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ABSTRACT

HMMs are commonly used to model animal movement data and infer aspects of animal behavior.

Their ability to connect an observation process to an underlying state process, generally serving

as a proxy for a finite set of animal behaviors of interest, matches the intuition that the observed

movements stem from an underlying (unobserved) behavioral process. We can further extend

the HMM framework to consist of multiple state processes to reflect that different behaviors are

identified by different compositions of the observed movement processes. We refer to this extension

as a multi-scale HMM whereby one state process is connected to the underlying behaviors that

generate the movements at the temporal scale at which the data are processed and another is

connected to a larger-scale behavioral process, defined as a composition of fine-scale behavioral

states. We present two formulations of the multi-scale HMM. We illustrate the application of

multi-scale HMMs in four real-data examples, vertical movements of harbor porpoises observed in

the field, and garter snake movement data collected as part of an experimental design, in chapter

2 and under two different formulations applied to tiger shark data in chapter 3.

HMMs again play a feature role in chapter 4, where we aim to connect movement and physiology

dynamics and their evolution and interaction over time. A long-sought goal in ecology is to connect

movement with population dynamics. For many species and especially for ungulates, there is a

known link between condition (e.g. fat reserves) and the probability of survival and reproduction.

Assuming a particular genetic makeup and physiology, condition reflects the history of behavioral

decisions, including movement and habitat use. However, the condition of an animal can also

have a direct implication on the types of movements that it performs and the habitats that it

visits. Movement data for ungulates are typically collected at a fine temporal scale, e.g. a position

recorded by a GPS device every five or ten minutes. However, fat reserves cannot be measured

remotely and must be done manually. This in turn creates a mismatch in the temporal scale at



xi

which the two data streams are observed, i.e. every five minutes for movement vs approximately

once a month for condition. Further, the temporal mismatch leads to various challenges when

jointly modeling the two processes. For the movement model, we use discrete-time, finite-state

HMMs with the positional data of the sheep serving as the observation process and the underlying

state process serving as a proxy for behaviors of interest. To incorporate condition as a potential

covariate affecting the movement, and thus behavioral, process, we make use of the physiological

equations that describe the evolution of body fat in Merino sheep in order to predict daily values of

the condition process. The physiological equations are expressed as a function of the states inferred

by HMM, as well as the distance that the sheep travels.
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CHAPTER 1. INTRODUCTION

The work conducted in this thesis lies squarely in the area of statistical ecology, specifically in

the area of modeling time series of animal movement data. Due to technological advances in devices

that can be affixed to animals, large amounts of data can be collected on a wide range of animals,

across marine, terrestrial and aerial environments. As the data reveal patterns and movements

with much higher detail than ever before possible, the number of research questions that can be

asked and informed by the data is growing rapidly. Common statistical approaches applied in the

analysis of animal movement data aim to answer two main questions, “What types of behaviors

did the animal(s) exhibit?” and “What are the primary drivers of these behaviors?” (Patterson

et al., 2009; Hooten et al., 2017). In this spirit, we delve into the manners in which we can define

and identify animal behaviors at multiple temporal scales and how we can incorporate pertinent

drivers of these behaviors. We further incorporate physiological processes into the analysis of animal

movement, in order to construct a framework in which behavior and physiology interact and evolve

simultaneously (Hooten et al., 2019).

1.1 Multi-scale Analyses

State-space models are a common class of time series models applied to animal movement data

(Patterson et al., 2008, 2017; Hooten et al., 2017). Their ability to connect an observation process

to an underlying state process, generally serving as a proxy for a finite set of animal behaviors of

interest, matches the intuition that the observed movements stem from an underlying (unobserved)

behavioral process. When applied to positional data, state-space models are commonly used to

differentiate between movements encompassing traveling, area-restricted search and resting behav-

iors (Morales et al., 2004). The signals emitted from these types of behaviors are easily observed

in the data as directional, long distances traveled (traveling), short distances and high turning
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angles (area-restricted search) and short or zero distances (resting) over some (∼5–60 m) window

of time. Other common applications include analysis of marine mammal dive data and analysis of

accelerometer data. In this applications, we again have clear signals that can be observed in the

data. For instance, differentiating shallow dives from deep dives (DeRuiter et al., 2017) to make

inferences about the occurrence of non-foraging and foraging events and large spikes in dynamic

acceleration signals from small signals, close to zero, to infer activity levels in sharks (Leos-Barajas

et al., 2017). While the simplistic approach to identifying different signals in the movement data

already provides a wealth of information to the understanding of an animal’s behaviors and its

drivers, it has clear limitations in the types of behaviors that can be represented.

Hidden Markov models are a particular class of state-space models with a discrete state-space

and are popular time series models commonly applied to time series of animal movement data

(Zucchini et al., 2016). Chapters 2 and 3 focus on extending the structure of hidden Markov models

(HMMs) in order to capture a larger variety of behavioral patterns and provide a framework in

which to make inferences about drivers of behavior at multiple temporal scales.

1.2 Incorporating Physiological Dynamics

While chapters 2 and 3 focus on the principal aim of extending the types of behaviors that

are able to be captured via the general class of HMMs, chapter 4 focuses on the manner in which

body condition of the animal could be included as a covariate in the analysis of animal movement.

Underlying an animal’s movement patterns and behavioral responses lies the physiological condition

of the animal and its abilities to perform biologically necessary activities. However, a large hurdle in

this approach is that condition data requires manual collection. In free ranging animals, condition

data may only be collected when the animal is re-captured, making it difficult to collect condition

data at a fine temporal scale.

As a case study, we present an approach to incorporate body condition into the analysis of

Merino sheep movement (Wilmshurst et al., 2000; Delgiudice et al., 2001). To obtain values of

condition on a daily scale, we use a combination of observed condition values (approximately
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obtained every 30 days) along with physiological equations specific to Merino sheep to predict

values of body condition when they are not directly observed. We use HMMs for the movement

model.

