

63

9ŀŎƘ ƭŜŀŦ ƴƻŘŜ ǎǘƻǊŜǎ ǳǇ ½л ōƭƻŎƪǎ

{ŜǊǾŜǊ {л

/ƭƛŜƴǘ

CǊŜǉǳŜƴǘƭȅ
ŀƴŘ ǊŜŎŜƴǘƭȅ
ŀŎŎŜǎǎŜŘ
ōƭƻŎƪǎ

ό/ƭƻǳŘ ǎǘƻǊŀƎŜ ƎŀǘŜǿŀȅύ

{ǘƻǊŀƎŜ ¢ǊŜŜ

9ǾƛŎǘƛƻƴ tǊƻŎŜǎǎ

/ƻƴǘǊƻƭ ŦƻǊ ǉǳŜǊȅ

5ŀǘŀ ŦƻǊ ǉǳŜǊȅ

/ƻƴǘǊƻƭ ŦƻǊ ŜǾƛŎǘƛƻƴ

5ŀǘŀ ŦƻǊ ŜǾƛŎǘƛƻƴ

(0,0)

(1,0) (1,7)...
(1,1) (1,6)

(2,0) (2,7) (2,63)(2,56)
... ...

(L-1,0) (L-1,1) (L-1,7)
...

(L-1,2L-1-2)(L-1,2L-1-1)

...

... ...

...

Layer 0

Layer 1

Layer 2

Layer L-1

{ŜǊǾŜǊ {м

.ǳŦŦŜǊ ŦƻǊ
Řŀǘŀ ŜǾƛŎǘƛƻƴ

vǳŜǊȅ tǊƻŎŜǎǎ

9ŀŎƘ ƴƻƴπƭŜŀŦ ƴƻŘŜ
ǎǘƻǊŜǎ Zм ōƭƻŎƪǎ

LƴŘŜȄ ǘŀōƭŜ

LƴŘŜȄ ōƭƻŎƪǎ
ŦƻǊ ŜǾŜǊȅ
ƴƻŘŜ ƻƴ
ǎǘƻǊŀƎŜ ǘǊŜŜ

.ǳŦŦŜǊ ŦƻǊ
Řŀǘŀ ŜǾƛŎǘƛƻƴ

{ŜǊǾŜǊ {н

Figure 6.1 Three-server Octopus ORAM Architecture.

The data blocks are stored into an m-ary storage tree, in which each non-leaf node can have up

to m child nodes. When constructing the storage tree, we make the tree to be balanced and the

number of data blocks at each leaf node to vary between (1 + β) · ξ(m, q) and 2(1 + β) · ξ(m, q), for

certain security purposes explained later in Section 6.6.

Specifically, the tree is constructed as follows:

• Let L′ = blogm
N

ξ(m,q)c and Z ′ = N
mL′

. Obviously, Z ′ ≥ ξ(m, q).

• If Z ′ ≤ 2ξ(m, q), the storage tree is organized as a complete m-ary tree with height L = L′+1

where the capacity of each leaf node is Z0 = d(1 + β) · Z ′e blocks.

• Otherwise (i.e., Z ′ > 2ξ(m, q)), the storage tree is organized as a tree of height L = L′ + 2,

and the root has b Z′

ξ(m,q)c child nodes while each child node is a root of a complete m-ary tree

with L′ + 1 layers and Z0 = d(1 + β) · Z′

b Z′
ξ(m,q)

c
e blocks at each leaf node.

• Each non-leaf node has a capacity of Z1 = d(1 + α) · ξ(m, q)e blocks.

Each node Nl,i is identified by a unique tuple (l, i), where l ∈ {0, · · · , L− 1} is the ID of the layer

that the node resides (note: the root node is at layer 0 while the leaf nodes are at layer L− 1), and

64

i ≥ 0 is the ID of the node on layer l that equals to the offset of the node on layer l (from 0 at the

leftmost towards right). Note that Figure 6.1 shows a storage tree when m = 8.

6.2.2 Storage Organization at the Client

The client maintains an index table for all of the N real data blocks and an index block for each

node on the storage tree. The index table has N entries and each entry i ∈ {0, · · · , N − 1} has the

following fields:

• path ID of block i, i.e., the ID of the leaf node on the path that block i is assigned to;

• secret key ki which, as detailed in Section 6.2.3, randomly selected by the client to encrypt

the block based on XOR operation;

• three message authentication codes (MACs) of the block, of which the computation and usage

are explained in detail in Section 6.5.

Note that, following most of the tree-based ORAM constructions [49, 53, 16, 54, 51], our proposed

scheme also enforces the policy that, a block is assigned to a path and the block must be stored on

the path.

For each node on the tree, the index block has one entry (id, ah) for each block it stores,

where id is the ID of the block, no matter whether the block is real or dummy, and ah ∈ {0, 1, 2}

indicates the access history of the block since the system initialization or the most recent data

eviction process involving the node, whichever is more recent: (i) ah = 0 if the block has not been

accessed; (ii) ah = 1 if the block has been accessed as a query target; and (iii) ah = 2 if the block

has been accessed but never as a query target.

In addition, the client maintains a local buffer that stores the most recently accessed data

blocks. The capacity of the buffer is at least q blocks.

65

6.2.3 System Initialization

The client picks a pseudo random number generator PRG0(k), which takes a secret seed k of

λ bits and outputs a pseudo-random sequence of 3λ bits. The client also picks and shares with

the servers another pseudo random number generator function, denoted as PRG1(k), which takes

a secret seed k and outputs a pseudo-random sequence of bytes with the same length as a data

block.

Before each real block (denoted as ~Di which is a sequence of bits) of ID i is exported to server

S0, the client encrypts the block as follows.

1. It randomly picks a secret seed ki, and computes PRG0(ki) whose output is denoted as

ki,0||ki,1||ki,2 where each ki,j has λ bits and | represents concatenation.

2. It computes PRG1(ki,0), PRG1(ki,1) and PRG1(ki,2) to generate three pseudo-random se-

quences of bytes, denoted as ~Ri,0, ~Ri,1 and ~Ri,2, each of the same length as a data block.

3. It performs bit-wise XOR operations on each group of four bits with the same offset of the

four bit-sequences ~Di, ~Ri,0, ~Ri,1 and ~Ri,2, to encrypt ~Di to

~D′i = ~Di ⊕ ~Ri,0 ⊕ ~Ri,1 ⊕ ~Ri,2. (6.2)

6.3 Data Query Algorithm

Assume the client wishes to query data block ~Dt, where t denotes the block ID, and the block

is not in its local buffer. It looks up its index table to find path pt that contains ~Dt, and looks up

the index blocks of the path to locate the node containing ~Dt. Then, it launches a query process

in two phases: selecting some data blocks to access from S0, based on the index table and index

blocks that it stores, in order to hide the query target; interacting with the servers to retrieve query

target ~Dt.

