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ABSTRACT

We begin by presenting the crystal structure of finite-dimensional irreducible representations of

the special linear Lie algebra in terms of Gelfand-Zeitlin patterns. We then define a crystal structure

using the set of symplectic Zhelobenko patterns, parametrizing bases for finite-dimensional irre-

ducible representations of sp4. This is obtained by a bijection with Kashiwara-Nakashima tableaux

and the symplectic jeu de taquin of Sheats and Lecouvey. We offer some conjectures on the gen-

eralization of this structure to rank n as well as a bijection and crystal structure in certain special

cases.
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CHAPTER 1. GENERAL INTRODUCTION

The introduction of crystal bases in the 1990’s by Kashiwara ([11], [9], [10]) and Lusztig [18] was

a breakthrough in the representation theory of Lie algebras and quantum groups, structures that

have become ubiquitous in modern physics, algebra and geometry. A crystal basis is a combinatorial

object that can essentially be identified with the crystal graph it gives rise to. At the same time,

it is a basis for a highest-weight representation of a quantum group (as described, for instance, by

Hong and Kang in [8]), and its combinatorial structure is naturally compatible with everything one

could hope for: taking tensor products to build larger representations, studying branching rules to

understand the behavior of subgroups, and much more. Of particular interest is the fact that crystal

bases for all classical Lie groups can be thoroughly described in terms of Kashiwara-Nakashima

tableaux (KNT). This is perhaps not surprising, as the standard and semistandard Young tableaux

that they generalize have been used extensively in representation theory over the last century. A

fact that borders on miraculous is that beyond simply providing a nice basis for a representation

of a quantum group, one may define a product on tableaux using a tool called the jeu de taquin

(JDT) that coincides exactly with taking tensor products of the associated representations, and

which gives rise to a combinatorial structure called the plactic monoid that mirrors the notion of a

universal enveloping algebra.

It is well-known that semistandard Young tableaux (SSYT) are in bijection with Gelfand-Tsetlin

patterns (ΓЦ) ([7]), arrays of numbers that were introduced specifically to study branching rules

for the general linear Lie group but which have found many subsequent applications. Gelfand and

Tsetlin also constructed bases for irreducible representations of the orthogonal Lie algebra in [6].

A generalization of these patterns by Z̆elobenko ([22], [23]) (Z̆P) shed light on the representation

theory of the symplectic Lie algebra, and they were used to provide formulas for the structure

constants of algebras related to rational solutions of the Yang-Baxter equation, as Molev describes
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in [19]. We therefore have two different combinatorial descriptions of the same algebraic objects,

one in terms of tableaux and the other in terms of patterns.

If we fix a finite-dimensional complex semisimple Lie algebra g and we let U(g) be its universal

enveloping algebra, then its quantized universal enveloping algebra Uq(g) is a Hopf algebra whose

structure tends toward U(g) when q approaches 1. This object is also called a quantum group.

The category Oint is the category whose objects are weight modules over g with certain interesting

properties and whose morphisms are g-module homomorphisms. In particular, these weight modules

admit decompositions into direct sums of irreducible highest weight modules and, as such, not only

is the category Oint closed under finite tensor products, such products are completely reducible. Not

too surprisingly, we may analogously define the category O
q
int of weight modules over Uq(g) with

similarly nice properties.

As Lusztig showed in [17], the g-modules in Oint can be deformed into Uq(g)-modules in O
q
int in

such a fashion that the dimensions of their weight spaces are invariant under the deformation. In

other words, to understand the representation theory of our quantum group Uq(g), we need only

understand the representation theory of our Lie algebra g, a well-studied topic indeed for the sort

of Lie algebra under discussion. It is especially convenient given that our combinatorial tools are

as nice and as powerful as they are: through this winding path of equivalencies, we may summarize

the situation by saying that to understand the representation theory of quantum groups, we need

only understand the combinatorics of SSYT and KNT, or of ΓЦ and Z̆P.

Another long-running undercurrent to this area of study comes from a more purely combina-

torial perspective. When the utility of applying Young tableaux to problems in representation

theory became clear, many more generalizations were made than those discussed above. The era

of computers accelerated the growth of interest in this area, and today there are robust communi-

ties of mathematicians whose work is focused on coding efficient representations (in the colloquial

sense) of these structures, often in Python and Sage, so that these may then be used to attack

problems in algebra, combinatorics, geometry and beyond. With a high level of research output

surrounding tableaux and tableau-like structures, an active sub-discipline is the effort to identify
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when two seemingly-different types of structure are in fact equivalent. As described by Sheats in

[20], these enumeration problems can frequently be difficult, but they can also illuminate surprising

connections between areas of mathematics that appeared to have little in common. In that paper,

Sheats gives an algorithm called the symplectic jeu de taquin (SJDT) that he defines on De Concini

tableaux ([4]) in order to prove a bijection between those and another formulation known as King

tableaux ([12]), which have been shown to be equivalent to KNT ([13]). Moreover, his bijection

preserves weights when the tableaux are viewed in the representation theoretic light. In [15] and

[16], Lecouvey translates the Sheats SJDT to the KNT setting and describes plactic monoids for

types B, C and D, thus greatly clarifying the combinatorial story for quantum groups.