One particular challenge associated with this approach lies in the feedback between condition

and movement assumed in the modeling framework. Movement is directly influenced by the un-

derlying condition of the sheep while predictions of condition inherently depend on results of the

movement model, such as identifying periods of foraging behavior. We present a joint model that

models animal movement, includes body condition as a potential driver of behavior and simulta-

neously predicts the values of condition when not observed for inclusion in the movement model.
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2.1 Abstract

Hidden Markov models (HMMs) are commonly used to model animal movement data and

infer aspects of animal behavior. An HMM assumes that each data point from a time series of

observations stems from one of N possible states. The states are loosely connected to behavioral

modes that manifest themselves at the temporal resolution at which observations are made. Due

to advances in tag technology and tracking with digital videorecordings, data can be collected at

increasingly fine temporal resolutions. Yet, inferences at time scales cruder than those at which data

are collected, and which correspond to larger-scale behavioral processes, are not yet answered via

HMMs. We include additional hierarchical structures to the basic HMM framework, incorporating

multiple Markov chains at various time scales. The hierarchically structured HMMs allow for

behavioral inferences at multiple time scales and can also serve as a means to avoid coarsening data.

Our proposed framework is one of the first that models animal behavior simultaneously at multiple

time scales, opening new possibilities in the area of animal movement and behavior modeling. We

illustrate the application of hierarchically structured HMMs in two real-data examples: (i) vertical
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movements of harbor porpoises observed in the field, and (ii) garter snake movement data collected

as part of an experimental design.

2.2 Introduction

Hidden Markov models (HMMs) and related state-switching models are prevalent in the field

of animal movement modeling, where they provide a flexible framework to infer aspects of animal

behavior from various types of movement data (Morales et al., 2004; Patterson et al., 2009, 2017;

Langrock et al., 2012, 2014). They are very natural models for time series data related to animal

movement, as they account for the serial dependence typically observed and allow each observation

to be (loosely) connected to distinct underlying behavioral modes. A basic HMM for movement

data consists of two stochastic processes: an observed movement process and an underlying state

process, the latter of which can be related to distinct behavioral modes, at least in the sense of

serving as a proxy of the actual behavioral process (Patterson et al., 2009; Langrock et al., 2012).

Applications of HMMs to movement data often focus on investigating the effect of individual and

environmental covariates on state occupancy, and thus ultimately on the dynamics of the variation

in behavioral modes in response to internal and external drivers.

Generally, movement data are analyzed such that the observation process is assumed to stem

from a single (behavioral) state process. It may however be the case that there are two (connected)

behavioral processes that occur at distinct time scales. For instance, so-called hierarchical HMMs

have been used to process data on handwriting in order to distinguish between distinct letters but

also to recognize a word, defined as a sequence of written letters (Fine et al., 1998). However, these

versatile extensions of HMMs have not yet been applied to movement data, even in light of the

intuitive idea that distinct behaviors manifest themselves at different time scales (hereafter referred

to as multi-scale behaviors). A motivating example to have in mind is a central-place forager such

as the southern elephant seal. These animals exhibit large-scale migration movements (from land

colonies to either the sea ice zone around Antarctica or into open-ocean pelagic zones, and back),

but also movement patterns where much more frequent changes take place between behavioral
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modes, e.g. “foraging” and “resting” modes (Biuw et al., 2007; Hindell et al., 2016; Michelot et al.,

2017). The modeling framework we propose regards such data as stemming from two behavioral

processes, which operate on different time scales: the first process determines the behavioral mode

at the cruder time scale (e.g. whether or not an elephant seal is performing a migratory trip, and

also what kind of migratory trip), while the second process, at the finer time scale, determines the

behavioral mode nested within the large-scale mode (e.g. whether an elephant seal is resting or

foraging, given it is close to the sea ice zone, or whether it is traveling or foraging, given it is on a

migratory trip).

For multi-scale modeling of animal movement data, we propose an extension to the standard

HMM that allows for a hierarchical state process, where two (or more) different Markov chains,

operating at different time scales, will be tied together. To illustrate the application of hierarchi-

cally structured HMMs in a real-data setting, we model vertical movements of a harbor porpoise

(Phocoena phocoena) throughout its natural habitat in the northeastern part of the North Sea.

While the data were collected at a dive-by-dive resolution, the aim here is to infer dive patterns at

two different temporal scales: an hourly scale to infer the general behavioral mode (e.g. resting or

traveling), which may persist for a large number of consecutive dives, and a fine-scale process to

infer more nuanced state transitions at a dive-by-dive resolution given the general behavioral mode.

As a second real-data example, we model baby garter snake (Thamnophis elegans) movement data

produced in a controlled experimental design context. This experiment includes tracking individu-

als over two segments of a behavioral trial repeated three times, resulting in six discrete time series

produced per individual. The hierarchically structured HMM here has two Markov chains, where

one Markov chain models the transitions among three types of movements (distance traveled in

1/2 s) and the second Markov chain models transitions across six time series produced per snake.

This subset of individuals served as the control group for the larger experiment and therefore did

not receive any additional experimental stimuli. Thus, we use the second Markov chain here to in-

vestigate personality and repeatability in their movement patterns. That is, we attempt to answer
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if individual garter snakes differ in their general movement strategies or if they have tendencies to

exhibit the same general movement pattern across multiple time series.

A conceptual challenge with HMMs, and in fact any discrete-time models for behavioral data, is

that the temporal resolution of the observations being analyzed (e.g. hourly, daily, etc.) determines

what kind of behaviors may be inferred at all. Strictly speaking, this is not a problem arising from

the model applied, but rather from the sampling protocol, i.e. the data. For instance, Towner et al.

