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ABSTRACT 

 

Research presented in this dissertation aims at enabling (correlated) fragmentation methods 

to explore biochemistry and catalysis effects of macrosystems at high levels of accuracy using 

exascale computing resources. The target is the second-order MollerPlesset perturbation theory 

(MP2), and MP2 in the FMO framework (FMO/MP2). First, the 2-electron integral bottleneck is 

addressed by using the resolution-of-the-identity (RI) approximation to reduce the memory 

storage and the computational cost of the integral transformation from the atomic orbital (AO) 

to the molecular orbital (MO) basis. The RI approximation is also combined with the singular 

value decomposition (SVD) to introduce a flexible compression factor that fully controls the 

accuracy of the integral compression. The RIMP2 energy and analytic energy gradient are 

implemented in the GAMESS electronic structure program and are parallelized with an efficient 

hybrid distributed/shared memory model with the support of the MPI and OpenMP APIs. Both 

the RI-MP2 energy and gradient are interfaced to the FMO framework for large system 

calculations. 
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CHAPTER 1. INTRODUCTION 

1.1 Studying objects 

Quantum mechanics (QM) can accurately predict molecular properties. However, except for 

very simple systems (e.g., particle in a box, harmonic oscillator, hydrogen atom), the Schrodinger 

equations of most molecular systems are solved with approximations and numerical tools. The 

computational costs grow rapidly with the problem size. In addition to the requirement of large 

floating-point operations, large ab initio problems also encounter high memory demands and 

communication overhead that introduce a degree of difficulty for efficient parallel code 

implementation. Systems of more than a hundred heavy atoms are, therefore, usually out of the 

reach of first principles methods. 

Recently developed fragmentation methods, particularly the fragment molecular orbital 

(FMO) methods,1–5 are feasible approaches to treat large molecular systems at the accuracy of 

the underlying (ab initio) methods. By taking advantage of the locality of macrosystems, 

fragmentation methods can (intuitively) partition large systems into small fragments, which can 

be processed essentially independently. The fragmentation can, in principle, eliminate a large 

part of redundant 2-electron integrals, reduce the dimension of matrix processing (e.g., matrix 

diagonalization) and enhance convergence of iterative equation solvers. The fragmentation 

methods also naturally facilitate parallel code implementation.6,7 Nevertheless, the 

computational cost of fragmentation methods with (e.g., dynamic) correlation effects included 

remains expensive; and the current FMO parallel code implementation is based on an inefficient 

distributed memory model.6,7  
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Our research presented in this dissertation, therefore, aims at enabling (correlated) 

fragmentation methods to explore biochemistry and catalysis effects of macrosystems at high 

levels of accuracy using exascale computing resources. The target is the second-order Moller-

Plesset perturbation theory (MP2), and MP2 in the FMO framework (FMO/MP2). First, the 2-

electron integral bottleneck is addressed by using the resolution-of-the-identity (RI) 

approximation to reduce the memory storage and the computational cost of the integral 

transformation from the atomic orbital (AO) to the molecular orbital (MO) basis. The RI 

approximation is also combined with the singular value decomposition (SVD) to introduce a 

flexible compression factor that fully controls the accuracy of the integral compression.8 The RI-

MP2 energy and analytic energy gradient are implemented in the GAMESS electronic structure 

program9 and are parallelized with an efficient hybrid distributed/shared memory model with 

the support of the MPI and OpenMP APIs. Both the RI-MP2 energy and gradient are interfaced 

to the FMO framework for large system calculations.  

The next step of the study is to explore physical and chemical properties of practical 

macrosystems, particularly heterogeneous catalysis based on mesoporous silica nanoparticles.10 

This includes optimizing the threaded FMO/RI-MP2 codes, and interfacing RI-MP2 to the 

advanced EFMO11,12 framework. The heavy computational demand will be processed by 

accelerators. 

1.2. Dissertation organization 

This dissertation is organized as follows.  

i) Chapter 1 introduces the general theory used in the later chapters.  
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ii) Chapter 2 presents the integral compressors including the RI and SVD-RI 

approximations applied to the MP2 correlation energy. 

iii) Chapter 3 presents a prototype study combining the FMO method, the RI 

approximation and the hybrid distributed/shared memory model for the MP2 

correlation energy. 

iv) Chapter 4 discusses the FMO/RI-MP2 analytic gradient implementation in GAMESS 

using the hybrid parallel model. 

v) Chapters 5 and 6 are applications of ab initio methods for graphene and a viewpoint 

on interpreting molecular properties in terms of molecular orbital concepts. 

vi) Chapter 7 is a brief conclusion and outlook for future development. 