Given how well-understood KNT are and how useful Z̆P have proven to be in several active

areas of inquiry, some natural questions suggest themselves:

Question 1.0.1. Is there a weight-preserving bijection between KNT and Z̆P? If so, can it be

formulated in a way that resembles the type A bijection?

In this thesis, we have partially resolved these questions in the symplectic case:

Theorem 1.0.2. There exists a combinatorial algorithm which provides a weight-preserving bijection

between Kashiwara-Nakashima tableaux and Z̆elobenko patterns for type C2. Additionally, a weight-

preserving bijection may be given in the special case of what are called hook tableaux in type Cn.

Moreover, these bijections involve deletion algorithms just as in type A.

This theorem is proved in chapter 3. Given a KNT, T , this process will return a Z̆P, Γ, of the

same weight, or vice versa. Determining this algorithm involved the application of the symplectic

jeu de taquin of Sheats and Lecouvey, a process wherein a skew tableau (that is, a tableau with

holes in it) may be rendered non-skew by repeated “sliding moves” on its boxes.

Since Kashiwara and Nakashima showed that KNT can be endowed with a crystal structure

[10], it follows that through this bijection we may give a crystal structure on Z̆elobenko patterns in

these restricted cases. It would be desirable for a variety of reasons to be able to give this structure

on the collection of patterns in and of itself, not least because this would more clearly illuminate

the combinatorial picture on the pattern side. This suggests the following question:
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Question 1.0.3. Can a crystal structure be given on Z̆P independently of their relationship with

KNT?

1 2 2 1

2 1
←→

ß
4 2
3 0
1
0

™
Figure 1.1: A Kashiwara-

Nakashima tableau with asso-

ciated Z̆elobenko pattern.

Having investigated this fairly extensively, we conjecture the an-

swer to be affirmative. Our initial approach to this problem involved

column patterns, a substructure of a Z̆P that we defined in paral-

lel to descriptions of the crystal structure on tableaux that involve

breaking them into products of columns, a process known as column

reading. We also give formulae for the crystal operators in the case

of row patterns, a special case of hook patterns, and conjecture that

something similar may be achieved for hook patterns in general.

With that question in mind, it also seemed logical to ask the same question in the type A case:

Question 1.0.4. Can a crystal structure be given on Gelfand-Tsetlin patterns independently of the

SSYT-ΓЦ bijection?

The answer, we discovered, is affirmative:

Theorem 1.0.5. The crystal structure on Gelfand-Tsetlin patterns of type An can be explicitly

computed based solely on pattern entries.

This statement is proved by offering formulas for the five functions necessary to form a crystal

basis given a Cartan datum: the raising and lowering operators, the string length operators, and

the weight function. One advantage of this approach when compared to crystals of tableaux is

that, while these formulae are recursive, they may at least be calculated based on the pattern itself

without the need to apply a row- or column-reading function, and then further apply the signature

rule to the result.

Something particularly interesting about this result is that the formulae for the crystal operators

must be given in terms of sums, differences and maxima (or minima) of pattern entries. This is

suggestive of some connection to tropical mathematics, which is well-known to have deep connections

to crystal basis theory [3]. The formulae in the type A case exhibit this behavior, but as we will
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discuss in chapter 3, in the type C case especially the complexity of the expressions is very suggestive

of the following question:

Question 1.0.6. What is the relationship between the crystal structure on patterns and tropical

mathematics?

With the crystal structure of patterns complete in the general linear case and underway in the

symplectic case, future work could also include the investigation of the orthogonal case. This has

the potential to be the most difficult setting of the three, but resolving all of them would give

crystals of patterns for the Lie algebras of each of the infinite families of classical groups.



6

CHAPTER 2. DEFINITIONS

2.1 Combinatorial definitions

2.1.1 Partitions and Young diagrams

For a fixed integer N ≥ 0, a partition of N is a sequence λ = (λ1, λ2, . . . ) of integers λi such

that λ1 ≥ λ2 ≥ · · · ≥ 0 and |λ| := Σi≥1λi = N . The length of a partition λ, `(λ), is equal to the

highest index i for which λi > 0. For 1 ≤ i ≤ `(λ), the λi are called the parts of λ. Let P(N) be

the set of partitions of N and put P =
⋃∞
N=0 P(N).

If λ is a partition of N , the Young diagram YD(λ) is a left-justified collection of boxes where

the ith row has λi boxes. The shape of a Young diagram is its partition λ. A tableau is a Young

diagram whose boxes are filled with elements from an alphabet.