66

6.3.1 Phase I: Selecting Data Blocks to Access

For each node N ′i on path pt, where i ∈ {0, · · · , L− 1} represents the layer ID of the node, let

∆i,0, ∆i,1 and ∆i,2 denote the block sets with ah being 0, 1 and 2, and δi,0, δi,1 and δi,2 denote

the sizes of these sets, respectively. The client selects data blocks from each node N ′i to download,

according to the rules presented in Algorithm 1, with the dual goals of hiding data access pattern

and communication efficiency.

Algorithm 1 Rules for Selecting Blocks from N ′i to Access (Output: ∆ - a set of blocks selected
to access)

1: ∆← ∅
2: if N ′i contains query target ~Dt then

3: add ~Dt to ∆

4: ∀ ~D ∈ ∆i,1, add ~D to ∆ with probability 1
δi,0

5: if ~Dt belongs to ∆i,0 then

6: ∀ ~D ∈ ∆i,2, add ~D to ∆ with probability
δi,2
δ2i,0

7: else //i.e., ~Dt belongs to ∆i,2

8: randomly picks one ~D from ∆i,0; adds it to ∆

9: end if

10: else

11: randomly picks one ~D from ∆i,0; adds it to ∆

12: ∀ ~D ∈ ∆i,1 ∪∆i,2, add ~D to ∆ with probability 1
δi,0

13: end if

First, the algorithm hides data access pattern by making each block in N ′i to be accessed with

the same probability independently of where the query target resides, as stated in the following

Lemma 14 with proof.

Lemma 14. During a query process with query path pt, each block ~D in node N ′i on pt is selected to

access with the same probability of 1
δi,0

, which is obviously independent of the location of the query

target.

Proof. When the query target does not belong to N ′i , every block ~D is accessed with probability

1
δi,0

based on lines 10-11 of Algorithm 1. Otherwise, each block ~D must be in ∆i,0, ∆i,1 or ∆i,2. So

we consider the three cases respectively.

67

• Case I: ~D ∈ ∆i,0. Further there are two subcases: ∆i,0 contains the query target or not.

– Subcase I-a: ∆i,0 contains query target ~Dt. Only ~Dt is accessed from ∆i,0. Further due

to the random distribution of blocks in ∆i,0, every ~D has the same probability of 1
δi,0

to

be accessed as query target.

– Subcase I-b: ∆i,0 contains query target ~Dt. Based on line 8 of the algorithm, every ~D

has the probability of 1
δi,0

to be accessed.

• Case II: ~D ∈ ∆i,1. Every ~D has the probability of 1
δi,0

to be accessed, based on line 4 of the

algorithm.

• Case III: ~D ∈ ∆i,2. Further there are two subcases:

– Subcase III-a: ∆i,0 contains query target ~Dt, which occurs with probability
δi,0

δi,0+δi,2
in

case III. In this subcase, every ~D is accessed with probability
δi,2
δ2i,0

.

– Subcase III-b: ∆i,0 contains query target ~Dt, which occurs with probability
δi,2

δi,0+δi,2
in

case III. In this subcase, ~D is accessed as the query target with probability 1
δi,2

.

To summarize, ~D is accessed with the following probability in Case III:

δi,0
δi,0 + δi,2

· δi,2
δ2
i,0

+
δi,2

δi,0 + δi,2
· 1

δi,2
=

1

δi,0
.

Hence, the Lemma is proved.

Second, in terms of communication efficiency, the query algorithm requires only 1 +
δi,1+δi,2
δi,0

blocks accessed from each node N ′i . Further, as we study later in Section 6.6,
δi,1+δi,2
δi,0

< 1 with an

overwhelming probability of 1− 2−λ. That is, no more than 2 blocks are accessed from each node

N ′i on the query path with a probability at least 1− 2−λ.

68

6.3.2 Phase II: Retrieving Query Target

The client sends a request to S0, which contains:

• list ~B = 〈b1, · · · , bx〉 of x block indices where, in each bi = (ni, oi), ni is the ID of a block on

query path and oi is the offset of a block selected to access in Phase I;

• random permutation vector ~V = 〈v1, · · · , vx〉 of integers {1, · · · , x}, which directs S0 to put

every block bi to offset vi after the permutation.

It also sends a request to S1, which only contains one number in {1, · · · , x}.

In response to the client’s request, S0 makes a copy of the blocks indicated by ~B, permutes the

blocks as directed by ~V , and then forwards the resulting block sequence to S1.

Upon receiving the sequence, S1 retains only the query target block, whose offset on the sequence

is the index contained in the client’s request, and immediately returns the block to the client.

Having received the query target, the client updates its local meta-data to make the copy of

the query target left on the storage tree as a dummy block. Then, it can start reading or writing

to the query target locally.

6.4 Data Eviction Algorithm

After every q queries, the client has retained at its buffer q blocks that are the targets of the

most recent q queries. We call these blocks the current evicting blocks. The client randomly re-

assigns a path for each evicting block, sends all these blocks in an ordered list to server S1, and

then launches a data eviction process to evict them into the storage tree at server S0. Note that, as

in existing ORAM constructions such as [53], the eviction process can be carried out concurrently

with data query processes through some de-amortization mechanism. Due to page limit, we skip

the de-amortization detail and focus on the main idea.

Every eviction process involves only one root-to-leaf path, which we call eviction path, on the

storage tree at server S0. The eviction path is selected in the reverse-lexicographic order, as

illustrated by Figure 6.2.

69

…

…

…

…
…

…

…
… …

…

…
…

…

…
…

…

…
… …

…

…
……

…

…

…

Figure 6.2 Reverse-lexicographic Order: Every eviction process involves one root-to-leaf
eviction path selected in the reverse-lexicographic order.

An eviction process runs iteratively, one iteration for each node on the eviction path from the

root to the leaf. We introduce variable N ′e to denote the node currently involved in the eviction.

Hence, N ′e is initialized to N0,0 (i.e., the root node). Also, when an eviction iteration begins, S0

has an ordered list (denoted as ~L0) containing Z0 or Z1 blocks stored at node N ′e, depending on

whether N ′e is leaf or not; S1 has an ordered list (denoted as ~L1) of q blocks; S2 has no data blocks.

Then, the iteration, which involves the client and all the servers, runs as follows.

1. For each block ~Di ∈ ~L0 ∪ ~L1, where i represents the ID of the block, the client randomly

picks a new key k′i and then generates a new set of keys k′i,0, k′i,1 and k′i,2 where PRG0(k′i) =

k′i,0|k′i,1|k′i,2. Also, from the current version of key ki recorded in the index table, the client

derives the current set of keys ki,0, ki,1 and ki,2 where PRG0(ki) = ki,0|ki,1|ki,2.