1.3. Theoretical background 

1.3.1. Energy quantization and wave mechanics 

The ultraviolet catastrophe in the black body radiation problem led to Max Planck’s 

postulation in 1900 that the energy of oscillators is quantized. Five years later, by adapting the 

energy quantization idea, Albert Einstein treated light as a bundle of energy quanta (also called 

photons) and successfully explained the photoelectric effect. Since then light has been 

considered to exhibit both wave-like and particle-like character, a concept called wave-particle 

duality, which was extended to matter by Louis de Broglie in 1923. According to de Broglie, the 

motion of any particle is associated with a wavelength. While the theoretical wavelengths 

associated with the motion of most objects are negligible compared with their dimension, the 

wavelengths associated with micro-particles (e.g., electrons and nuclei in atoms and molecules) 

are relevant. The Germer-Davisson electron diffraction experiments [1923-1927] finally 
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confirmed de Broglie’s audacious conjecture. The motion of electrons and nuclei in atoms and/or 

molecules must be described by a wave function of space and time Ψ⃗⃗⃗ (𝑞, 𝑡), whose evolution 

follows the time-dependent equation13 postulated by Erwin Schrodinger in 1925 

   (1) 

   (2) 

In equation (1), 𝑖 is the imaginary unit, 𝑞 is a general spin-space spatial coordinate of all 

particles, and 𝑡 is the time variable. 𝐻̂ is the total energy (Hamiltonian) operator consisting of the 

kinetic energy operators describing motion of electrons 𝑇̂𝑒 and nuclei 𝑇̂𝑁; and the potential 

energy operators due to the nuclear-nuclear 𝑉̂𝑁𝑁, electron-nuclear 𝑉̂𝑒𝑁, and electron-electron 

𝑉̂𝑒𝑒 interactions. When the system is placed in a [static or time-dependent] force field, there can 

be additional terms to describe the external field 𝑉̂𝑒𝑥𝑡. This dissertation only addresses molecules 

in vacuum with no external field. Eq. (1) can be solved by factoring the time-dependent wave 

function into the spin-space Ψ(q) and the time 𝜓(t) functions that obey the equations 

   (3) 

   (4) 

Eq. (3) is called the time-independent Schrodinger equation, in which 𝐸 is interpreted as the 

total energy of the system, and Ψ(q) corresponds to the amplitude of a classical wave. This 

eigenvalue equation is thus also called the amplitude equation. However, unlike classical waves, 

due to the Heisenberg uncertainty principle,14 Ψ(q) does not represent the trajectory of 
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electrons and/or nuclei. The most popular interpretation (called the Born interpretation)15 of 

Ψ(q) is that its module Ψ∗(q)Ψ(q)𝑑𝑞 is the probability of finding a particle in the volume 𝑑𝑞. 

Since one can always find a particle when searching for the whole space, the wave function is 

normalized. 

 

  

dqY* q( )Y q( )
¥

òòò = 1  (5) 

In bound states of atoms and molecules, electrons and nuclei are trapped in their 

electrostatic potential. The normalization requires the corresponding wave functions to vanish 

at large distances. Such boundary conditions restrict the motions of particles inside atoms or 

molecules similar to a classical wave with fixed ends or surfaces that yield standing waves with 

only an integer number of wavelengths allowed. In a similar manner, in their bound states, atoms 

and molecules can only exist in discrete energy states called quantum states. This does not 

happen in scattering states when wave functions only need to be normalized. The wave 

treatment of electrons and nuclei in atoms and molecules, combined with the boundary 

conditions lead to the quantization of energy observed in classic experiments.  

1.3.2 Solving the amplitude equation 

Solving the amplitude equation for the spatial wave function Ψ(q) and the total energy is the 

central problem of quantum chemistry. Dirac noted16 “The fundamental laws necessary for the 

mathematical treatment of a large part of physics and the whole of chemistry are thus completely 

known, and the difficulty lies only in the fact that application of these laws leads to equations 

that are too complex to be solved”. Except for the simplest problems (e.g., particle in a box, 
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harmonic oscillator, hydrogen atom), the rest of the amplitude equations applied in chemistry 

are solved with approximations and numerical tools. 