YD((3, 2, 2, 1)) =

A subdiagram is a Young diagram YD(λ′) that is contained in Young diagram YD(λ). A skew

diagram YD(λ/λ′) is the diagram obtained by subtracting a subdiagram λ′ from λ.

YD((4, 2, 2, 1)/(2, 2)) =

2.1.2 Semistandard Young tableaux

A semistandard Young tableau (SSYT) of shape λ and rank n− 1 is a tableau of shape λ where

the boxes are filled with entries from the alphabet is [n] = {1, 2, . . . , n} so that each row is weakly
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increasing from left to right and each column is strictly increasing from top to bottom.

T = 1 1 3

2 3

3 4

4

Let SSYT(n, λ) denote the set of SSYT of rank n and shape λ.

The weight of a SSYT T is given by

wt(T ) = k1e1 + · · ·+ knen,

where the ei are the standard basis vectors in Rn and ki is equal to the number of occurrences of

the symbol i in T .

2.1.3 Gelfand-Tsetlin patterns

Let n be a positive integer and λ be a partition with n or fewer parts. A Gelfand-Tsetlin pattern

[7] with n rows and top row λ is a triangular array of integers

Λ =



λ
(n)
1 λ

(n)
2 λ

(n)
3 · · · λ

(n)
n

λ
(n−1)
1 λ

(n−1)
2 · · · λ

(n−1)
n−1

λ
(n−2)
1 · · · λ

(n−2)
n−2

. . . . ..

λ
(1)
1


where

(i) λ(i)j ∈ Z≥0 for 1 ≤ j ≤ i ≤ n,

(ii) λ(i+1)
j ≥ λ(i)j ≥ λ

(i+1)
j+1 for 1 ≤ j ≤ i ≤ n− 1,

(iii) λ(n)i = λi for 1 ≤ i ≤ n.

Condition (ii) is known as the interleaving condition. By convention we set λ(i)j = 0 if not 1 ≤ j ≤

i ≤ n. Let ΓЦ(n, λ) denote the set of Gelfand-Tsetlin patterns with n rows and top row λ.
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The weight of a ΓЦ Λ is given by

wt(Λ) =

n∑
j=1

( j∑
k=1

λ
(j)
k −

j−1∑
k=1

λ
(j−1)
k

))
ej .

Given a ΓЦ Λ we define ∆
(i)
` (Λ) to be an array of the same shape as Λ consisting of a 1 in

position i` and zeroes everywhere else. Note that this is generally not a valid ΓЦ itself.

2.1.4 Bijection between tableaux and patterns

There is a well-known (see [3]) and natural bijection between SSYT(n, λ) and ΓЦ(n, λ). Given

a Gelfand-Tsetlin pattern Λ ∈ ΓЦ(n, λ), we obtain a tableau T = T(Λ) ∈ SSYT(n, λ) by inserting i

into the squares of the skew diagram YD(λ(i)/λ(i−1)), for i = 1, 2, . . . , n, where by convention λ(0) is

the empty partition. Conversely, given T ∈ SSYT(n, λ), we obtain a pattern Λ = T−1(T ) ∈ ΓЦ(n, λ)

as follows. Define the top row λ(n) of Λ to be the shape of T . That is, λ(n) = λ. Then, delete all

boxes from T containing the symbol n to obtain tableau T (n−1) and define the next row λ(n−1) of

Λ to be the shape of T (n−1). Continue in this fashion until all the boxes of T have been deleted.

Then all the rows of Λ have been specified.

Example 2.1.1.

1 1 2 3

2 3 3 4

3 4

4

→ 1 1 2 3

2 3 3

3

→ 1 1 2

2
→ 1 1

ß
4 4 2 1

™
−→

ß
4 4 2 1
4 3 1

™
−→

ß
4 4 2 1
4 3 1
3 1

™
−→

ß
4 4 2 1
4 3 1
3 1
2

™
2.1.5 Kashiwara-Nakashima tableaux

A Kashiwara-Nakashima tableau (KNT) of shape λ and rank n is a Young diagram T ∈ YD(λ)

filled with entries from the alphabet

ACn = {1 ≺ 2 ≺ · · · ≺ n− 1 ≺ n ≺ n ≺ n− 1 ≺ · · · ≺ 2 ≺ 1}

subject to the following additional constraints:
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(i) The entries are strictly increasing from top to bottom and weakly increasing from left to right.

(ii) If the letters i and i appear in the same column with i in the a-th box from the top and i in

the b-th box from the bottom, then a+ b ≤ i.

(iii) If T has two adjacent columns of either of the forms

...
...

i
...

...

j
...

...

j
...

...

i
...

...

,
...

...

i
...

...

j
...

...

j
...

...

i
...

...