2. The client randomly constructs a permutation vector π0 for | ~L0| elements (i.e., a random

permutation of numbers 0, · · · , | ~L0| − 1) where | ~L0| denotes the length of ~L0, and sends the

vector to S0.

3. Upon receiving π0, S0 permutes ~L0 to ~L′0 = π0(~L0), and sends ~L′0 to S1.

70

4. Letting ~L′0| ~L1 = 〈 ~Di0 , · · · , ~Dix−1〉 where x = | ~L′0| + | ~L1|, the client randomly constructs a

permutation vector π1 for x elements and the following ordered list (denoted as ~R1):

~R1 = 〈(ki0,0, k′i0,1), · · · , (kix−1,0, k
′
ix−1,1)〉. (6.3)

Then, the client sends π1 and ~R1 to S1.

5. Upon receiving ~L′0 from S0 as well as π1 and ~R1 from the client, S1 first constructs ~L′1 =

~L′0| ~L1, which we also denote as 〈 ~Di0 , · · · , ~Dix−1〉. Next, it re-encrypts each block ~Dij (where

j = 0, · · · , x− 1), based on key pair (kij ,0, k
′
ij ,1

) in ~R1, through the following steps:

• It computes pseudo-random blocks ~Rij ,0 = PRG1(kij ,0) and ~R′ij ,1 = PRG1(k′ij ,1).

• It updates ~Dij to ~D′ij = ~Dij ⊕ ~Rij ,0 ⊕ ~R′ij ,1, where ⊕ is the bit-wise XOR between two

blocks (i.e., bit sequences).

Then, list 〈 ~D′i0 , · · · , ~D
′
ix−1
〉 is permuted according to π1, and the resulting list (denoted as

~L2) is sent to server S2.

6. Letting 〈i′0, · · · , i′x−1〉 be the ordered list of IDs of the blocks in ~L2, the client sends to S2 the

following list of key pairs

~R2 = 〈(ki′0,1, k
′
i′0,2

), · · · , (ki′x−1,1
, k′i′x−1,2

)〉. (6.4)

The client also constructs a permutation π2 for x elements, and sends π2 to S2.

7. Upon receiving π2 and ~R2 from the client, as well as ~L2 = 〈 ~Di′0
, · · · , ~Di′x−1

〉 from S1, server

S2 first re-encrypts each block in ~L2 based on the key pairs in ~R2, and then permutes the

re-encrypted list according to π2, as server S1 does. The resulting list (denoted as ~L′2 is sent

to server S0.

8. Letting 〈i′′0, · · · , i′′x−1〉 be the ordered list of IDs of the blocks in ~L′2, the client sends to S0 the

following list of key pairs

~R0 = 〈(ki′′0 ,2, k
′
i′′0 ,0

), · · · , (ki′′x−1,2
, k′i′′x−1,0

)〉. (6.5)

71

Besides, the client further constructs and sends to S0 an ordered list I with q elements, which

is a sub-stream of 〈0, · · · , x− 1〉. The construction should meet the following requirements:

• Case I: N ′e is a non-leaf node. For each j ∈ {0, · · · , x− 1}, if ~Di′′j
is a real block and it

cannot be evicted to the next evicting node (i.e., the path that ~Di′′j
is assigned to does

not pass the next evicting node), then j must not be in I.

• Case II: N ′e is a leaf node. I should contain only the IDs for dummy blocks.

9. Upon receiving L′2 from S2 as well as ~R0 and I from the client, server S0 re-encrypts each

block in L′2 based on the key pairs in ~R0, as S1 and S2 do. Then, from the resulting list of

blocks, S0 removes the list of blocks with offsets specified in I; these removed blocks are sent

to server S1 and become the new version of ~L1 if N ′e is a non-leaf node, or discarded if N ′e is

a leaf node.

Fig 6.3 illustrates how the client and the servers cooperate during the eviction process, in a

high level.

Server 0

Server 1Server 2

①

Client

'
0 0 0(),L L

0 {L

Blocks in Where ' }eN

1()L

②
2 1(L

Re-encrypt '
0 1 1(| ,))L L R

'
2

2
(

L

2
2

(
,

))
L

R

④Store ' '
2 2/ ()L I L

to
' }eN

'

1

2
(

)

L
I
L

2 2,R

1 1,R

0 , I

Figure 6.3 A High-level Illustration of Eviction Process.

6.5 Accountability Enhancements

In this section, we propose several accountability enhancements to the above data query and

eviction algorithms, so that if a server maliciously changes a block, another server is able to detect.

72

The enhancements affect the storage organization, system initialization, data query algorithm and

data eviction algorithm, in the following ways.

6.5.1 Enhancements to Storage and System Initialization

When the system is initialized, for each server Si where i ∈ {0, 1, 2}, the client randomly

constructs λ blocks each with z bits, denoted as ~Ai,j = 〈ai,j,0, · · · , ai,j,z−1〉 for j ∈ {0, · · · , λ − 1},

where each ai,j,y ∈ {0, 1} for y ∈ {0, · · · , z − 1}. Then, the client sends each ~Ai,j to server Si, and

the block should be kept secret only between server Si and the client.

For each exported data block ~D, letting 〈d0, · · · , dz−1〉 denote its plain text, the client computes

3 message authentication codes (MACs) as follows.

• First, the client computes the following 3λ message authentication bits (MABs) for ~D:

MABi,j(~D) = ⊕y∈{0,··· ,z−1}dy · ai,j,y, (6.6)

where i ∈ {0, 1, 2} and j ∈ {0, · · · , λ− 1}.

• Based on the MABs, the client computes the following 3 MACs for ~D:

MACi(~D) = MABi,0| · · · |MABi,λ−1, (6.7)

where i ∈ {0, 1, 2} and | denotes concatenation.

Finally, the client stores MAC0(~D), MAC1(~D) and MAC2(~D) to the entry of ~D in the index

table.

6.5.2 Enhancement to Data Query Algorithm

In the data query algorithm, we introduce an accountability enhancement to allow S1 to check

if S0 has sent to it a correct sequence ~L. The detail is as follows.

During the query process, the client completely knows which blocks should be in ~L. Let ~I =

〈i0, i1, · · · 〉 denote the IDs of the blocks in the sequence. For each block with ID ix ∈ ~I, the client

computes an MAC of the block that can be checked by the S1 as follows:

73

• From the index table, it retrieves MAC1(~Dix) (i.e., the MAC computed based on the block’s

plain text and the secret block ~A1 known by S1) and the current version of encryption key

kix for the block.