(2016) processed white shark location data, collected every five minutes, into distance traveled and

turning angle and subsequently connected each bivariate observation to “area-restricted search”

and “transiting” behavior. Were the shark’s location observed once per day, we would not be able

to infer the same behaviors because switches between these behavioral modes occur at a much

finer temporal scale. The hierarchically structured HMMs will not solve the conceptual challenges

associated with data processing or data collection required to infer multi-scale behaviors. However,

it does offer new opportunities in the analysis of animal movement data, allowing for identification

of general behavioral patterns that are a composition of fine-scale observations and inferences to

be made at multiple time scales.

2.3 Hidden Markov Models with Hierarchical Structures

In Section 2.3.1 we first detail the basic HMM framework in order to introduce the necessary

notation that will be used throughout the paper. In Section 2.3.2, we introduce the hierarchical

model formulation, distinguishing between two types of latent states, production states and internal

states, which occur at distinct time scales.

2.3.1 Basic HMM Framework

A basic HMM is composed of two stochastic processes: an observable state-dependent process

{Yt}Tt=1 and an unobservable state process {St}Tt=1 taking on a finite number of states. Here we call

the state a production state (as it produces an observation), in order to differentiate it from other

forms of the latent states which we introduce in Section 2.3.2. As is general practice, we assume
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a first-order Markov process at the production state level, such that the distribution of St, the

production state at time t, is completely determined by the previous state St−1. We further assume

Yt, t = 1, . . . , T , to be conditionally independent of past and future observations and production

states, given the production state St, such that the production states effectively select from which

of finitely many possible distributions each observation is drawn. Due to the Markov property,

the evolution of the production states over time is governed by the transition probability matrix

(t.p.m.), Γ = (γij), where γij = Pr(St = j|St−1 = i) for i, j = 1, ..., N , with N denoting the

number of production states. The initial distribution, δ, is a vector of probabilities with entries

δi = Pr(S1 = i), of the first observation y1 belonging to one of the N production states. It is

common to assume the initial distribution to be the stationary distribution, defined as the solution

to Γδ = Γ. However, δ can also be estimated. In order to ensure identifiability when estimating

the entries of the t.p.m., we map the entries of each row onto the real line with the use of the

multinomial logit link and set the diagonal entries of the matrix as the reference categories:

γij =
exp(ηij)∑N
k=1 exp(ηik)

, where ηij =


β(ij) if i 6= j;

0 otherwise.

We similarly use a multinomial logit link transformation for the initial distribution, if estimated

rather than assumed to be the stationary distribution. The state-dependent distributions for Yt

will be represented in terms of probability density or mass functions f(yt|St = i) = fi(yt); i =

1, . . . , N . If the observations are multivariate, in which case we write Yt = (Y1t, . . . , YRt), we

can either formulate a joint distribution fi(yt) or assume contemporaneous conditional indepen-

dence by allowing the joint distribution to be represented as a product of marginal densities,

fi(yt)=f
1
i (y1t)f

2
i (y2t) · · · fRi (yRt). While parametric families are usually chosen for the fi, such

as a Gaussian or gamma distribution, we can also estimate the distribution nonparametrically by

expressing it as a linear combination of a large number of basis functions (Langrock et al., 2015).

The likelihood of an individual time series can be expressed concisely as a matrix product,

Lp(y1, . . . , yT ) = δ>P(y1)
T∏
t=2

ΓP(yt)1, (2.1)
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where P(yt) = diag (f1(yt), . . . , fN (yt)), δ is the initial distribution (a column vector), and 1 is

a column vector of ones. Calculation of the matrix product given above the computational cost

of which notably is only linear in T is equivalent to applying the forward algorithm, which is an

efficient recursive scheme for calculating the likelihood of an HMM (Zucchini et al., 2016).

2.3.2 Extension to allow for hierarchical structures

The framework for the basic HMM accounts for switches at the production state level. In a

movement modeling analysis, the production states are generally thought to be proxies for behavior

occurring at the time scale at which the data were collected (or processed). However, as outlined

in the elephant seal example in the introduction, production states alone may not be sufficient to

encompass complex multi-scale behavioral processes. More specifically, there may be crude-scale

behavioral processes (e.g. migration) that manifest themselves as a sequence of production states

(e.g. resting or foraging) and associated observations. Intuitively, we would then connect a behavior

occurring at a cruder time scale to one of K internal states, such that each internal state generates

a distinct HMM, with the corresponding N production states producing the actual observations.

Akin to the basic HMM framework, we can think of a fine-scale sequence of observations,

ym = (y1,m, . . . , yT,m) with one such sequence for each m = 1, . . . ,M to be produced by a

sequence of production states, S1,m, . . . , ST,m, during a given time frame (namely the mth of M

time frames). In typical analyses of telemetry data, this component of the model would correspond

to behaviors such as resting or foraging, represented by the production states, and the associated

observations (e.g. step lengths and turning angles). However, in addition we now assume that the

way in which the sequence of production states is generated depends on which of K possible internal

states is active during the current (mth) time frame. The length of the sequence of production states

produced by the kth internal state can be dictated by the data collection process or imposed by

the analysis. The corresponding K-state internal state process, {Hm}Mm=1, is such that Hm serves

as a proxy for a behavior occurring at a cruder time scale, namely throughout the mth time frame.
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Figure 2.1 Dependence structure in hierarchically structured HMMs.

For example, in the motivating elephant seal example, the internal states could indicate whether

or not a seal is on a migratory trip during the mth time frame, for m = 1, . . . ,M .

With such a hierarchical model formulation, we account for differences observed across the M

time frames ym, m = 1, . . . ,M , by connecting each with one of K crude-scale behavioral processes

while still modeling the transitions among production states at the time scale at which the data

were collected. Supposing that there are multiple time frames per individual, we can model the

manner in which an animal switches among the K internal states (behavioral processes). We assume

a first-order Markov process at the time frame level, i.e. Pr(Hm|Hm−1, . . . ,H1) = Pr(Hm|Hm−1),

such that the mth internal state is conditionally independent of all other internal states given the

internal state at the (m − 1)th time point. The K × K t.p.m. for the internal states {Hm}Mm=1

examines persistence in the internal states, as well as the manner in which an animal will switch

among them. Figure 2.1 displays the dependence structure of hierarchically structured HMMs with

two Markov chains, one at the level of the production states, St,m, and the other at the level of the

internal states, Hm.