An important approximation, the Born-Oppenheimer approximation,17 decouples the motion 

of heavy nuclei from electron motions. The electronic state of a molecule is represented by the 

electronic wave function Ψ𝑒𝑙𝑒𝑐(𝑞𝑒𝑙𝑒𝑐) that follows the electronic Schrodinger equation. 

   (6) 

   (7) 

   (8) 

The electronic Hamiltonian consists of 1-electron operators ℎ̂(𝑟) that describe the kinetic 

energy of electron motion and the electrostatic interaction between electrons and nuclei. There 

is also a 2-electron operator that describes the pairwise electrostatic interactions between 

electrons. This study only focuses on the electronic Schrodinger equation, so the subscript “𝑒𝑙𝑒𝑐” 

will be dropped. The electronic Schrodinger equation will also be called Schrodinger equation for 

brevity. Two popular approaches to solve the Schrodinger equation are the variational and many-

body perturbation theory methods. Our current research is restricted to stable closed-shell 

molecular systems. The solution of the Hartree-Fock (HF) equations,18 which is a popular 

application of the variational method, is usually a good starting point to describe the ground state 

of these systems. For more accurate results, the second-order Moller-Plesset (MP2) perturbation 

theory,19 which is a popular application of the many-body perturbation theory, can be carried 

out on top of the HF solution to improve the energy. 
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1.3.3 Hartree-Fock method 

Following the variational method procedure, the HF method is formulated in three steps. 

First, a guessed wave function is built with a set of variational parameters and constraints. The 

energy expectation value of the trial wave function is evaluated, followed by energy minimization 

under the initial constraints. The last step is usually carried out using the Lagrange multiplier 

method. Since an 𝑁-electron wave function must be normalized and antisymmetric, in the HF 

method, it is best approximated by a single Slater determinant20,21 Φ(𝑥1, 𝑥2, … , 𝑥𝑁), which is a 

determinant of 𝑁 orthonormal 1-electron spin-orbital functions {χ𝑝(𝑥)}.22 

   (9) 

A spin-orbital 𝜒𝑝(𝑥), also called a molecular orbital (MO), is a product of a spatial MO 𝜑𝑝(𝑟) 

and a spin function, which can be a spin up [α(ω)] or spin down [β(ω)] function. Both sets of 

spatial orbitals and spin functions are usually chosen to be orthonormal. 

 ( ) ( )
p q pqdr r r   =   (10) 

 
  

dwa w( )a w( )ò = dwb w( )b w( )ò = 1  (11) 

 
  

dwa w( )b w( )ò = 0   (12) 

In equation (10), δ𝑝𝑞 is the delta Kronecker. In the restricted treatment, a set of 𝐾 spatial 

MOs can be used to build a set of 2𝐾 spin-orbital by multiplying the spatial orbital with either 

spin up or a spin down function:23 
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 ( ) ( ) ( )
2 1p px r   − =   (13) 

 ( ) ( ) ( )
2 p px r   =   (14) 

A restricted Slater determinant with all spatial MOs doubly occupied by electrons is usually a 

good trial wave function for stable closed-shell molecular systems, which are the target in our 

current studies. The energy expectation of the restricted closed-shell Slater determinant can be 

obtained from the Slater-Condon rules:21,24 

    (15) 

In Eq. (15), occ stands for the occupied spatial MOs. The energy expectation includes the 1-

electron integrals ℎ𝑘𝑘 that describe the kinetic energy of the electrons and their electrostatic 

interaction with the nuclei. The one-electron integrals are formulated in terms of the 1-electron 

operator defined in Eq. (8) and the spatial MOs as follows: 

   (16) 

The 2-electron integrals include the electron-electron classical Coulomb electrostatic 

interaction (𝐽𝑘𝑘), and non-classical exchange interaction (𝐾𝑘𝑘). These integrals can generally be 

defined in terms of Coulomb 𝐽(𝑟) and exchange 𝐾̂(𝑟) operators and spatial MOs as follows 

 

   (17) 

   (18) 
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Using the Lagrange multiplier method, the energy expectation can be minimized with the MO 

orthonormality constraint that leads to a pseudo-eigenvalue equation of the Fock operator 

   (19) 

The Fock operator 𝑓(𝑟) consists of the 1-electron operator ℎ̂(𝑟) defined in Eq. (8), the 

Coulomb 𝐽(𝑟) and exchange 𝐾̂(𝑟) operators in Eqs. (17) and (18). 