• It computes the two pseudo-random blocks that have been used to encrypt the block, i.e.,

~Rix,0 = PRG1(kix,0), ~Rix,1 = PRG1(kix,1), and ~Rix,2 = PRG1(kix,2). Note that, the x-th

block received by S1 should be equal to ~Dix ⊕ ~Rix,0 ⊕ ~Rix,1 ⊕ ~Rix,2 if it is correct.

• It computes MAC ′1(~Dix) as

MAC1(~Dix)⊕MAC1(~Rix,0)⊕MAC1(~Rix,0)⊕MAC1(~Rix,0), (6.8)

which should be equal to

MAC1(~Dix ⊕ ~Rix,0 ⊕ ~Rix,1 ⊕ ~Rix,2) (6.9)

according to the definition of MAC1(·).

Then, MAC ′1(~Dix) is sent to S1 for checking.

Upon receiving ~L from S0 and the ordered list of MACs from the client, S1 applies MAC1(·) to

compute the MAC for each block in ~L, and compares the resulting MAC with the MAC sent from

the client. If a mismatch is found, S0 will be identified to have modified some block.

6.5.3 Enhancements to Data Eviction Algorithm

The accountability enhancements to data eviction algorithm are similar to that applied for data

query algorithm. That is, whenever a server Si (i ∈ {0, 1, 2}) receives a list of blocks from another

server, Si needs to: (1) receive from the client an MACi for each block on the list; (2) re-computes

the MACi for each block on the list; (3) find out if the above values match.

6.6 Security Analysis

According to the definition of security in Chapter 2, we first study the security of the proposed

system in terms of obliviousness and failure probability. Then, we study the accountability of the

system.

74

6.6.1 Obliviousness Analysis

In this subsection, we show the obliviousness of the query and eviction processes; i.e., these

processes are random and independent of the client’s data access pattern. First of all, it is obvious

that the interactions between servers and the client follow the same pattern, independent of the

client’s access pattern. Hence, we focus to analyze the obliviousness of the processes inside server

S0.

6.6.1.1 Obliviousness in Query Path Selection

When the system is initialized, the path assigned to each block is selected randomly and in-

dependently of each other. After a block has been queried, its path is re-assigned randomly and

independently of the client’s data access pattern. Due to the randomness in path assignment, the

query path for each query process, which is determined by the path assigned to the query target

block, is random and independent of the client’s access pattern.

6.6.1.2 Obliviousness in Block Access from Query Path

According to the data query algorithm, the following block access pattern has been enforced:

from each node on the query path, the client must select one block that has not been accessed;

meanwhile, every block that has already been accessed has the same probability to be accessed

again according to Lemma 14.

6.6.1.3 Obliviousness in eviction process

The eviction process is random and independent of the client’s data access pattern, due to

the following reasons: (i) Each eviction process involves only one root-to-leaf path (called eviction

path), and the order in which the paths are selected for as eviction paths is fixed and independent of

data access pattern. (ii)During each eviction process, the processing for each node on the selected

eviction path follows a fixed pattern which is independent of data access pattern. Specifically, all

75

the data blocks on the node are re-encrypted and re-permuted by all the servers; then, the same

number of blocks are stored back to the node.

6.6.2 Failure Analysis

In this subsection, we study the probabilities for a query process and an eviction process to fail.

6.6.2.1 Failure Probability for A Query Process

According to Algorithm 1, a query process fails only when the probability
δi,2
δ2i,0

used in selecting

a block (in Line 6) becomes greater than 1. Also, as discussed in Section 6.3, we aim to make

δi,1+δi,2
δi,0

≤ 1 (which obviously makes
δi,2
δ2i,0
≤ 1) such that on average no more than 2 blocks are

accessed from each layer of the storage tree during each query process. Hence, we here study the

probability for
δi,1+δi,2
δi,0

> 1, which is no less than the probability for a query process to fail. Our

result is stated in the following Lemma 15.

Lemma 15. As long as q ≥ 25λ and α ≥ 0.25 ∧ β ≥ 0.25 when m = 2, 4, Pr[
δi,1+δi,2
δi,0

≤ 1] > 1−2−λ,

i.e., any query process fails with a probability less than 2−λ.

Proof. Consider an arbitrary node Ni on a m-ary storage tree, and let random variable X denote

the times that Ni has been selected to be on a query path during two consecutive evictions involving

the node. Obviously, X ≥ δi,1 + δi,2.

When m = 2, 4, according to the storage organization, the size of each node N ′i on the storage

tree is at least 2q ·min(1 + α, 1 + β) ≥ 2.5q; i.e., δi,0 + δi,1 + δi,2 ≥ 2.5q. Since an eviction process

is launched every q queries, the mean of X is q. Further according to the multiplicative Chernoff

bound,

Pr[X ≤ 1.25q] > 1− (
e0.25

1.251.25
)q > 1− 2−2λ. (6.10)

Hence,

Pr[δi,1 + δi,2 < δi,0] ≥ Pr[δi,1 + δi,2 ≤ 1.25q] > 1− 2−λ. (6.11)

76

When m ≥ 8, the size of each node on the storage tree is at least m−1
2 · q ≥ 3.5q; i.e., δi,0 +

δi,1 + δi,2 ≥ 2.5q. Due to Equation (6.10),

Pr[δi,1 + δi,2 < δi,0] > Pr[δi,1 + δi,2 ≤ 1.25q] > 1− 2−λ. (6.12)

6.6.2.2 Failure Probability for An Eviction Process

An eviction process fails iff the following scenarios occur in Step 8) of the eviction algorithm.

(i) Failure Scenario I: The current evicting node (i.e., N ′e) is a non-leaf node, and so q out of the x

blocks in L′2 need to be picked to send from S0 to S1. According to Case-I of the requirement, the

q blocks should not contain any real block that cannot be evicted to the next evicting node, but

failure will occur if there are more than x−q real blocks that cannot be evicted to the next evicting

node. (ii) Failure Scenario II: The current evicting node N ′e is a leaf node, and so q dummy blocks

out of the x blocks in L′2 need to be discarded. Failure will occur if there are less than q dummy

blocks (i.e., more than x− q real blocks) in L′2.

The results of our analysis are summarized as the following Lemmas 16 and 17. The proofs,

which have to be skipped due to space limit, can be developed based on the analysis of the eviction

process and the application of the multiplicative Chernoff bound.

Lemma 16. With q ≥ 25λ and the following combinations of system parameters, i.e., (m = 2, α ≥

0.25), (m = 4, α ≥ 0.25), (m = 8, α ≥ 0.34) and (m = 16, α ≥ 0.34), the Failure Scenario I occurs

with a probability of O(2−λ).