We represent the hierarchical structure as a first-order HMM likelihood, which lends itself to

the efficient evaluation known from basic HMMs. To state the likelihood of such a hierarchically
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structured HMM, we first define

P(I)(ym) = diag
(
Lp(ym|Hm = 1), . . . , Lp(ym|Hm = K)

)
,

where the likelihoods Lp(ym|Hm = k), k = 1, . . . ,K, have the form as given in (2.1), and can vary

across k in terms of the production-level t.p.m. associated with the k-th internal state and poten-

tially also the production state-dependent distributions. Then the likelihood for the hierarchically

structured HMM is obtained as

Lh = δ(I)P(I)(y1)

M∏
m=2

Γ(I)P(I)(ym)1,

where δ(I) denotes the vector of length K of initial probabilities for the internal states, and Γ(I)

denotes the K ×K t.p.m. for the internal state process.

For ease of interpretation, in this work we will assume that the K internal states only vary

across the production-level t.p.m.s. As the estimated production states are generally proxies for

behaviors, allowing for only the t.p.m. to vary across the K HMMs leads to an interpretation of

the K internal states (loosely connected to K behavioral processes) as distinct manners in which

an animal will persist and switch among the production states (and hence behaviors). As long as

the individual time series’ likelihoods, Lp, can be evaluated in an efficient manner, we can evaluate

the likelihood of the hierarchically structured HMM via the forward algorithm, and thus maximize

it directly, since the general structure does not differ from that of the basic HMM. The Viterbi

algorithm can be used for global state decoding, i.e. finding the sequence of the most likely internal

and production states, respectively, given the observations.

2.4 Applications

2.4.1 Harbor Porpoises

2.4.1.1 The data

. To illustrate the application of hierarchically structured HMMs, we model vertical movements

of a harbor porpoise (Phocoena phocoena) throughout its natural habitat in the northeastern part
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of the North Sea. From a time-depth recorder (LAT1800ST, Lotek, Ontario, Canada), we obtained

observations of the dive depth every second. Assuming a “dive” to be any vertical movement deeper

than two meters below the surface, we used the R package diveMove (Luque, 2007) to process the

raw data into measures of the dive duration, the maximum depth and the dive wiggliness (as

represented by the absolute vertical distance covered at the bottom of each dive) to characterize

the porpoise’s vertical movements at a dive-by-dive resolution. Previous applications of HMMs,

though not hierarchically structured HMMs, with dive-by-dive data of marine mammals have been

presented in Hart et al. (2010) and DeRuiter et al. (2016). Overall, we consider 275 hours of

observations, comprising 7,585 dives in total (hence, about 28 dives per hour).

2.4.1.2 Model formulation and model fitting

. Behavioral modes of marine mammals, e.g. resting, foraging and traveling, do not necessarily

manifest themselves at a dive-by-dive resolution. For example, foraging behavior typically coincides

with a large proportion of extensive, wiggly dive sequences. However, foraging sequences may be

interspersed by short periods of resting behavior (shallow and smooth dives) even though the dom-

inant behavioral mode may still be foraging. Such patterns are especially likely to occur in harbor

porpoise dive data, a species that needs to feed almost continuously to meet energy requirements

(Wisniewska et al., 2016). In these cases, hierarchically structured HMMs have strong potential

to infer the movement strategies adopted over time, by modeling the transitions between distinct

dive patterns (as represented by multiple HMMs) rather than modeling dive-by-dive observations

using a single HMM. Thus, to draw a more detailed picture of the behavioral dynamics at multiple

time scales, we use hierarchical HMMs, where a crude-scale K-state Markov chain selects which

of K fine-scale HMMs describes the dive pattern observed at any point in time. Intuitively, the

crude-scale process describes the general behavioral mode (e.g. resting or traveling) which may

persist for a large number of consecutive dives while the fine-scale process captures more nuanced

state transitions at the dive-by-dive level, given the general behavioral mode.
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In terms of the crude time scale, we segmented the time series into hourly intervals and allowed

each segment to be connected to one of K = 2 HMMs with N = 3 (dive-by-dive level) states

each. This somewhat arbitrary time scale was chosen based on exploratory analysis of the data set,

which suggested that a certain dive pattern is typically adopted for several hours before switching to

another one (c.f. Figure 2.3). As comprehensively discussed in Pohle et al. (2017), model selection

criteria such as Akaike’s Information Criterion (AIC) or the Bayesian Information Criterion (BIC)

typically tend to favor models with larger number of states than are biologically sensible. This is

indeed a well-known and notorious problem in applications of HMMs to ecological data (see also

Langrock et al. (2015), DeRuiter et al. (2016), Li and Bolker (2017)). Thus, following Pohle et al.

(2017), instead of relying on formal model selection procedures, the number of states was chosen

pragmatically, with particular emphasis on model parsimony and biological intuition.

The state-dependent distributions were kept the same across the two dive-level HMMs, which

were instead allowed to differ only by the t.p.m.s. This assumption implies that any of the three

types of dives — as generated by the three different production states — could in principle occur

in both crude-level behavioral modes, but will not occur equally often, on average, due to the

different Markov chains active at the dive-by-dive level. The initial state distributions, both for the

internal and for the production state process, were assumed to be the stationary distributions of

the respective Markov chains. We assumed gamma distributions for each of the three dive variables

(dive duration, maximum depth and dive wiggliness), with an additional point mass on zero in case

of dive wiggliness to account for the zeros observed. We assumed contemporaneous conditional

independence, i.e. for any given dive, the three variables observed are conditionally independent

given the production state active at the time of the dive. These assumptions could in fact be

relaxed if deemed necessary. However, for this case study we decided that in order to illustrate the

key concepts, it would be best to focus on a relatively simple yet biologically informative model

structure.