   (20) 

 Since the energy expectation is invariant to a unitary transformation, the MO basis can be 

rotated so that the Lagrange multiplier ε𝑝𝑞 becomes a diagonal matrix: 

   (21) 

The HF equation is usually solved numerically by expanding the MO 𝜑𝑝(𝑟) as a linear 

combination of atomic orbital (LCAO) basis functions {𝜙𝜇(𝑟)}.
25  

 

 

j
p

r( ) = f
m

r( )C
m p

m

AO

å   (22) 

The AO basis functions can be Slater-type functions26 𝑓(𝑟) × 𝑒−α𝑟 or Gaussian-type 

functions27 𝑓(𝑟) × 𝑒−α𝑟2
, which are pre-built and tabulated for most chemical elements. 

Therefore, the energy is minimized in the LCAO coefficient space {𝐶𝜇𝑝}. In the AO grid, the HF 

equation is converted into the Roothaan matrix equations28 

 FC SCE=   (23) 
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The Fock 𝐹μν and overlap 𝑆μν matrix elements are defined in Eqs. (24) and (28). The Fock 

matrix itself is a function of the LCAO coefficients; therefore, Eq. (23) has to be solved iteratively 

until the density matrix 𝐷μν in Eq. (27) is self-consistent.  

 ( )
1

|
2

F H D D   


 
 

= + −  
   (24) 

   (25) 

 
  
mn | ls( ) = dr

1
dr

2
f

m

* r
1( )fn

r
1( )r

12

-1f
l

* r
2( )fs

r
2( )òò   (26) 

 2
occ

k k

k

D C C  =    (27) 

 ( ) ( )S dr r r   =    (28) 

Since the set of AO basis functions is not orthogonal (e.g., the overlap matrix 𝑆 is not the 

identity matrix), the Roothaan equation is again a pseudo-eigenvalue equation. The first step to 

solve this equation is to rotate the AO basis to an orthonormal basis; i.e., finding a transformation 

matrix 𝑋 so that the similarity transformation of the overlap matrix 𝑆 makes an identity matrix. 

 =†X SX I   (29) 

The Fock matrix and the LCAO vector matrix can subsequently be transformed as follows 

   (30) 

   (31) 
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The Roothaan equations become a matrix eigenvalue equation (Eq. (32)), which can be solved 

by diagonalizing the transformed Fock matrix 𝐹̃ for the eigenvector 𝐶̃ and eigenvalue matrix 𝐸. 

The LCAO coefficient matrix 𝐶 can be obtained from Eq. (30). 

   (32) 

Finally, in terms of the AO basis and density matrix, the RHF energy expectation is given by 

 ( )
1 1

|
2 2

AO AO

E H D D D D D     
 

 
 

= + − 
 

    (33) 

1.3.4 The second-order Moller-Plesset perturbation theory 

Perturbation theory is a mathematical technique that solves an equation for a complex 

system in terms of a simple one. In quantum chemistry, perturbation theory starts with a simple 

reference (zeroth order) Hamiltonian 𝐻̂(0), whose solution is known. When the difference  

between the reference Hamiltonian 𝐻̂(0) and the full Hamiltonian 𝐻̂ is small, it is called a 

perturbation. The solution correction, which is difference between the reference solution and 

the exact solution, can be calculated in terms of the perturbation   and the reference solutions.  

1.3.4.1 Rayleigh-Schrodinger Perturbation theory 

In the general perturbation treatment for the Schrodinger equation,29 the Hamiltonian 𝐻̂ is 

split into the reference Hamiltonian operator 𝐻̂(0) and the perturbation  

 ( )0
H H = +   (34) 
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The parameter λ is set to 0 (off) or 1 (on). The eigenvalue equation of the reference 

Hamiltonian 𝐻̂(0) is solvable, thereby providing a complete set of orthonormal eigenfunctions 

{Ψ𝑖
(0)

} and the corresponding eigenvalues {𝐸𝑖
(0)

}.  