,

where i ≤ j, then the vertical distances d1 from the boxes containing i to j and d2 from j to

i are such that d1 + d2 < j − i.

Note that KNT are technically a generalization of SSYT, and so the latter may be viewed as

examples of the former using the alphabet

AAn = {1, 2, . . . , n}

and its associated conditions. For clarity we will continue to refer to SSYT by their original name,

as it is typical to do so in the literature.

The weight of a KNT T is given by

wt(T ) = k1e1 + · · ·+ knen,

where the ei are the standard basis vectors in Rn and ki is equal to the number of occurrences of

the symbol i in T minus the number of occurrences of the symbol i.

Let KNT(n, λ) denote the set of KNT of rank n and shape λ, and let KNT(n) =
⋃
λ∈P KNT(n, λ).

Note that if λ has more than n parts, then KNT(n, λ) = ∅ due to conditions (i) and (ii). A tableau

satisfying the above conditions is called admissible (or, as in Lecouvey in [15], KN-admissible).
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Let C be a KNT column and let I = {z1 > · · · > zr} bet the set of unbarred letters z such that

the pair (z, z) exists in C. The column C can be split when there exists a set of r unbarred letters

j = {t1 > · · · > tr} ⊂ ACn such that:

1. t1 is the greatest letter of ACn satisfying t1 < z1, t1 /∈ C, and t1 /∈ C,

2. for i = 2, . . . , r, ti is the greatest letter of ACn satisfying ti < min(ti−1, zi), ti /∈ C, and ti /∈ C.

In this case we write:

1. rC for the column obtained by changing zi into ti for each letter zi ∈ I in C and reordering

if necessary to preserve the ordering of ACn ,

2. lC for the column obtained by changing zi into ti for each letter zi ∈ I in C and reordering if

necessary.

It is a proposition of Sheats in [20] that a column C is admissible if and only if it can be split. A

tableau may be put into split form by replacing each column C of the tableau with the appropriate

lC and rC. Lecouvey defines a skew admissible tableau as one in which the columns are admissible

and the columns of the split form are weakly increasing from left to right, which is equivalent to

the definition of KNT given above. Define spl(T ) to be the split form of T .

Example 2.1.2. Let C = 2467742. Then

I = {7, 4, 2}, J = {5, 3, 1}, lC = 1356742, rC = 2467531.

Wemay now define a coadmissible column C∗ to be the column obtained from splitting admissible

column C and then filling the shape of C with the unbarred letters from lC in increasing order

followed by the barred letters of rC in increasing order. Define Φ : C 7→ C∗ to be this map. Define

Φ : C 7→ C∗ to be the map sending an admissible column C to its coadmissible counterpart C∗. A

tableau T in which all columns are coadmissible is said to be in DC2 inadmissible form, with DC2

referring to the second distance condition.
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Example 2.1.3. With C = 2467742, we have C∗ = 1356531. Note that C∗ fails to meet the first

distance condition on column KNT with respect to 1, 3 and 5.

Given a T ∈ KNT(n), we define the quantity Ti(j) to be the number of symbols j occurring in

row i of T .

2.1.6 Z̆elobenko patterns

We define a type C Z̆elobenko pattern (Z̆P) of rank n associated with partition λ with n or fewer

parts as an array of non-negative integers of the form

Γ =



λ
(n)
1 λ

(n)
2 λ

(n)
3 · · · λ

(n)
n

λ
(n)′

1 λ
(n)′

2 λ
(n)′

3 · · · λ
(n)′
n

λ
(n−1)
1 λ

(n−1)
2 · · · λ

(n−1)
n−1

λ
(n−1)′
1 λ

(n−1)′
2 · · · λ

(n−1)′
n−1

λ
(n−2)
1 · · · λ

(n−2)
n−2

λ
(n−2)′
1 · · · λ

(n−2)′
n−2

· · · · · ·

· · · · · ·

λ
(1)
1

λ
(1)′

1


so that

(i) λ(i)j ∈ Z≥0

(ii) λ(i)j ≥ λ
(i)′

j ≥ λ(i)j+1

(iii) λ(i)
′

j ≥ λ(i−1)j ≥ λ(i)
′

j+1

(iv) λ(n)i = λi
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for all i, j. Properties (ii), (iii) are known as the interleaving conditions. Let Z̆P(n, λ) denote the

set of Z̆P of rank n associated with a partition λ.

The weight of a Z̆P is given by the above expression where we instead define the ki by

ki = 2(
∑
j

λ
(i)′

j )− (
∑
k

λ
(i)
k )− (

∑
`

λ
(i−1)
` ).

As before, given a Z̆P Γ we define ∆
(i)
` (Γ) to be an array of the same shape as Γ consisting of

a 1 in position i` and zeroes everywhere else, where an apostrophe is applied if appropriate. Note

that this is generally not a valid Z̆P itself.