15

We computed the likelihood in C++ using the forward algorithm (Zucchini et al., 2016) and

used the R function nlm (Team, 2019) to obtain maximum likelihood estimates via direct numerical

likelihood maximization, which took about 15 minutes (on a 3.6 GHz Intel Core i7-4790 CPU).

2.4.1.3 Fitted state-dependent distributions

. The fitted (dive-level) state-dependent distributions displayed in Figure 2.2 suggest three

distinct dive types: State 1 captures the shortest (lasting less than 25 seconds), shallowest (less

than 10 meters deep) and smoothest (less than 8 meters absolute vertical distance covered) dives

with small variance. State 2 captures moderately long (10-60 seconds), moderately deep (5-25

meters) and moderately wiggly (5-30 meters) dives with moderate variance. State 3 captures

the longest (40-180 seconds), deepest (10-80 meters) and wiggliest (10-80 meters) dives with high

variance.

production state 1

production state 2

production state 3

0.00

0.05

0.10

0 50 100 150

dive duration (seconds)

de
ns

ity production state 1

production state 2

production state 3

0.0

0.1

0.2

0.3

0 20 40 60 80

maximum depth (meters)

de
ns

ity production state 1

production state 2
production state 3

Pr(X=0|S=1)=0.309
Pr(X=0|S=2)=0.008
Pr(X=0|S=3)=0.000

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80

dive wiggliness (meters)

de
ns

ity

Figure 2.2 Fitted state-dependent distributions for the dive duration, the maximum depth

and the dive wiggliness, the latter together with the estimated point mass on

zero.

In the next section, we discuss the (K = 2) distinct dive-level switching patterns among the

(N = 3) states discussed here, as well as the crude-level process that selects which of the dive-level

switching patterns is active in any given hour.
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Figure 4.8 Top: Posterior predictive step length distributions for model 4 (in light blue)

and the marginal distribution of the observed data (in black). Middle: Poste-

rior predictive turning angle distributions for model 4 (in light blue) and the

marginal distribution of the observed data (in black). Bottom: Posterior pre-

dictive autocorrelation function for model 4 (in light blue) and the observed

autocorrelation function of the observed data (in black).
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4.9.2 HMC Posterior Draws

Table 4.3 HMC Posterior Draws for Model 1. Values for the marginal means and chosen

quantiles are reported, along with the effective number of samples, neff , and

value of R̂.

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat

mu[1] 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 377.27 1.00

mu[2] 0.30 0.00 0.00 0.30 0.30 0.30 0.30 0.30 1168.94 1.00

mu[3] 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 828.97 1.00

sigma[1] 0.05 0.00 0.00 0.04 0.05 0.05 0.05 0.06 363.42 1.00

sigma[2] 0.10 0.00 0.00 0.10 0.10 0.10 0.10 0.10 1748.94 1.00

sigma[3] 0.10 0.00 0.00 0.10 0.10 0.10 0.10 0.10 1655.18 1.00

xangle[1] -8.84 0.01 0.16 -9.16 -8.95 -8.84 -8.74 -8.54 382.49 1.00

xangle[2] -0.99 0.00 0.02 -1.03 -1.00 -0.99 -0.98 -0.96 1157.76 1.00

xangle[3] 1.00 0.00 0.01 0.98 0.99 1.00 1.01 1.02 1073.49 1.00

yangle[1] 3.11 0.00 0.07 2.97 3.06 3.12 3.17 3.25 409.37 1.00

yangle[2] 0.13 0.00 0.01 0.10 0.12 0.13 0.14 0.16 1142.42 1.00

yangle[3] -0.01 0.00 0.01 -0.03 -0.01 -0.00 0.00 0.02 916.26 1.00

theta[1,1] 0.91 0.00 0.00 0.90 0.91 0.91 0.91 0.92 569.96 1.00

theta[1,2] 0.05 0.00 0.00 0.04 0.05 0.05 0.05 0.06 704.54 1.00

theta[1,3] 0.04 0.00 0.00 0.04 0.04 0.04 0.04 0.05 888.35 1.00

theta[2,1] 0.03 0.00 0.00 0.03 0.03 0.03 0.03 0.04 590.26 1.01

theta[2,2] 0.93 0.00 0.00 0.92 0.92 0.93 0.93 0.93 674.52 1.00

theta[2,3] 0.04 0.00 0.00 0.04 0.04 0.04 0.04 0.05 950.42 1.00

theta[3,1] 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 640.78 1.00

theta[3,2] 0.03 0.00 0.00 0.02 0.03 0.03 0.03 0.03 987.44 1.00

theta[3,3] 0.97 0.00 0.00 0.96 0.96 0.97 0.97 0.97 994.39 1.00

shape[1] 0.04 0.00 0.00 0.04 0.04 0.04 0.04 0.04 739.18 1.00

shape[2] 8.98 0.00 0.13 8.75 8.89 8.99 9.07 9.22 1276.52 1.00

shape[3] 100.19 0.02 1.03 98.24 99.47 100.21 100.93 102.12 1728.26 1.00

rate[1] 4.09 0.02 0.35 3.40 3.86 4.08 4.32 4.78 366.51 1.00

rate[2] 29.79 0.01 0.45 28.94 29.49 29.78 30.10 30.65 1555.21 1.00

rate[3] 100.25 0.02 1.03 98.31 99.52 100.26 100.99 102.14 1698.80 1.00

loc[1] 2.80 0.00 0.00 2.79 2.80 2.80 2.81 2.81 1248.16 1.00

loc[2] 3.01 0.00 0.01 2.98 3.00 3.01 3.02 3.04 1187.95 1.00

loc[3] -0.01 0.00 0.01 -0.03 -0.01 -0.00 0.00 0.02 912.60 1.00

kappa[1] 9.37 0.01 0.17 9.05 9.26 9.37 9.49 9.71 368.75 1.00

kappa[2] 1.00 0.00 0.02 0.97 0.99 1.00 1.01 1.04 1085.28 1.00

kappa[3] 1.00 0.00 0.01 0.98 0.99 1.00 1.01 1.02 1078.21 1.00

lp 86124.37 0.17 3.02 86117.65 86122.57 86124.76 86126.55 86129.18 299.61 1.00
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Table 4.4 HMC Posterior Draws for Model 2. Values for the marginal means and chosen

quantiles are reported, along with the effective number of samples, neff , and

value of R̂.