 ( ) ( ) ( ) ( )0 0 0 0
H E =    (35) 

Solutions of the exact Hamiltonian 𝐻̂ can be expanded in terms of the reference solutions. 

For instance, the ith state of the eigenfunction and eigenvalue are given by 

 ( ) ( )0 mm

i i i

m




 =  +    (36) 

 ( ) ( )0 mm

i i i

m

E E E


= +    (37) 

Plugging Eqs. (34),(36) and (37) into the amplitude Eq. (6), and equating terms with the same 

order of λ gives the corrected energy to all desired orders. For instance, the 1st – 3rd order 

correction energies are given by:  

 ( ) ( ) ( )1 0 0

i i iE =     (38) 

 ( )

( ) ( )

( ) ( )

2
0 0

2

0 0

i n

i

n i i n

E
E E





 
=

−
   (39) 

 
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )

( ) ( )( )

2
0 00 0 0 0 0 0

3

20 0 0 0 0 0

i ni n n m m i i

i i

mn i n ii n i m i n

E E
E E E E E E

   

 

      
= −

− − −
    (40) 
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1.3.4.2 The second-order Moller-Plesset perturbation theory 

In practice, perturbation theory can be applied to the Hartree-Fock mean field approximation, 

the Moller-Plesset approach to perturbation theory.19 The reference Hamiltonian 𝐻̂(0) is defined 

as the shifted Fock operator 

   (41) 

The 𝐹̂ is the sum of the 1-electron Fock operators. 

   (42) 

The Φ(0) is the normalized ground state Slater determinant wave function obtained from 

solving the Hartree-Fock equations (Eqs. (21)). Therefore, for the restricted closed-shell 

treatment, the expectation of 𝐹̂ is the sum of MO energy, and that of the exact Hamiltonian 𝐻̂ is 

the HF energy (see Eq. (15)): 

   (43) 

   (44) 

With the reference Hamiltonian defined in Eq. (41), the perturbation operator is 

   (45) 

Using Eq. (38), (43) and (45), the first-order energy correction is zero: 

   (46) 
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Using Eq. (39), the second-order energy correction is  

 
( )

( ) ( )

( )

2
0 0

2

0
0

n

HF
n n

E
E E





 
=

−
   (47) 

The Φ𝑛
(0)

 are excitation determinants obtained by exchanging occupied MOs in Φ(0) with 

virtual MOs. For instance, exchanging one occupied MO with one virtual MO introduces the singly 

excitation determinant; exchanging a pair of occupied MOs with a pair of virtual MOs gives 

doubly excitation MOs.  

According to the Brillouin theorem, the cross term in the numerators of Eq. (47) due to the 

coupling with singly excitation determinant is zero. Using the Slater-Condon’s rule, only terms 

with doubly excitation Slater determinant are non-zero. After some algebra, the second-order 

Moller-Plesset (MP2) energy correction can be formulated in terms of 4-2ERIs in the MO basis as 

follows: 

 ( ) ( )2
| 2

occ virt
ij ij

ab ba

ij ab

E ia jb t t = −    (48) 

 
( )|ij

ab

i j a b

ia jb
t

   
=

+ − −
  (49) 

1.3.5 Fragment molecular orbital method 

As illustrated for the HF and MP2 methods, the main computational demands in ab initio 

electronic structure calculations are usually i) the evaluation and storage of two-electron 

integrals; ii) diagonalization of the Fock matrix; iii) transforming the integrals from the AO to the 

MO basis. The HF and MP2 computational costs scale as 𝑂(𝑁4−5), in which 𝑁 measures the size 
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of the system, e.g., the number of atoms or the number of the AO basis functions. The 

computational cost (and memory demand) can be huge for macromolecular systems. 

Many methods have been developed to treat macromolecules efficiently. One approach is to 

design small prototype systems to mimic active areas of macromolecules. However, such models 

usually omit long-range interactions and 3-D effects, such as stereochemistry, that can be critical 

in macrosystems. In a second approach, the surroundings around the active sites are included 

but treated at lower level of theory than the active site. For instance, the active sites might be 

treated with quantum mechanics (QM) while molecular mechanics (MM) is used for the 

environment. A third approach is to combine QM at high level of theory for active sites, and QM 

at lower level of theory for the surroundings.  