2.1.7 Jeux de taquin

The jeu de taquin (the French name for the tile-sliding 15 puzzle) is an algorithm by which

skew or punctured semistandard tableau or admissible KNT may have its punctures removed

while preserving semistandardness or admissibility. The type A jeu de taquin was developed by

Schützenberger, and is equivalent to a row-bumping algorithm devised by Schützenberger and Las-

coux [14] for inserting boxes into semistandard tableaux. A good description of the JDT, the

bumping algorithm and many of their applications is given by Fulton in [5].

The type A algorithm is as follows. Let T be a semistandard tableau with one box containing

a ∗, called the puncture. Begin by comparing the entries of the boxes to the right of and below the

box containing ∗.

...
...

∗ a

b
...

...

If b ≤ a or a is not in T, switch ∗ with b. Otherwise, since b > a or b is not in the tableau,

switch ∗ with a. Repeat this process until ∗ occupies an outside corner of T , at which point it

may be removed from the tableau. Note that this will produce a semistandard skew tableau, or a

puncture-free SSYT, with one box fewer than before.
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Example 2.1.4.

1

7

∗ 1 2 4

2 2 4 6

4 5 5

7 7 8

→ 1

7

1 ∗ 2 4

2 2 4 6

4 5 5

7 7 8

→ 1

7

1 2 2 4

2 ∗ 4 6

4 5 5

7 7 8

→ 1

7

1 2 2 4

2 4 ∗ 6

4 5 5

7 7 8

→ 1

7

1 2 2 4

2 4 5 6

4 5 ∗
7 7 8

→ 1

7

1 2 2 4

2 4 5 6

4 5 8

7 7 ∗

→ 1

7

1 2 2 4

2 4 5 6

4 5 8

7 7

Definition 2.1.5. The symplectic jeu de taquin, or SJDT, is an analogous algorithm on skew or

punctured KNT, though its description is significantly more involved. This definition is as given by

Lecouvey in [15].

Let T be a punctured skew admissible tableau with adjacent columns C1 and C2, with C1

containing the puncture, ∗. To perform one step of the SJDT, we must first put T into split form,

like so:
. . . . . . . . . . . .

∗ ∗ b b′

a a′ . . . . . .

. . . . . .

Given T as above, an elementary step of the SJDT is performed as follows:

1. If a′ ≤ b or the double box b b′ is empty, then the double boxes a a′ and ∗ ∗ are permuted.

Unsplit the columns to obtain the new tableau.

2. If a′ > b or the double box a a′ is empty, then:
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(a) When b is a barred letter, b slides into rC1 to the box containing ∗ and D1 = Φ(C1) −

{∗}+ {b} is a co-admissible column. Simultaneously the symbol ∗ slides into lC2 to the

box containing b and C ′2 = C2 − {b} + {∗} is a punctured admissible column. Then we

obtain a new punctured skew admissible tableau C ′1C ′2 by setting C ′1 = Φ−1(D1).

(b) When b is an unbarred letter, b slides into rC1 to the box containing ∗ and gives a new

column C ′1 = C1 − {∗} + {b}. Simultaneously the symbol ∗ slides into lC2 to the box

containing b and D2 = Φ(C2)− {b}+ {∗} is a punctured coadmissible column. Then we

obtain a new punctured skew tableau C ′1C ′2 by setting C ′2 = Φ−1(D2).

Note that Φ and Φ−1 are defined on punctured columns by ignoring the puncture.

Repeating this process will eventually result in ∗ occupying an outer, and therefore removable,

corner of the resulting tableau. It is a theorem of Lecouvey that iterating this process results in an

admissible KNT, with several additional technical steps necessary to show it.

Example 2.1.6. For

T1 = 2 4

4 5

∗ 4

3 1

1

spl(T1) = 2 2 3 4

4 4 5 5

∗ ∗ 4 3

3 3 1 1

1 1

we are in case 2 (a) and

C ′1C
′
2 = 2 4

5 5

5 ∗
3 1

1

.

For

T2 = 2 2

3 3

∗ 5

5 5

1

spl(T2) = 2 2 2 2

3 3 3 3

∗ ∗ 4 5

5 5 5 4

1 1
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we are in case 2 (b) and

C ′1C
′
2 = 2 2

3 3

4 ∗
5 4

1

.

For

T3 = 4 ∗ 4

5 4 3

we obtain
4 4 ∗
5 4 3

.

In [15], Lecouvey provides an example of a full sequence of applications of the elementary step to

a KNT. This requires introducing the notion of a1-admissibility, which is essentially an embedding

of the alphabet ACn into a larger alphabet with the added symbols a1, a1.