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat

mu[1] 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 550.76 1.00

mu[2] 0.30 0.00 0.00 0.30 0.30 0.30 0.30 0.30 901.83 1.00

mu[3] 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 833.56 1.00

sigma[1] 0.05 0.00 0.00 0.04 0.05 0.05 0.05 0.06 539.89 1.00

sigma[2] 0.10 0.00 0.00 0.10 0.10 0.10 0.10 0.10 1160.49 1.00

sigma[3] 0.10 0.00 0.00 0.10 0.10 0.10 0.10 0.10 1283.41 1.00

xangle[1] -8.85 0.01 0.16 -9.16 -8.96 -8.85 -8.74 -8.56 789.04 1.00

xangle[2] -0.99 0.00 0.02 -1.02 -1.00 -0.99 -0.98 -0.96 1030.21 1.00

xangle[3] 1.00 0.00 0.01 0.97 0.99 1.00 1.01 1.02 1316.39 1.00

yangle[1] 3.12 0.00 0.07 2.99 3.07 3.12 3.16 3.25 733.29 1.00

yangle[2] 0.13 0.00 0.01 0.10 0.12 0.13 0.14 0.16 1097.43 1.00

yangle[3] -0.00 0.00 0.01 -0.02 -0.01 -0.00 0.00 0.02 1284.37 1.00

tau[1,1] -2.96 0.01 0.12 -3.22 -3.04 -2.96 -2.88 -2.73 591.36 1.00

tau[1,2] 0.09 0.01 0.20 -0.28 -0.05 0.09 0.22 0.50 667.55 1.00

tau[2,1] -3.28 0.01 0.14 -3.56 -3.38 -3.27 -3.18 -3.05 450.66 1.00

tau[2,2] 0.33 0.01 0.21 -0.08 0.18 0.32 0.46 0.73 445.70 1.00

tau[3,1] -3.52 0.01 0.12 -3.77 -3.60 -3.52 -3.45 -3.31 465.22 1.00

tau[3,2] 0.31 0.01 0.18 0.01 0.20 0.30 0.43 0.68 482.61 1.00

tau[4,1] -3.12 0.00 0.09 -3.32 -3.18 -3.12 -3.06 -2.95 558.70 1.00

tau[4,2] 0.06 0.01 0.15 -0.22 -0.04 0.06 0.16 0.34 474.60 1.00

tau[5,1] -4.65 0.01 0.15 -4.95 -4.74 -4.65 -4.55 -4.36 699.39 1.00

tau[5,2] -0.43 0.01 0.24 -0.88 -0.61 -0.45 -0.28 0.06 673.35 1.00

tau[6,1] -3.58 0.00 0.09 -3.76 -3.64 -3.57 -3.51 -3.41 372.68 1.00

tau[6,2] -0.01 0.01 0.15 -0.27 -0.11 -0.02 0.10 0.29 540.26 1.00

shape[1] 0.04 0.00 0.00 0.04 0.04 0.04 0.04 0.04 817.10 1.00

shape[2] 8.98 0.00 0.12 8.75 8.90 8.98 9.07 9.22 1043.06 1.00

shape[3] 100.23 0.03 1.00 98.26 99.55 100.26 100.90 102.13 1267.65 1.00

rate[1] 4.09 0.02 0.34 3.44 3.85 4.09 4.31 4.79 521.17 1.00

rate[2] 29.77 0.01 0.40 29.01 29.49 29.76 30.05 30.57 1116.43 1.00

rate[3] 100.29 0.03 1.00 98.32 99.59 100.32 100.97 102.18 1273.88 1.00

loc[1] 2.80 0.00 0.00 2.79 2.80 2.80 2.81 2.81 702.35 1.00

loc[2] 3.01 0.00 0.01 2.98 3.00 3.01 3.02 3.04 1087.51 1.00

loc[3] -0.00 0.00 0.01 -0.03 -0.01 -0.00 0.00 0.02 1288.14 1.00

kappa[1] 9.38 0.01 0.16 9.07 9.27 9.38 9.50 9.70 804.94 1.00

kappa[2] 1.00 0.00 0.02 0.97 0.99 1.00 1.01 1.03 1048.93 1.00

kappa[3] 1.00 0.00 0.01 0.97 0.99 1.00 1.01 1.02 1316.52 1.00

lp 86145.09 0.19 3.46 86137.81 86142.82 86145.46 86147.69 86150.71 320.02 1.00
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Table 4.5 HMC Posterior Draws for Model 3. Values for the marginal means and chosen

quantiles are reported, along with the effective number of samples, neff , and

value of R̂.