Another class of methods designed to greatly expand the sizes of accessible systems is based 

on partitioning the system into fragments. Examples include the effective fragment potential 

(EFP) method,30 the fragment molecular orbital (FMO) method,1–5 and the effective fragment 

molecular orbital (EFMO) method.11,12 The FMO and EFMO methods have been shown to scale 

linearly while preserving the accuracy of the underlying ab initio method. Since the gradient of 

the EFMO charge transfer term in EFMO is still being developed, research in this dissertation 

mainly focuses on the FMO method. 

Since the Coulomb interaction is long-range while exchange is a short-range interaction, in 

the FMO method, the ab initio calculation for each fragment (monomer) is only embedded in the 

Coulomb electrostatic potential due to the electron density and nuclei of all other fragments. The 

other fragment-fragment interactions (e.g., exchange, charge transfer, induction) are 

subsequently accounted for by a many-body expansion method that requires calculations for 
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pairs (dimers) or triples (trimers) of fragments. The FMO energy with 2-body corrections, for 

instance, is given by: 

 ( )
,

I IJ I J

I IJ J I

E E E E E


= + − −    (50) 

The FMO calculation is started by solving the Hartree-Fock equation for monomers in the ESP 

of the other monomers. The monomer calculations are repeated until the densities of all 

monomers are converged. In the second stage of the calculations, dimers and/or trimers are 

embedded in fixed electrostatic fields of the converged monomers. The charge distribution of 

dimers or trimers is, therefore, generally different from the corresponding charge distribution of 

the monomers. Due to the monomer ESP, the Fock matrix of a fragment (𝑋) consists of an 

internal fragment component 𝐹̃𝑋 and an ESP term 𝐹̅𝑋. 

   (51) 

The internal Fock matrix element is formulated similarly to that of isolated molecules, 

including a 1-electron term 𝐻̃𝑋 that describes the kinetic energy of the electrons and the 

electrostatic interaction between electrons and nuclei; the 2-electron term includes the Coulomb 

𝐽𝑋  and exchange 𝐾̃𝑋 integrals: 

   (52) 

   (53) 

   (54) 
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In Eqs. (53) and (54), 𝑛𝑢𝑐𝑋 and 𝑜𝑐𝑐𝑋 are nuclei and occupied MOs of the fragment 𝑋, 

respectively. In addition to terms defined in Eqs. (52)-(54), additional terms must be added to the 

internal Fock matrix elements when the fragmentation breaks covalent bonds. In the hybrid 

orbital projection (HOP) treatment,3,31 the HOP contribution 𝑃𝑝𝑞
𝑋  to the Fock matrix is defined in 

Eq. (55) through the HOP operator 𝑃̂𝑋 in Eq. (56), in which 𝜃𝑘  is a hybrid orbital, and 𝐵𝑘 = 106−8 

is called the universal constant.3,31 

   (55) 

   (56) 

The ESP Fock matrix element 𝐹̅𝑝𝑞
𝑋  contains the Coulomb interactions between electrons in the 

fragment 𝑋 with nuclei, 𝑢̅𝑝𝑞
𝑋 , and the electron density 𝐽𝑝̅𝑞

𝑋  of all other fragments 

 
X X X

pq pq pqF u J= +   (57) 
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ø
÷   (58) 

 ( )2 |
occK

X

pq

K X k K

J pq kk
 

=     (59) 

In Eqs. (58) and (59), nucK and occK are the nuclei and occupied MOs of fragment 𝐾 ≠ 𝑋. 

Optimal MOs for fragment 𝑋 are obtained by solving the Roothaan equations for the Fock matrix. 

