New amorphous magnetic materials of Fe-B-Be and Fe-B-Au

Thumbnail Image
Date
1981
Authors
Severin, C.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and Engineering
Abstract

Substitution of Be for B in the amorphous binary alloy Fe(,82)B(,18) caused an initial increase in saturation magnetization (M(,s)) to a maximum of 200 emu/g at 4.2K, followed by a decrease for alloys with more than 4 at.% Be. Concurrently, the Curie temperature (T(,C)) of the Fe(,82)B(,18-x)Be(,x) alloy decreased progressively with Be content. These changes in M(,s) and T(,C) differ from those observed in Fe-B-M' metallic glasses, where M' is another metalloid (P, C, Si or Ge). Results from Auger electron and Mossbauer spectroscopies also detected the reversal trend established by the magnetization measurements. The Auger results indicated that there is a charge transfer from Be in the alloys with x (LESSTHEQ) 4, but no such transfer for x > 4. ('57)Fe Mossbauer spectra obtained at 77K and 300K on this series of alloys indicated an initial increase in effective hyperfine field for x (LESSTHEQ) 4, but a decrease for x > 4. The isomer shift was -0.032 mm/sec for x (LESSTHEQ) 4, but changed to -0.050 mm/sec for x > 4. The annealing behavior of Fe(,82)B(,18-x)Be(,x) was also studied by X-rays and Mossbauer spectroscopy and a two-step crystallization process was observed. For x > 0, a solid solution of (alpha)-Fe-Be was formed in the first stage and then Fe(,2)B was precipitated at higher temperatures;Additions of Au to Fe-B tended to increase the average Fe^moment, (mu)(,Fe), resulting in values for (mu)(,Fe) at 2.20 (mu)(,B) in(' )^Fe(,82)B(,16.5)Au(,1.5) and 2.46 (mu)(,B) in Fe(,87)B(,11)Au(,2). The ternary alloys^containing Au up to 1.0 at.% displayed two crystallization stages^(with products of an (alpha)-Fe-Au solid solution followed by Fe(,2)B) while^those with higher Au content displayed a third stage with an Au-^rich solid solution as the crystallization product. Annealing of^Fe(,87)B(,11)Au(,2) resulted in lower M(,s) values, unlike the annealing effect usually observed in Fe-base metallic glasses;Radial distribution function (RDF) analyses were conducted on Fe(,87)B(,13), Fe(,82)B(,12)C(,6), Fe(,82)B(,12)Si(,6), Fe(,82)B(,14)Be(,4), and Fe(,82)B(,13)Be(,5). When compared to Fe(,87)B(,13), the results for the alloys containing C and Si indicated a reduction in the intensity on the lower r-side of the first peak in the RDF. The results were explained in terms of an increase in the spin-wave stiffness constant. An important result of the RDF analyses is the determination of the Fe-Fe interatomic distance (r(,Fe-Fe)) at 2.51(ANGSTROM) and 2.47(ANGSTROM) for Fe(,82)B(,14)Be(,4) and Fe(,82)B(,13)Be(,5), respectively. This decrease in r(,Fe-Fe) corresponds to a change in the number of nearest neighbors from 10.5 to 9.1. The RDF results for these two alloys containing Be were correlated with the changes observed in T(,C) and the average Fe moment;('1)This work was done at the Ames Laboratory, Iowa State University, Ames, IA, operated for the U.S. Department of Energy by I.S.U. under contract No. W-7405-eng-82. The research was supported by the Director of Energy Research, Office of Basic Energy Sciences, WPAS-KC-02-01.

Comments
Description
Keywords
Citation
Source
Copyright
Thu Jan 01 00:00:00 UTC 1981