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat

mu[1] 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 443.25 1.01

mu[2] 0.30 0.00 0.00 0.30 0.30 0.30 0.30 0.30 1017.73 1.00

mu[3] 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 830.48 1.00

sigma[1] 0.05 0.00 0.00 0.04 0.05 0.05 0.05 0.06 447.24 1.01

sigma[2] 0.10 0.00 0.00 0.10 0.10 0.10 0.10 0.10 1354.08 1.00

sigma[3] 0.10 0.00 0.00 0.10 0.10 0.10 0.10 0.10 1862.89 1.00

xangle[1] -8.80 0.01 0.17 -9.16 -8.91 -8.80 -8.70 -8.44 625.67 1.00

xangle[2] -1.00 0.00 0.02 -1.03 -1.01 -1.00 -0.99 -0.97 938.66 1.00

xangle[3] 1.00 0.00 0.01 0.98 0.99 1.00 1.01 1.02 1015.53 1.00

yangle[1] 3.10 0.00 0.08 2.95 3.05 3.10 3.15 3.25 582.55 1.00

yangle[2] 0.13 0.00 0.01 0.10 0.12 0.13 0.14 0.16 1050.05 1.00

yangle[3] -0.01 0.00 0.01 -0.03 -0.01 -0.01 0.00 0.02 970.34 1.00

tau[1,1] -2.89 0.00 0.08 -3.04 -2.94 -2.88 -2.84 -2.74 688.31 1.00

tau[1,2] -0.03 0.00 0.09 -0.20 -0.09 -0.03 0.03 0.14 754.24 1.00

tau[2,1] -3.09 0.00 0.09 -3.27 -3.15 -3.09 -3.03 -2.92 677.90 1.00

tau[2,2] 0.01 0.00 0.09 -0.18 -0.06 0.01 0.07 0.19 711.33 1.00

tau[3,1] -3.32 0.00 0.07 -3.46 -3.37 -3.33 -3.28 -3.19 1036.34 1.00

tau[3,2] 0.01 0.00 0.09 -0.18 -0.05 0.01 0.07 0.17 917.51 1.00

tau[4,1] -3.10 0.00 0.07 -3.23 -3.15 -3.11 -3.06 -2.97 691.93 1.01

tau[4,2] 0.06 0.00 0.09 -0.12 -0.01 0.06 0.12 0.23 737.67 1.00

tau[5,1] -4.73 0.00 0.10 -4.92 -4.79 -4.73 -4.67 -4.54 594.73 1.00

tau[5,2] -0.12 0.00 0.09 -0.30 -0.19 -0.12 -0.06 0.05 838.57 1.00

tau[6,1] -3.57 0.00 0.07 -3.69 -3.61 -3.57 -3.52 -3.43 567.24 1.00

tau[6,2] -0.00 0.00 0.09 -0.18 -0.06 -0.00 0.05 0.15 508.54 1.00

shape[1] 0.04 0.00 0.00 0.04 0.04 0.04 0.04 0.04 822.55 1.00

shape[2] 8.99 0.00 0.13 8.76 8.91 9.00 9.08 9.25 1356.91 1.00

shape[3] 100.19 0.03 1.07 98.15 99.53 100.19 100.85 102.43 1755.62 1.00

rate[1] 4.08 0.02 0.32 3.52 3.86 4.06 4.30 4.72 455.91 1.01

rate[2] 29.78 0.01 0.44 28.94 29.48 29.78 30.09 30.65 1488.97 1.00

rate[3] 100.25 0.03 1.07 98.21 99.59 100.24 100.89 102.56 1802.72 1.00

loc[1] 2.80 0.00 0.00 2.79 2.80 2.80 2.81 2.81 1066.11 1.00

loc[2] 3.01 0.00 0.01 2.98 3.00 3.01 3.02 3.04 1069.50 1.00

loc[3] -0.01 0.00 0.01 -0.03 -0.01 -0.01 0.00 0.02 968.14 1.00

kappa[1] 9.33 0.01 0.18 8.95 9.22 9.33 9.45 9.70 603.23 1.00

kappa[2] 1.01 0.00 0.02 0.97 1.00 1.01 1.02 1.04 924.49 1.00

kappa[3] 1.00 0.00 0.01 0.98 0.99 1.00 1.01 1.02 1019.12 1.00

lp 84108.77 0.19 3.38 84101.40 84106.80 84109.18 84110.97 84114.60 331.27 1.00
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Table 4.6 HMC Posterior Draws for Model 4. Values for the marginal means and chosen

quantiles are reported, along with the effective number of samples, neff , and

value of R̂.

