded from 

http://ekhidna.biocenter.helsinki.fi/pannzer/Download.html  
2. PANNZER tool was setup according to the instructions provided in the 

manual 
3. BLASTP was used to query the maize-filtered split fasta files used for 

Argot2 against the uniprot blast database 

http://ekhidna.biocenter.helsinki.fi/pannzer/Download.html
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  blastp  -db ‘uniprot' 
        -query ‘maize-filtered.1.fa' 
        -outfmt ‘5' 
        -num_threads ‘32' 
        -out ‘maize-filtered.1.xml' 
       

4. A config file required for PANNZER for each BLAST xml file output in 
the previous step 

  [GENERAL_SETTINGS] 
INPUT_TYPE=BLASTXML 
INPUT_FILE=maize-filtered.1.xml 
XML=True 
DATA_FOLDER=PANNZER/db/ 
DB=uniprot 
RESULT_FOLDER=ouput/ 
RESULT_BASE_NAME=maize-filtered.1 
INPUT_BASE_NAME=Prefix_of_the_desc_file 
INPUT_FOLDER=xml/ 
QUERY_TAXON=4577 
GET_TAXON=False 
GENERATE_IDF=False 
MULTIPLE_SPECIES=False 
 
[TRESHOLD_VALUES] 
BITSCORE=50 
SEQUENCE_LENGTH=20 
IDENTITY_PERCENT=50 
E-VALUE=0 
TARGET_COVERAGE=0.6 
QUERY_COVERAGE=0.6 
INFORMATIVE=30 
INFORMATIVE_HITS=100 
CLUSTER=0.3 
 
[MYSQL] 
SQL_DB_HOST=localhost 
SQL_DB_PORT = 
SQL_DB_USER = pannzer 
SQL_DB_PASSWORD = pannzer 
SQL_DB = pannzer 
 
[TAXONOMY] 
DB=taxonomy-all.tab 
CALCULATE=True 
NODE_SELECTOR=1 
TRACK_GROUPS=False 
TRACKED_GROUPS= 
ONLY_ONE_HIT_PER_SPECIE=False 
 
[GO] 
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WRITE_GO=True 
OBO=gene_ontology_ext.obo 
ID_MAPPING=idmapping_selected.tab 
ENZYME=enzyme.dat 
 
[LEVEL_OF_PRINTING] 
SIMPLE_OUTPUT=True 
CLUSTER=True 
CLUSTER_MEMBERS=False 
ALL=False 
ERROR=True 
DEBUG=False 
INFO=False 
 
[EVALUATION] ### IF YOU DON'T KNOW WHAT YOU ARE DOING, DON'T CHA
NGE ANYTHING FROM THIS ON!!!! 
PRINT_EVAL=False 
TEST=False 
OTHER=False 
       

5. PANNZER was run for each config file 
6. All results files from each split fasta files were concatenated and 

converted to a GAF 2.0 file 
7. GAF file was saved as ‘maize-pannzer.gaf’ 

4. FANN-GO 
1. FANN-GO tool was downloaded from 

http://montana.informatics.indiana.edu/fanngo/fanngo.html, 
uncompressed and installed. 

2. The “maize-filtered.fa” file was used as input and FANN-GO was run 
using the following code 

  echo off all 
cd code 
[Headers, Sequences] = fastaread('maize-filtered.fa') 
PRED=MAIN(Sequences) 
Headers = transpose(Headers) 
Headers = regexprep(Headers, ‘ .*', ‘') 
tbnames = horzcat('gene_id',PRED.accessions) 
tbnames = strrep(tbnames,':','_') 
scores = num2cell(PRED.scores) 
all_scores = horzcat(Headers,scores) 
all_scores = cell2table(all_scores) 
all_scores.Properties.VariableNames = tbnames 
writetable(all_scores,'../scores.txt','Delimiter','\t') 
     

3. “scores.txt” was converted into a GAF 2.0 file and saved as ‘maize-
fanngo.gaf’ 

 

http://montana.informatics.indiana.edu/fanngo/fanngo.html
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Selection and Cleaning of Maize Annotations 

Selection of high-confidence mixed-method annotations 

1. Score thresholds determined for the mixed-method pipeline annotations by evaluation 
against the MaizeGDB gold standard dataset. (Please refer to the main paper for how 
the score thresholds were determined) 

a. Argot2 
i. BP : 0.15 

ii. CC : 0.05 
iii. MF : 0.15 

b. FANN-GO 
i. BP : 0.3 

ii. MF : 0.65 
c. PANNZER 

i. BP : 0.4 
ii. CC : 0.2 

iii. MF : 0.55 
2. ’maize-argot2.gaf’, ‘maize-fanngo.gaf’ and ‘maize-pannzer.gaf’ files were filtered to 

retain annotations with a score greater than or equal to the thresholds mentioned in 
the previous step 

 
List of component datasets 

1. Sequence-Similarity 
a. maize-arabidopsis.gaf 
b. maize-uniprot.gaf 

2. Domain-Presence 
a. maize-interproscan.gaf 

3. Mixed-method Pipelines 
a. maize-argot2.gaf 
b. maize-pannzer.gaf 
c. maize-fanngo.gaf 

Cleaning duplications 

1. Datasets mentioned in section 0 were cleaned for duplicate annotations  
2. Duplicate annotation is when the same GO term is annotated to the same gene more 

than one time 
3. Duplicate annotations were replaced by a single instance of the Gene-GO term pair 

independently for each dataset 
4. The unique annotations for each component dataset was saved as gaf file 

Cleaning redundancy 

1. Redundancy is the annotation of one or more ancestral GO terms to a gene which is 
annotated to a more specific offspring GO term 

2. Unique datasets mentioned in section 0 were cleaned by removing annotations with 
redundant GO terms 
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3. The non-redundant annotations for each component dataset was saved as gaf file 
Making aggregate dataset 

1. All the non-redundant component datasets from section 0  were concatenated together 
2. The duplication introduced by merging multiple component datasets was cleaned 

using the steps from section 0 
3. The redundancy introduced by merging multiple component datasets was cleaned 

using the steps from section 0 
4. The non-redundant aggregate dataset was saved as ‘maize-aggregate.gaf’ 