2.1.8 Tropical polynomials

In [3], Bump and Schilling discuss the relationship between crystals and tropical mathematics,

a relatively new area of geometric combinatorics and algebraic number theory. A central object of

interest in this field is the tropical semi-ring T, defined to be the set R∪{−∞}, where the addition,

multiplication and division (denoted by ⊕,⊗ and �, respectively) are given by

x⊕ y = max{x, y}, x⊗ y = x+ y, x� y = x− y.

Subtraction is not defined. Many authors use x ⊕ y = min{x, y} instead, but x 7→ −x yields an

isomorphism between the two versions of the semi-ring. Note that 0 is the multiplicative identity,

and −∞ is the additive identity.

The reason the tropical semi-ring is important is that it gives a way to take a polynomial

or rational map and “tropicalize” it to a piecewise-linear map, for example f(x, y, z) = x+y
z 7→

max{x, y} − z. Now, starting from a piecewise-linear map f , we may attempt to find a polynomial

or rational map f ′ whose tropicalization is f . In the event that we can determine (not necessarily
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uniquely) such a map, we call f ′ a geometric lifting of f . The upshot of all of this is that in [1]

and [2], Berenstein and Kahzdan proved that crystal bases have geometric liftings which they call

geometric crystals, algebraic varieties with algebraic maps whose tropicalizations are the weight

map, the crystal operators and the Weyl group action.

Speyer and Sturmfels in [21] give an overview of tropical mathematics, from which we take the

following definition.

Definition 2.1.7. f(x1, . . . , xn) = max{a1(x1, . . . , xn), . . . , am(x1, . . . , xn)}, where ai(x1, . . . , xn) =

ci + ai1x1 + · · ·+ ainxn and ci, aij ∈ Z, is called a tropical (Laurent) polynomial (see [21]).

2.1.9 Example: Combinatorial properties of Kashiwara-Nakashima Tableaux

While initially experimenting with crystals of tableaux in Sage, we observed some interesting

sequences occurring in the dimensions of sequences of representations with similar shapes. While

many do not currently occur in the Online Encyclopedia of Integer Sequences, one particularly

simple one happened to, even though its description is rather obscure. We currently have no guess

as to what geometric connection may exist between the structures in question.

Example 2.1.8. For 1 ≤ n ≤ 40, |KNT(2, (n + 1, n))| is the number of tin cans needed (picture

the cans being cut and welded to one another such that four of them point out the vertices of a

tetrahedron, and then constructing larger tetrahedra by welding on more cans in the same config-

uration) to construct a tetrahedron with side length n, as seen at http://oeis.org/A210440. We

conjecture that this is true for all n.

2.2 Algebraic definitions

2.2.1 Quantum groups

These definitions are as in Hong and Kang [8]. A generalized Cartan matrix A = (aij) is a n×n

matrix with integral entries such that:

1. For diagonal entries, aii = 2,

http://oeis.org/A210440
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2. For non-diagonal entries, aij ≤ 0,

3. aij = 0 if and only if aji = 0,

4. A can be written as DS, where D is a diagonal matrix and S is a symmetric matrix.

Fix a finite-dimensional complex semisimple Lie algebra g with generalized Cartan matrix A

and a finite index set I. Let P∨ be a free abelian group of rank 2|I| − rank A with a Z-basis

{hi | i ∈ I} ∪ {ds | s = 1, . . . , |I| − rank A} and let h = C⊗Z P
∨ be the C-linear space spanned by

P∨. We call P∨ the dual weight lattice and h the Cartan subalgebra of g. We also define the weight

lattice to be

P = {λ ∈ h∗ | λ(P∨) ⊂ Z}.

Set Π∨ = {hi | i ∈ I} and choose linearly independent subset Π = {αi | i ∈ I} ⊂ h∗ satisfying

αj(hi) = aij , αj(ds) = 0 or 1 for i, j ∈ I, s = 1, . . . , |I| − rank A.

The elements of Π are called simple roots, and the elements of Π∨ are called simple coroots. We

also define the fundamental weights Λi ∈ h∗(i ∈ I) to be the linear functionals on h given by:

Λi(hj) = δij , Λi(ds) = 0 for j ∈ I, s = 1, . . . , |I| − rank A.

Definition 2.2.1. The quintuple (A,Π,Π∨, P, P∨) defined as above is said to form a Cartan datum

associated with the generalized Cartan matrix A = (aij)i,j∈I .

Definition 2.2.2. Fixing an indeterminate q, we define

[n]q =
∑

0≤i<n
qi = 1 + q + q2 + · · ·+ qn−1 =


1−qn
1−q for q 6= 1

n for q = 1

,

[n]q! = [1]q[2]q · · · [n]q,ñ
m

n

ô
q

=
[m]q!

[n]q![m− n]q!
.

These are respectively called the q-number, the q-factorial and the q-binomial coefficient.