Lemma 17. With q ≥ 25λ and the following combinations of system parameters, i.e., (m = 2, β ≥

0.25), (m = 4, β ≥ 0.25), (m = 8, β ≥ 0.13) and (m = 16, β ≥ 0.09), the Failure Scenario II occurs

with a probability of O(2−λ).

Based on the above analysis on obliviousness and failure probablities, we get the following

theorem.

77

Theorem 7. The proposed system is secure under the security definition in Chapter 2 with q ≥ 25λ

and the following combinations of system parameters: (m = 2, α ≥ 0.25, β ≥ 0.25), (m = 4, α ≥

0.25, β ≥ 0.25), (m = 8, α ≥ 0.34, β ≥ 0.13) and (m = 16, α ≥ 0.34, β ≥ 0.09).

6.6.3 Accountability Analysis

The accountability of the proposed system relies on the security of the proposed MAC mecha-

nism, which is formally stated and proved in the following.

Lemma 18. For ∀j ∈ {0, 1, 2} and distinct blocks ~D and ~D′,

Pr[MABj,u(~D) = MABj,u(~D′)] =
1

2
, u = 0, · · · , λ− 1. (6.13)

Proof. (By induction). Let ~D and ~D′ differ by n bits on indices v0, · · · , vn−1; let j ∈ {0, 1, 2},

u ∈ {0, · · · , λ − 1} and v ∈ {0, · · · , z − 1}; let ~Aj,u[v] denote the v-th bit on ~Aj,u (recall that ~Aj,u

is a secret block shared only between the client and server Sj).

When n = 1, MABj,u(~D) = MABj,u(~D′) iff ~Aj,u[v0] = 0. Because ~Aj,u is randomly picked

from {0, 1}z, Pr[~Aj,u[v0] = 0] = 1
2 . Hence, Equation (6.13) holds.

Assuming Equation (6.13) holds when ~D and ~D′ differ by n ≤ t, we next prove the equation

holds when n = t + 1. Without loss of generality, assume ~D[vt] = 0 and ~D′[vt] = 1. Let ~I0

be the z-bit block with 0 on every bit, ~I1 be the z-bit block with 1 on bit vt but 0 on all other

bits, and ~D′′ = ~D′ ⊕ ~I1 (i.e., ~D′ = ~D′′ ⊕ ~I1). Hence, ~D and ~D′′ differ in t bits v0, · · · , vt−1.

According to the induction assumption, Pr[MABj,u(~D) = MABj,u(~D′′)] = 1
2 . Also note that,

78

Pr[MABj,u(~I0) = MABj,u(~I1)] = 1
2 and ~D = ~D ⊕ ~I0, ~D′ = ~D′′ ⊕ ~I1. Therefore, we have

Pr[MABj,u(~D) = MABj,u(~D′)] (6.14)

= Pr[MABj,u(~D ⊕ ~I0) = MABj,u(~D′′ ⊕ ~I1)] (6.15)

= Pr[MABj,u(~D) = MABj,u(~D′′)]×

Pr[MABj,u(~I0) = MABj,u(~I1)] +

Pr[MABj,u(~D) 6= MABj,u(~D′′)]×

Pr[MABj,u(~I0) 6= MABj,u(~I1)] (6.16)

=
1

2
× 1

2
+

1

2
× 1

2
=

1

2
. (6.17)

Theorem 8. If server Si sends data block ~D′ instead of ~D to server Sj, where i 6= j and ~D 6= ~D′,

then:

Pr[MACj(~D
′) = MACj(~D)] = 2−λ; (6.18)

i.e., the misbehavior of Si is detected with a probability of 1− 2−λ.

Proof. According to the MAC definition in Section 6.5 and Lemma 18,

Pr[MACj(~D
′) = MACj(~D)] (6.19)

=
λ−1∏
u=0

Pr[MABj,u(~D′) = MABj,u(~D)] = 2−λ. (6.20)

6.7 Performance Evaluation and Comparisons

We have implemented the proposed system, and conducted performance comparisons with

S3ORAM [26], which is the newest and most-efficient ORAM construction that employs multi-

ple non-colluding servers.

79

6.7.1 System Settings

We rent four AWS EC2 instances to run our implemented servers and client. As the com-

munication latency between these instances are smaller than those between client and server and

between the servers owned by different cloud owners, we conducted experiments to measure the

communication latencies between AWS EC2 and Microsoft Compute Engine instances and add

the measured average round trip delay 29 ms to the communication between our servers; we also

measured the communication latencies between these cloud servers and a rented client located at

the center of North America Continent, and add the measured average round trip delay 177.5 ms

to the communication between our servers and client.

We set security parameter λ = 40, which makes the failure probability of each query and eviction

process to be lower than 2−40. According to Theorem 7, we set q = 1024 which is greater than 25λ;

with different m, we adopt the following combinations of system parameter by default: (m = 2, α =

β = 0.25), (m = 4, α = β = 0.25), (m = 8, α = 0.34, β = 0.13) and (m = 16, α = 0.34, β = 0.09).

In each evaluation, we vary N (i.e., the number of real data blocks to export) between 220 to

226 and vary B (i.e., the size of each data block in bytes) between 16K to 1M .

We measure the following metrics: (1) client-server communication cost, which is measured as

the average number of blocks sent between the client and the servers to serve each data query

request; (2) inter-server communication cost, which is measured as the average number of blocks

sent among the servers per data query; (3) query delay, which is measured as the average time

elapse from a query request is sent from the client till the requested data block arrives at the client;

(4) server storage overhead, which is measured as the amount of storage consumed at the server

other than that for storing N exported data blocks; and (5) client storage cost, which is measured

as the amount of storage consumed at the client.

To optimize the system parameter selection, we also measure the system costs with varying m

and results are shown in Table 6.1. Note that, the table only shows the results when N = 220,

as the trend is similar with different N . As we can see from the table, when m increases, the

client-server communication cost does not change; the inter-server communication cost decreases

80

and then increases; the server storage overhead decreases. Hence, in the following experiments, we

set m = 8 to make our system to have low communication and storage overheads.

6.7.2 Comparison with S3ORAM

6.7.2.1 Communication Costs and Query Delay

As shown in Fig 6.4, our ORAM system incurs smaller inter-server communication cost, which

is about 60-80% of that of S3ORAM. Both schemes require a constant number of blocks to be trans-

ferred between the client and server for each query. Specifically, in our system, the communication

cost ranges from 1 to 1.3 data blocks per query, which includes 1 target block downloaded from S1

and some control messages for query and eviction. S3ORAM needs to download 3 data blocks as

well as a small size of meta-data.