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat

mu[1] 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 522.82 1.00

mu[2] 0.30 0.00 0.00 0.30 0.30 0.30 0.30 0.30 834.55 1.01

mu[3] 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 646.76 1.00

sigma[1] 0.05 0.00 0.00 0.04 0.05 0.05 0.05 0.06 518.37 1.00

sigma[2] 0.10 0.00 0.00 0.10 0.10 0.10 0.10 0.10 1390.35 1.00

sigma[3] 0.10 0.00 0.00 0.10 0.10 0.10 0.10 0.10 1254.14 1.00

xangle[1] -8.85 0.01 0.16 -9.15 -8.96 -8.85 -8.73 -8.54 664.88 1.00

xangle[2] -0.99 0.00 0.02 -1.03 -1.00 -0.99 -0.98 -0.96 1262.31 1.00

xangle[3] 1.00 0.00 0.01 0.98 0.99 1.00 1.01 1.02 1107.80 1.00

yangle[1] 3.12 0.00 0.07 2.99 3.07 3.12 3.17 3.25 750.11 1.00

yangle[2] 0.13 0.00 0.01 0.11 0.12 0.13 0.14 0.16 1473.34 1.00

yangle[3] -0.01 0.00 0.01 -0.03 -0.01 -0.01 0.00 0.02 2057.65 1.00

tau[1,1] -2.85 0.01 0.15 -3.15 -2.95 -2.85 -2.75 -2.57 758.83 1.00

tau[1,2] -0.12 0.01 0.25 -0.57 -0.30 -0.12 0.06 0.39 823.32 1.00

tau[2,1] -3.17 0.01 0.17 -3.53 -3.27 -3.16 -3.06 -2.84 617.01 1.00

tau[2,2] 0.10 0.01 0.28 -0.44 -0.08 0.09 0.30 0.69 541.33 1.00

tau[3,1] -3.46 0.01 0.14 -3.72 -3.54 -3.46 -3.37 -3.20 491.13 1.00

tau[3,2] 0.19 0.01 0.22 -0.25 0.04 0.20 0.33 0.65 553.17 1.00

tau[4,1] -3.32 0.01 0.12 -3.58 -3.40 -3.31 -3.24 -3.09 492.44 1.00

tau[4,2] 0.41 0.01 0.20 0.02 0.27 0.41 0.54 0.83 501.56 1.00

tau[5,1] -4.44 0.01 0.19 -4.81 -4.57 -4.44 -4.31 -4.05 694.92 1.00

tau[5,2] -0.80 0.01 0.33 -1.43 -1.01 -0.80 -0.59 -0.16 650.73 1.00

tau[6,1] -3.64 0.01 0.12 -3.89 -3.72 -3.64 -3.57 -3.42 544.71 1.01

tau[6,2] 0.11 0.01 0.19 -0.26 -0.02 0.11 0.23 0.48 519.17 1.01

shape[1] 0.04 0.00 0.00 0.04 0.04 0.04 0.04 0.04 693.61 1.00

shape[2] 8.98 0.00 0.13 8.74 8.89 8.98 9.08 9.22 1066.62 1.00

shape[3] 100.15 0.03 1.01 98.20 99.48 100.17 100.83 102.10 1182.95 1.00

rate[1] 4.07 0.01 0.33 3.41 3.84 4.07 4.29 4.74 541.28 1.00

rate[2] 29.78 0.01 0.44 28.94 29.45 29.78 30.12 30.62 1239.01 1.00

rate[3] 100.21 0.03 1.01 98.31 99.51 100.22 100.87 102.13 1224.39 1.00

loc[1] 2.80 0.00 0.01 2.79 2.80 2.80 2.81 2.81 945.92 1.00

loc[2] 3.01 0.00 0.01 2.98 3.00 3.01 3.02 3.04 1497.23 1.00

loc[3] -0.01 0.00 0.01 -0.03 -0.01 -0.01 0.00 0.02 2081.04 1.00

kappa[1] 9.38 0.01 0.17 9.06 9.26 9.39 9.50 9.70 653.62 1.00

kappa[2] 1.00 0.00 0.02 0.97 0.99 1.00 1.01 1.03 1240.25 1.00

kappa[3] 1.00 0.00 0.01 0.98 0.99 1.00 1.01 1.02 1108.26 1.00

lp 86146.97 0.18 3.41 86139.88 86144.91 86147.23 86149.40 86153.04 342.31 1.01
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CHAPTER 5. FUTURE WORK SUMMARY AND DISCUSSION

There are two general motivations underlying this work, to extend the HMM framework to

capture a larger variety of biological processes, done in chapters 2 and 3, and to incorporate

physiological processes that are sparsely observed into the analysis of animal movement, done in

chapter 4. As both approaches presented in this dissertation are not common techniques applied

in the analysis of animal movement, there is much work left to be done to develop and refine their

implementation.

5.1 Multi-scale animal behavior

Extensive efforts have been made to develop methodological approaches that assist in connecting

the observed movement process to underlying behaviors (Zucchini et al., 2016; Patterson et al.,

2017; Hooten et al., 2017). Part of the challenge in the collection of data is to determine how

the temporal scale at which the data is collected connects to the animal’s behavior. Intuitively,

different behaviors will manifest themselves at different temporal scales.

HMMs are an appealing tool in the analysis of animal movement data as they provide a simplistic

representation of how the movement process is generated according to an underlying state process

(serving as a proxy for behaviors of interest). Part of the appeal is also due to the algorithms

available to evaluate the likelihood efficiently (the forward and forward-backward algorithm) and

the relative ease with which they can be fit (Zucchini et al., 2016). As the multi-scale HMMs

presented in chapters 2 and 3 can be written in the general form of a basic HMM, we are able

to retain the advantages that a basic HMM provides (via model fitting and evaluation) but its

structure allows for identification of a larger variety of behaviors than before.

Issues related to applying HMMs to animal movement data are exacerbated in the multi-scale

HMM framework. Connecting the temporal resolution at which the data are collected to behaviors
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of interest still presents a challenge, although the multi-scale HMM now allows for behaviors to

be identified via compositions of fine-scale movement patterns. However, as HMMs are stochastic

processes that can capture a large variety of patterns, application of multi-scale HMMs without

domain expertise and additional structure included in the model formulation may result in highly

multi-modal likelihoods and, subsequently, posterior distributions. Selecting the number of internal

states and the number of production states within an internal state should be done in a manner

that matches domain expertise, to some extent (Pohle et al., 2017).

Overall, this is a first step to matching the biological intuition that different behaviors manifest

themselves at not only different temporal scales, but can be represented as various compositions of

fine-scale discernible movements.

5.2 Physiology and Movement

Chapter 4 develops methodology that incorporates condition of an animal into the analysis of

animal movement using physiological equations. The motivation behind this work is to be able to

predict condition for inclusion in an HMM applied to animal movement data. As this is among the

first approaches that tackles this problem, the goal has not been to provide a complete framework

that applies to all systems, but rather one that is flexible, straightforward and provides clear

opportunities to expand and customize.

The HMM portion of this chapter only includes body fat percentage as a potential driver of the

fine scale movement process. In a full analysis, many other drivers would be included, like time

of day, proximity to different patches of food or season. Drivers can be included in the transition

probability matrix but also in the state-dependent process. Importantly, any customization of the

HMM to account for random effects or environmental drivers of behavior does not change the

manner in which predictions for condition are produced.

Future work in this area will incorporate more structure into the HMM applied to animal

movement data and also explore manners in which to incorporate other physiological processes like

hunger and fatigue as drivers of behavior, similar to the work presented in Hooten et al. (2019).
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