18

Definition 2.2.3. Fixing an indeterminate q and a finite-dimensional complex semisimple Lie

algebra g, the quantum group or the quantized universal enveloping algebra Uq(g) associated with

a Cartan datum (A,Π,Π∨, P, P∨) is the associative algebra over C(q) with 1 generated by the

elements ei, fi(i ∈ I) and qh(h ∈ P∨) with the following defining relations:

1. q0 = 1, qhqh
′

= qh+h
′ for h, h′ ∈ P∨,

2. qheiq−h = qαi(h)ei for h ∈ P∨,

3. qhfiq−h = q−αi(h)fi for h ∈ P∨,

4. eifj − fjei = δij
Ki−K−1

i

qi−q−1
i

for i, j ∈ I,

5.
∑1−aij

k=0 (−1)k
[1−aij

k

]
qi
e
1−aij−k
i eje

k
i = 0 for i 6= j,

6.
∑1−aij

k=0 (−1)k
[1−aij

k

]
qi
f
1−aij−k
i fjf

k
i = 0 for i 6= j.

where qi = qsi , Ki = qsihi .

A Uq(g)-module V q is called a weight module if it admits a weight space decomposition

V q =
⊕
µ∈P

V q
µ , where V q

µ = {v ∈ V q | qhv = qµ(h)v for all h ∈ P∨}.

A vector v ∈ V q
µ is called a weight vector of weight µ. If eiv = 0 for all i ∈ I, it is called a

maximal vector. If V q
µ 6= 0, µ is called a weight of V q and V q

µ is the weight space attached to µ ∈ P .

Its dimension dimV q
µ is called the weight multiplicity of µ. We will denote by wt(V q) the set of

weights of the Uq(g)-module V q.

The category O
q
int consists of Uq(g)-modules V q satisfying the following conditions:

1. V q is a weight module and dimV q
λ <∞ for all λ ∈ P ,

2. there exist a finite number of elements λ1, . . . , λs ∈ P such that

wt(V q) ⊂ D(λ1) ∪ · · · ∪D(λs),

where D(λ) = {µ ∈ P | µ ≤ λ}, and
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3. all ei and fi (i ∈ I) are locally nilpotent on V q.

The morphisms are taken to be the ordinary Uq(g)-module homomorphisms.

2.2.2 Crystals

In this section we recall the definition of crystals, crystals morphisms and their tensor products.

Our main reference is [8].

Let X = (A, Π, Π∨, P, P∨) be a Cartan datum with finite index set I.

Definition 2.2.4. A crystal of type X is a non-empty set B together with maps

wt : B→ P,

ẽi, f̃i : B→ B t {0}, i ∈ I,

εi, ϕi : B→ Z t {−∞}, i ∈ I,

satisfying for all b, b′ ∈ B and i ∈ I:

(i) f̃i(b) = b′ if and only if b = ẽi(b
′), in which case

wt(b′) = wt(b)− αi, εi(b
′) = εi(b) + 1, ϕi(b

′) = ϕi(b)− 1

and we write

b
i−→ b′.

(ii) ϕi(b) = εi(b) + 〈wt(b), α∨i 〉. In particular, ϕi(b) = −∞ if and only if εi(b) = −∞.

(iii) If ϕi(b) = εi(b) = −∞, then ẽi(b) = f̃i(b) = 0.

The cardinality of B is the degree of the crystal, wt is called the weight map, ẽi and f̃i are called

Kashiwara or crystal operators, and ϕi and εi are called string length functions.

Definition 2.2.5. Take B as the set of vertices and define the I-colored arrows on B by

b
i−→ b′ if and only if f̃ib = b′(i ∈ I).

Then B is given an I-colored directed graph structure called the crystal graph of
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Definition 2.2.6. Let B1 and B2 be crystals of type X. A morphism Ψ : B1 → B2 is a map

Ψ : B1 t {0} → B2 t {0} such that Ψ(0) = 0 and for all b, b′ ∈ Ψ−1(B2) and i ∈ I:

(i) wt(Ψ(b)) = wt(b), εi(Ψ(b)) = εi(b), ϕi(Ψ(b)) = ϕi(b).

(ii) If b i−→ b′ then Ψ(b)
i−→ Ψ(b′).

If moreover Ψ is bijective as a function B1 t {0} → B2 t {0}, then Ψ is an isomorphism.

Definition 2.2.7. Let B1 and B2 be crystals of type X. The tensor product B1 ⊗ B2 is a crystal

of type X, defined to be the set B1 ×B2 with crystal structure given by

1. wt(b1 ⊗ b2) = wt(b1) + wt(b2),

2. εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− 〈wt(b1), α∨i 〉},

3. ϕi(b1 ⊗ b2) = max{ϕi(b2), ϕi(b1) + 〈wt(b2), α∨i 〉},

4. ẽi(b1 ⊗ b2) =


ẽi(b1)⊗ b2 if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽi(b2) if ϕi(b1) < εi(b2),

5. f̃i(b1 ⊗ b2) =


f̃i(b1)⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃i(b2) if ϕi(b1) ≤ εi(b2).