In terms of query delay, as shown in Fig 6.5, our ORAM has similar but a slightly higher query

delay. This is due to the fact that, the request data block needs to travel through the path of

S0 → S1 → client; the detour between the servers incurs some extra delay, but it is very small

compared to the delay between client and server.

6.7.2.2 Storage Overheads

Both schemes require 3 non-colluding servers. For S3ORAM, all servers have the same structure,

different in that each server stores a different secret-shared version of blocks. Our system stores

data blocks on one server, i.e., S0, while the other two servers only need to allocate small storage

to facilitate query and eviction. Fig 6.6 shows the server-side storage overheads. Specifically, the

Table 6.1 System Costs with Varying m
m Client-Server Comm. Cost Inter-Server Comm. Cost Server Storage Overhead

2 1.3B 96B 1.5 N

4 1.3B 58B 1.1 N

8 1.3B 67B 0.3N

16 1.3B 90B 0.17N

81

0

50

100

150

200

2
20

2
22

2
24

2
26

In
te

r
S

e
rv

e
r

C
o

m
m

u
n

.
C

o
st

(u
n

it
:#

B
)

N

Our ORAM

S
3
ORAM

0

50

100

150

200

2
20

2
22

2
24

2
26

In
te

r
S

e
rv

e
r

C
o

m
m

u
n

.
C

o
st

(u
n

it
:#

B
)

N

Our ORAM

S
3
ORAM

(a) B = 16KB (b) B = 64KB

0

50

100

150

200

2
20

2
22

2
24

2
26

In
te

r
S

e
rv

e
r

C
o

m
m

u
n

.
C

o
st

(u
n
it

:#
B

)

N

Our ORAM

S
3
ORAM

0

50

100

150

200

2
20

2
22

2
24

2
26

In
te

r
S

e
rv

e
r

C
o

m
m

u
n

.
C

o
st

(u
n
it

:#
B

)

N

Our ORAM

S
3
ORAM

(c) B = 256KB (d) B = 1MB

Figure 6.4 Inter-Server Communication Cost.

server-side storage overhead of S3ORAM is 11N data blocks, while the overhead of our system is

(β + 1+α
7)N + (1+α)s

2 , which is no more than 0.3N blocks.

As the cost of the increased server storage efficiency, our system requires a larger client-side

storage space, which is around 0.1% of the server-side storage cost.

Also node that, both schemes require some computation at the server side. S3ORAM requires

its servers to execute addition and multiplication of Shamir Secret Sharing operations, while our

ORAM requires server to run random number generator to produce pseudo random sequences and

then perform XOR operations to decrypt or re-encrypt data blocks. Our ORAM also requires the

server to conduct authentication, which is also XOR operations. Our evaluations show that, the

delay caused by the computations is nearly negligible compared to the communication delay.

82

0

100

200

300

400

500

2
20

2
22

2
24

2
26

Q
u

er
y

 D
el

ay
 (

u
n

it
:m

s)

N

Our ORAM
S

3
ORAM

0

100

200

300

400

500

2
20

2
22

2
24

2
26

Q
u

er
y

 D
el

ay
 (

u
n

it
:m

s)

N

Our ORAM
S

3
ORAM

(a) B = 16KB (b) B = 64KB

0

100

200

300

400

500

2
20

2
22

2
24

2
26

Q
u

er
y

 D
el

ay
 (

u
n

it
:m

s)

N

Our ORAM
S

3
ORAM

0

100

200

300

400

500

2
20

2
22

2
24

2
26

Q
u

er
y

 D
el

ay
 (

u
n

it
:m

s)

N

Our ORAM
S

3
ORAM

(c) B = 256KB (d) B = 1MB

Figure 6.5 Query Delay

6.7.2.3 Summary

Compared to S3ORAM, our ORAM achieves a same level of efficiency in client-server commu-

nication, a higher level of efficiency in server-server communication, and a significantly higher level

of server-side storage efficiency, at the price of increased client-side storage requirement, which

however is affordable for a client who maintains an on-premise facility such as a cloud storage

gateway.

6.8 Summary

In this chapter, we have proposed a new oblivious cloud storage system to address the limitations

of existing research efforts. Extensive analysis and evaluation have shown that, our proposed system

83

0

5

10

15

2
20

2
22

2
24

2
26

S
er

v
er

 S
to

ra
g

e
O

v
er

h
ea

d
 (

u
n
it

:
N

)

N

Our ORAM
S

3
ORAM

0

5

10

15

2
20

2
22

2
24

2
26

S
er

v
er

 S
to

ra
g

e
O

v
er

h
ea

d
 (

u
n
it

:
N

)

N

Our ORAM
S

3
ORAM

(a) B = 16KB (b) B = 64KB

0

5

10

15

2
20

2
22

2
24

2
26

S
er

v
er

 S
to

ra
g

e
O

v
er

h
ea

d
 (

u
n

it
:

N
)

N

Our ORAM
S

3
ORAM

0

5

10

15

2
20

2
22

2
24

2
26

S
er

v
er

 S
to

ra
g

e
O

v
er

h
ea

d
 (

u
n

it
:

N
)

N

Our ORAM
S

3
ORAM

(c) B = 256KB (d) B = 1MB

Figure 6.6 Server Storage Overhead

can simultaneously attain the features of provable protection of data access pattern, low data query

delay, low server storage overhead; low communication costs, and accountability.

84

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

In this dissertation, we have presented three novel Oblivious RAM solutions to improve the state-

of-the-art Oblivious RAM performance. We have rigorously proved their security and demonstrated

their asymptotical efficiency. We have also shown their practical performances through numerical

analysis. The main contributions of our work are:

First, we propose SE-ORAM: A Storage-Efficient Oblivious RAM. SE-ORAM is an ORAM

construction with zero storage overhead at the server, while communication efficiency is similar or

higher than state-of-the-art. SE-ORAM stores exactly N number of data blocks on server side,

which has zero server storage overhead. Note that, the server stores a small number of dummy

blocks, and the real block replaced by dummy block is stored in user side storage. The number of

introduced dummy blocks is no more than x logN with probability 1− 1
N2x , as long as λ ≥ 2 and each

node on the storage tree can store 4 logN or more data blocks. SE-ORAM incurs communication

cost of O(log2N ·B) where B is block size in unit of bits, which is higher than some state-of-the-art

ORAM constructions.

Second, we propose Octopus ORAM: A Storage Efficient 8-ary Tree ORAM. Octopus ORAM

aims at reducing the client-server communication cost in the cost of introducing a small amount of

server storage overhead, which is much lower than existing ORAM constructions. Octopus ORAM

can significantly reduce the server storage overhead to around 0.34N (i.e., the server only needs to

allocate 1.34N blocks when the client outsources N blocks) while maintaining a comparable level

of communication cost: to server a query, the online communication cost is 3 blocks and eviction

(maintenance) communication cost is no more than 1.5 logN blocks.