In the FMO method, the Roothaan equations are solved iteratively until the densities of all 

monomers are self-consistent. Dimer and trimer contributions are calculated once the monomer 

density has converged. Finally, the fragment energy is given by: 
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   (60) 

Since the FMO method partitions a molecule into small fragments, it naturally facilitates 

multi-level parallelization. In the first level of parallelization, the computing resources can be 

distributed among fragments. The second level of parallelization is within each fragment 

calculation. The serial part in multi-level parallelization is thus eliminated, thereby enhancing the 

scalability of the FMO method. In GAMESS,32 the multi-level parallelization is supported by the 

group distributed data interface (GDDI).6  

1.3.6. Integral compressor 

Memory storage and floating point operations for the transformation of 4-2ERIs from the AO 

to the MO basis in correlated methods (e.g., Eq. (48) in the MP2 method) is large. It is mandatory 

to reduce the dimension of the 4-2ERI matrix while retaining the accuracy of the calculations. In 

the early days of quantum chemistry, Ruedenberg,33 Newton,34 and Billingsley35 approximated 

the two-center overlap density distribution as the sum of the squares of a one-center density 

distribution. For instance, for the set of four AOs ϕμ, ϕν, ϕλ, ϕσ, the 2-center overlap charge 

distribution ϕμ
∗ϕν and ϕλ

∗ϕσ was expanded in terms of the squares of AOs and proportional 

factors 𝑄μν and 𝑄λσ as follows. 

 ( )* * *Q            +   (61) 

 ( )* * *Q            +   (62) 

The 4-2ERI was, therefore, approximated as a linear combination of 2-2ERIs 

 ( ) ( ) ( ) ( ) ( )| | | | |Q Q            + + +    (63) 
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Following these ideas, Whitten36 established rigorous mathematical theorems on the error 

bounds for 4-2ERI evaluated with approximate densities. These theorems enabled tools to 

optimize the auxiliary basis that spans the space of approximate density. Using these theorems, 

Dunlap37,38 and Almlöf39 presented different schemes to minimize the residual density, which is 

the difference between the approximate and exact densities, introducing at least three 

approximations called SVS, S and V. The V-type approximation was found to be the most accurate 

one for 4-2ERI evaluation because it is based on the minimization of the Coulomb integral of the 

residual density. 

The formulation of the V-type approximation starts with approximating the exact 2-center 

overlap density ρ(𝑟), which is the product of two AOs (Eq. (64)), by the approximate density ρ̃(𝑟) 

expanded in the auxiliary basis {α𝑃(𝑟)} (Eq. (65)). The residual density Δρ(r) is then defined as 

the difference between the approximate ρ̃(𝑟) and the exact density ρ(𝑟). 

 
 
r r( ) =f

m

* r( )f
n

r( )   (64) 

   (65) 

   (66) 

Minimizing the Coulomb integral of the residual density (Δ𝜌|𝑟12
−1|Δ𝜌) in terms of the 

expansion coefficient 𝐶𝑃 (eq. (65)), the 4-2ERI is optimally approximated by the product of 3-

2ERIs (μν|𝑃)  and 2-2ERIs 𝑉𝑃𝑄. 

   (67) 
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The inverse of the matrix 𝑉 can be decomposed and combined with the 3-2ERIs to form the 

3-index matrix 𝐵̃ that can be used to form 4-2ERIs on-the-fly 

 
  

V
PQ

-1 = W
PR

W
RQ

†

R

aux

å   (70) 

   (71) 

   (72) 

The matrix 𝐵̃ can also be transformed to the MO basis (Eq. (73)), which can be used to form 

4-2ERIs in the MO basis (Eq. (74)). As only two AO indices need transforming, this introduces the 

main computational savings of the RI approximation (e.g., in correlation methods that need 4-

2ERIs in the MO basis) 

   (73) 

 ( ) ,†|
aux

P P

pq rs

P

pq rs B B    (74) 

1.3.7 MO response 

1.3.7.1 Energy gradient 

Besides the energy expectation, responses of a system (e.g., energy changes) to an internal 

or an external stimulation are relevant. For instance, the first-order energy changes with respect 
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to the nuclear displacement   determines the force acting on the nuclei. This quantity is called 

the nuclear gradient or energy gradient, which is essential for probing the potential energy 

surface; e.g., locating stationary points, determining the evolution of the system in molecular 

dynamic simulation.  

In terms of the LCAO approximation, the energy is a function of 1- and 2-electron integrals in 

the AO basis, and of the LCAO coefficients. In the unperturbed state, e.g.,  = 0, denoted by the 

superscript (0), this can be represented as follows. 

