Use of the local-global concept in detecting component vibration in reactors

Thumbnail Image
Date
1981
Authors
Al-Ammar, Mansur
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Nuclear Engineering
Abstract

The local-global concept, based on the detector adjoint function, was used to develop the response of a detector to an absorber vibrating in one dimension. A one-dimensional two-group diffusion code was developed to calculate the frequency dependent detector response as a function of detector and absorber positions for the coupled-core UTR-10 reactor. Results from this code indicated the best possible detector and absorber locations, where more detailed calculations were made using a two-group, three-dimensional diffusion code with finite detector and absorber volumes. An experiment was then designed, for the chosen positions, using a vibrating cadmium absorber with a detector on each side. The assembly was placed in the vertical central stringer of the reactor. Investigations were carried out for vibrations in two flux gradients and experimental data were analyzed in the frequency domain using a microcomputer based data acquisition system;The experimental investigation showed the validity of the local-global concept. A normalized outputs cross power spectral density was developed that correctly predicted the different flux tilts in the two flux gradients. It was also shown that the frequency response of the local component had a wide plateau region. Monitoring the behavior of the normalized cross power spectral density was thought to be a promising indicator for the detection and localization of malfunctioning vibrating components. It might also be used to detect flux irregularities in the vicinity of a vibrating component.

Comments
Description
Keywords
Citation
Source
Copyright
Thu Jan 01 00:00:00 UTC 1981