Third, we propose Three Servers ORAM: An efficient and Accountable k-ary Tree Storage Ef-

ficient ORAM. The new three servers ORAM incurs low server storage overhead, which is around

0.3N blocks for every N real data blocks exported, the client-server communication cost is O(B)

85

bits per query by average, and server-server communication cost is O(logN ·B), lower communica-

tion costs than S3ORAM, the most related state-of-the-art scheme. By supporting accountability

with multiple servers, the work removes the less-realistic semi-honest assumption in a multi-server

oblivious storage system.

For the future work, there are multiple directions to work on. First of all, we would like to

improve the performance of the system by further reducing the communication costs, especially the

inter-server communication costs. Secondly, we plan to polish the implementation and eventually

make the system more robust to deploy. We also plan to improve ORAM efficiency when the server

is configured with trusted platform model (TPM). When the server has TPM enforcement, we will

be able to migrate some computation work to server and then with re-designed algorithms, we can

make ORAM more efficient.

86

BIBLIOGRAPHY

[1] Asonov, D. (2004). Querying databases privately: a new approach to private information

retrieval. In Springer Verlag.

[2] Beimel, A., Ishai, Y., Kushilevitz, E., and Raymond, J.-F. (2002). Breaking the O(n
1

2k−1)

barrier for information-theoretic private information retrieval. In In Proc. FOCS.

[3] Bindschaedler, V., Naveed, M., Pan, X., Wang, X., and Huang, Y. (2015). Practicing Oblivious

Access on Cloud Storage: the Gap, the Fallacy, and the New Way Forward. Proc. CCS.

[4] Cachin, C., Micali, S., and Stadler, M. (1999). Computationally private information retrieval

with polylogarithmic communication. In Proc. Eurocrypt.

[5] Chen, B., Lin, H., and Tessaro, S. (2015). Oblivious Parallel RAM: Improved efficiency and

generic constructions. In IACR Cryptology ePrint Archive. International Association for Cryp-

tologic Research.

[6] Chor, B. and Gilboa, N. (1997). Computationally private information retrieval. In Proc. Theory

of Computing.

[7] Chor, B., Goldreich, O., Kushilevitz, E., and Sudan, M. (1995). Private information retrieval.

In In Proc. FOCS.

[8] Daemen, J. and Rijmen, V. (2002). The design of Rijndael. Springer-Verlag New York, Inc.

[9] Dautrich, J. and Ravishankar, C. (2015). Combining ORAM with PIR to minimize bandwidth

costs. In Proc. CODASPY.

[10] Dautrich, J., Stefanov, E., and Shi, E. (2014). Burst ORAM: Minimizing ORAM response

times for bursty access patterns. In Proc. USENIX Security.

87

[11] Devadas, S., van Dijk, M., Fletcher, C. W., Ren, L., Shi, E., and Wichs, D. (2015). Onion

ORAM: A constant bandwidth blowup Oblivious RAM. In IACR Cryptology ePrint Archive.

International Association for Cryptologic Research.

[12] Dropbox (2006). http://www.dropbox.com/. In Dropbox.

[13] Fletcher, C., Naveed, M., Ren, L., Shi, E., and Stefanov, E. (2015). Bucket ORAM: Single

online roundtrip, constant bandwidth Oblivious RAM. In IACR Cryptology ePrint Archive.

International Association for Cryptologic Research.

[14] Fletcher, C. W., Ren, L., Kwon, A., Dijk, M. V., Stefanov, E., and Devadas, S. (2014). Tiny

ORAM: A low-latency, low-area hardware ORAM controller. In IACR Cryptology ePrint Archive.

International Association for Cryptologic Research.

[15] Gasarch, W. (2004). A survey on private information retrieval. In Online at

http://crypto.stanford.edu/d̃abo/courses/cs355 fall04/pir.pdf.

[16] Gentry, C., Goldman, K., Halevi, S., Julta, C., Raykova, M., and Wichs, D. (2013). Optimizing

ORAM and using it efficiently for secure computation. In Proc. PETS.

[17] Gertner, Y., Ishai, Y., Kushilevitz, E., and Malkin, T. (1998). Protecting data privacy in

private information retrieval schemes. In In Proc. STOC.

[18] Goldberg, I. (2007). Improving the robustness of private information retrieval. In In Proc.

S&P.

[19] Goldreich, O. and Ostrovsky, R. (1996). Software protection and simulation on Oblivious

RAM. Journal of the ACM, 43(3).

[20] Goodrich, M. T. and Mitzenmacher, M. (2010). Mapreduce parallel cuckoo hashing and Obliv-

ious RAM simulations. In Proc. CoRR.

[21] Goodrich, M. T. and Mitzenmacher, M. (2011). Privacy-preserving access of outsourced data

via Oblivious RAM simulation. In Proc. ICALP.

88

[22] Goodrich, M. T., Mitzenmacher, M., Ohrimenko, O., and Tamassia, R. (2011). Oblivious

RAM simulation with efficient worst-case access overhead. In Proc. CCSW.

[23] Goodrich, M. T., Mitzenmacher, M., Ohrimenko, O., and Tamassia, R. (2012). Privacy-

preserving group data access via stateless Oblivious RAM simulation. In Proc. SODA.

[24] Group, N. W. (2011). The secure sockets layer (SSL) protocol version 3.0. In RFC 6101.

[25] Helger, L. and Bingsheng, Z. (2010). Two new efficient PIR-writing protocols. In Zhou, J. and

Yung, M., editors, Applied Cryptography and Network Security, volume 6123 of Lecture Notes in

Computer Science. Springer Berlin Heidelberg.

[26] Hoang, T., Ozkaptan, C. D., and Yavuz, A. A. (2017). S3ORAM: A Computation-Efficient

and Constant Client Bandwidth Blowup ORAM with Shamir Secret Sharing. Proc. CCS.

[27] Islam, M. S., Kuzu, M., and Kantarcioglu, M. K. (2012). Access pattern disclosure on search-

able encryption: ramification, attack and mitigation. In Proc. NDSS.

[28] Kushilevitz, E., Lu, S., and Ostrovsky, R. (2012). On the (in)security of hash-based Oblivious

RAM and a new balancing scheme. In Proc. SODA.

[29] Kushilevitz, E. and Ostrovsky, R. (1997). Replication is not needed: single database,

computationally-private information retrieval (extended abstract). In Proc. FOCS.

[30] Lipmaa, H. (2005). An oblivious transfer protocol with log-squared communication. In In

Proc. ISC.

[31] Lipmaa, H. and Zhang, B. (2010). Two new efficient PIR-writing protocols. In Proc. ACNS.