 
  
E 0( )

= E 0( )
H

mn

0( )
; mn | ls( )

0( )
;C

m p

0( )( )   (75) 

In response to a perturbation (), the unperturbed energy 𝐸(0) becomes the perturbed 

energy 𝐸, which is a function of perturbed LCAO coefficients and integrals of perturbed AOs. 

   (76) 

In this section, LCAO coefficients and matrix elements without the superscript (0) imply the 

perturbed state. The energy of the perturbed system can be expanded about the unperturbed 

state using the Taylor’s series expansion  

 
  

E = E 0( )
+ z iEz i

i=1

¥

å   (77) 

 

The superscript i stands for the ith-order energy derivative with respect to . 
 

 
0
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E E
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

=

 
=  

 
  (78) 



22 

 

The first derivative of the energy of the perturbed system with respect to the nuclear 

displacement 𝐸 is the energy gradient. The energy gradient is apparently a function of the 

derivatives of LCAO coefficients 𝐶 and integrals in the AO basis in the perturbed state: 

 
  
Ez = Ez H

mn

z ; mn | ls( )
z

;Cz( )   (79) 

1.3.7.2 MO response 

Since the AO basis functions are explicit functions of the nuclear coordinates, the derivatives 

of the 1- and 2-electron integrals in the AO basis with respect to the nuclear displacement   are 

known. However, differentiating LCAO coefficients is less straightforward. The perturbed LCAO 

coefficients are usually transformed into the unperturbed ones using a transformation matrix 𝑈. 

 ( )0
C C U=   (80) 

When the perturbation is off, the transformation matrix is simply an identity matrix 𝐼.  

 0U I = =   (81) 

The derivative of the perturbed LCAO coefficient becomes the derivative of the 

transformation matrix 𝑈, which is called the MO response matrix 𝑈 

 ( )0
C C U =   (82) 

1.3.7.3 The orthonormality equation of MO response 

For the orthonormality choice of the MO basis, the overlap matrix in the MO basis is an 

identity matrix 𝐼 [for both unperturbed and perturbed states]; that is 

   C
0( ),†

SC
0( )

= I   (83) 
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   C
†SC = I   (84) 

Differentiating the perturbed MO overlap matrix gives 

 

  

¶

¶z
C†SC

æ

èç
ö

ø÷
z =0

= 0   (85) 

Using Eqs. (82) and (81), the derivative of the perturbed MO overlap matrix becomes 

   U
z ,†C

0( ),†
S 0( )

C 0( )
+ C

0( ),†
SzC 0( )

+ C
0( ),†

S 0( )
C 0( )

Uz = 0   (86) 

Using the MO orthonormality for unperturbed state (Eq. (83)), Eq. (86) is transformed into 

the well-known orthonormality condition for the MO response  

   U
z ,† + S

z( )
+Uz = 0   (87) 

The overlap matrix with the nuclear displacement in the parentheses () stands for the 

derivative of the overlap matrix in the AO basis and then transformed back to the MO basis 

 ( ) ( ) ( )0 ,† 0S C S C
 =   (88) 

1.3.7.4 Couple-perturbed Hartree-Fock equation 

Equations for the MO response can be established from the Roothaan equations for the 

perturbed state 

 FC SCE=   (89) 

Substituting perturbed LCAO coefficient matrix 𝐶 by the unperturbed LCAO coefficient matrix 

𝐶(0) (Eq. (80)) gives 

 ( ) ( )0 0
FC U SC UE=   (90) 
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Multiplying the two sides of equation (91) by the transpose of the unperturbed LCAO 

coefficient matrix 𝐶(0),† gives 

   (91) 

The bold letters stand for the transformed perturbed Fock and overlap matrices  

   (92) 

   (93) 

Each perturbed quantity, say , in Eq. (91) can be expanded using the Taylor expansion similar 

to energy expansion in Eq. (77): 

 
( )0 ii

i




 =  +    (94) 

 Collecting terms coupled with the first-order nuclear displacement introduces the couple-

perturbed Hartree-Fock (CPHF) equation.  

   (95) 

𝐸(0) is the diagonal matrix of the MO energy in the unperturbed state. 𝐸 is the diagonal 

matrix of MO energy derivatives in the perturbed state. The specific form of the CPHF equations 

depends on the form of the Fock matrix, which will be discussed in the next chapters.  
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