[32] Lu, S. and Ostrovsky, R. (2013). Distributed Oblivious RAM for Secure Two-Party Compu-

tation. In Proc. TCC.

[33] Ma, Q., Zhang, J., Peng, Y., Zhang, W., and Qiao, D. (2016a). SE-ORAM: A Storage-

Efficient Oblivious RAM for Privacy-Preserving Access to Cloud Storage. Proc. The 3rd IEEE

International Conference on Cyber Security and Cloud Computing, Bejing, China.

89

[34] Ma, Q. and Zhang, W. (2018). Towards Practical Protection of Data Access Pattern to Cloud

Storage. Proc. Milcom.

[35] Ma, Q. and Zhang, W. (2019). Efficient and Accountable Oblivious Cloud Storage with Three

Servers. Submitted to INFOCOM.

[36] Ma, Q., Zhang, W., and Zhang, J. (2016b). DF-ORAM: A Practical Dummy Free Oblivious

RAM to Protect Outsourced Data Access Pattern. Proc. NSS.

[37] Mayberry, T., Blass, E.-O., and Chan, A. H. (2014). Efficient private file retrieval by combining

ORAM and PIR. In Proc. NDSS.

[38] Mayberry, T., Blass, E.-O., and Noubir, G. (2015). Multi-client Oblivious RAM secure against

malicious servers. In IACR Cryptology ePrint Archive. International Association for Cryptologic

Research.

[39] Moataz, T., Blass, E.-O., and Mayberry, T. (2015a). Constant communication ORAM with-

out encryption. In IACR Cryptology ePrint Archive. International Association for Cryptologic

Research.

[40] Moataz, T., Blass, E.-O., and Noubir, G. (2015b). Recursive trees for practical ORAM. In

Proc. FC.

[41] Moataz, T., Mayberry, T., and Blass, E.-O. (2015c). Constant communication ORAM with

small blocksize. In Proc. CCS.

[42] Moataz, T., Mayberry, T., Blass, E.-O., and Chan, A. H. (2014). Resizable tree-based Oblivious

RAM. In IACR Cryptology ePrint Archive. International Association for Cryptologic Research.

[43] Ostrovsky, R. and III, W. E. S. (2007). A survey of single-database PIR: techniques and

applications. In Online at http://eprint.iacr.org/2007/059.pdf.

[44] Pinkas, B. and Reinman, T. (2010). Oblivious RAM revisited. In Proc. CRYPTO.

90

[45] Ren, L., Fletcher, C. W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., and Devadas, S.

(2014a). Ring ORAM: Closing the gap between small and large client storage Oblivious RAM.

In IACR Cryptology ePrint Archive. International Association for Cryptologic Research.

[46] Ren, L., Fletcher, C. W., Yu, X., Kwon, A., van Dijk, M., , and Devadas, S. (2014b). Unified

Oblivious-RAM: Improving recursive ORAM with locality and pseudorandomness. In IACR

Cryptology ePrint Archive. International Association for Cryptologic Research.

[47] Ren, L., Fletcher, C. W., Yu, X., van Dijk, M., and Devadas, S. (2013). Integrity verification

for Path Oblivious-RAM. In Proc. HPEC.

[48] Saw, Z. LANBench. http://www.zachsaw.com/?pg=lanbench_tcp_network_benchmark.

[49] Shi, E., Chan, T.-H. H., Stefanov, E., and Li, M. (2011). Oblivious RAM with O((logN)3)

worst-case cost. In Proc. ASIACRYPT.

[50] Sion, R. and Carbunar, B. (2007). On the practicality of private information retrieval. In In

Proc. NDSS.

[51] Stefanov, E. and Shi, E. (2013a). Multi-cloud oblivious storage. In Proc. CCS.

[52] Stefanov, E. and Shi, E. (2013b). ObliviStore: high performance oblivious cloud storage. In

Proc. S&P.

[53] Stefanov, E., Shi, E., and Song, D. (2011). Towards practical Oblivious RAM. In Proc. NDSS.

[54] Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., and Devadas, S. (2013).

Path ORAM: an extremely simple Oblivious RAM protocol. In Proc. CCS.

[55] Trostle, J. and Parrish, A. (2011). Efficient computationally private information retrieval

from anonymity or trapdoor groups. In Information Security, volume 6531 of Lecture Notes in

Computer Science, pages 114–128. Springer Berlin Heidelberg.

[56] Wang, X., Chan, T.-H. H., and Shi, E. (2015). Circuit ORAM: On tightness of the Goldreich-

Ostrovsky lower bound. In Proc. CCS.

http://www.zachsaw.com/?pg=lanbench_tcp_network_benchmark

91

[57] Wang, X., Huang, Y., Chan, T.-H. H., Shelat, A., and Shi, E. (2014). SCORAM: Oblivious

RAM for secure computations. In Proc. CCS.

[58] Williams, P. and Sion, R. (2008a). Building castles out of mud: practical access pattern privacy

and correctness on untrusted storage. In Proc. CCS.

[59] Williams, P. and Sion, R. (2008b). Usable PIR. In Proc. NDSS.

[60] Williams, P. and Sion, R. (2013). Access privacy and correctness on untrusted storage. In

Proc. TISSEC.

[61] Williams, P., Sion, R., and Tomescu, A. (2012a). PrivateFS: a parallel oblivious file system.

In Proc. CCS.

[62] Williams, P., Sion, R., and Tomescu, A. (2012b). Single round access privacy on outsourced

storage. In Proc. CCS.

[63] Yu, X., Ren, L., Fletcher, C. W., Kwon, A., van Dijk, M., and Devadas, S. (2014). Enhancing

Oblivious RAM performance using dynamic prefetching. In IACR Cryptology ePrint Archive.

International Association for Cryptologic Research.

[64] Zhang, J., Ma, Q., Zhang, W., and Qiao, D. (2014). KT-ORAM: A bandwidth-efficient ORAM

built on k-ary tree of PIR nodes. In IACR Cryptology ePrint Archive. International Association

for Cryptologic Research.

[65] Zhang, J., Ma, Q., Zhang, W., and Qiao, D. (2016). TSKT-ORAM: A Two-Server K-ary Tree

ORAM for Access Pattern Protection in Cloud Storage. Proc. MILCOM.

[66] Zhang, J., Ma, Q., Zhang, W., and Qiao, D. (2017). TSKT-ORAM: A Two-Server k-ary

Tree Oblivious RAM without Homomorphic Encryption. Proc. Future Internet special issue on

Information Systems Security.

[67] Zhang, J., Zhang, W., and Qiao, D. (2015). GP-ORAM: A generalized Partition ORAM. In

Proc. NSS.