We denote an element (b1, b2) by b1 ⊗ b2 and we set b1 ⊗ 0 = 0⊗ b2 = 0.

2.2.3 Crystal structure on SSYT(n, λ)

We recall the crystal structure on semistandard Young tableaux. For details, see e.g. [8], [3].

Let n be a positive integer and λ be a partition of length at most n. Let T ∈ SSYT(n, λ). The far-

eastern reading of T , denoted FarEast(T ) is the |λ|-tuple of letters read off from T , reading columns

from right to left and each column top to bottom. The map FarEast : SSYT(n, λ)→ {1, 2, . . . , n}|λ|

is injective and we denote the inverse map by FarEast−1, defined on the image of FarEast.

For i ∈ {1, 2, . . . , n − 1}, the i-bracketing of a tuple of letters x = (x1, x2, . . . , x|λ|), denoted in

this paper by [x]i, is obtained by crossing out the right-most i having at least one i+ 1 to the right
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of it, in which case we also cross out the leftmost of those i + 1’s, and repeating this recursively

(ignoring crossed out entries) until (i, i+ 1) is not a subsequence. The crossed out i’s and (i+ 1)’s

in x are said to be (i-)bracketed. Any remaining i’s or (i+ 1)’s in x are (i-)unbracketed.

Definition 2.2.8 (Crystal structure on SSYT(n, λ), [8],[3]). Let n be a positive integer and λ a

partition with n or fewer parts. Let P = Zn with standard basis {ei}ni=1. For i ∈ {1, 2, . . . , n− 1}

and T ∈ SSYT(n, λ) define:

wt(T ) = N1(T )e1 +N2(T )e2 + · · ·+Nn(T )en, where Ni(T ) = #boxes in T containing i,

ϕi(T ) = number of i-unbracketed i’s in [FarEast(T )]i,

εi(T ) = number of i-unbracketed (i+ 1)’s in [FarEast(T )]i,

f̃i(T ) =


FarEast−1

(
change leftmost i in [FarEast(T )]i to i+ 1

)
, if ϕi(T ) > 0,

0, otherwise,

ẽi(T ) =


FarEast−1

(
change rightmost i+ 1 in [FarEast(T )]i to i

)
, if εi(T ) > 0,

0, otherwise.

Theorem 2.2.9 (see e.g. [8],[3]). Let n be a positive integer and λ be a partition with n or fewer

parts. The set SSYT(n, λ) equipped with the above maps wt, ϕi, εi, f̃i, ẽi constitutes a crystal of type

An−1.

Example 2.2.10. Let n = 4 and λ = (5, 2, 2) and consider

T = 1 2 2 2 3

3 3

4 4

Let us compute ϕ2(T ) and f̃2(T ). The far-eastern reading of T is

FarEast(T ) = (3, 2, 2, 2, 3, 4, 1, 3, 4).

To find the 2-bracketing of this, first cross out the rightmost 2 having a 3 somewhere to its right,

and also cross out the leftmost of those 3’s: (3, 2, 2, �A2, �A3, 4, 1, 3, 4). Repeating this step once more,
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ignoring crossed out entries, we obtain (3, 2, �A2, �A2, �A3, 4, 1, �A3, 4) at which point the 2-bracketing is

finished, as (2, 3) is not a subsequence anymore (ignoring crossed out entries). So

[(3, 2, 2, 2, 3, 4, 1, 3, 4)]2 = (3, 2, �A2, �A2, �A3, 4, 1, �A3, 4).

Now we can compute:

ϕ2(T ) = number of 2-unbracketed 2’s in (3, 2, �A2, �A2, �A3, 4, 1, �A3, 4) = 1

f̃2(T ) = FarEast−1
(
change rightmost 2 in (3, 2, �A2, �A2, �A3, 4, 1, �A3, 4) to 3

)
= FarEast−1

(
(3, 3, �A2, �A2, �A3, 4, 1, �A3, 4)

)
= 1 2 2 3 3

3 3

4 4

Note that when applying FarEast−1 we ignore the bracketing and preserve the shape of T .

Remark 2.2.11. The i-bracketing can be described directly on the tableaux T as follows. Go

through all the columns of T from left to right and do the following. If the column contains an i

and there is a thus-far-unbracketed i+1 in the same column, or in a column further to the left, then

cross out that i along with the rightmost of those i+1’s. Then ϕi(T ) is the number of i-unbracketed

i’s in T ; εi(T ) is the number of i-unbracketed i + 1’s in T ; f̃i(T ) is obtained from T by changing

the rightmost i-unbracketed i in T to i + 1; ẽi(T ) is obtained from T by changing the leftmost

i-unbracketed i+ 1 in T to i.

2.2.4 Crystal structure on KNT(n, λ)

The vector representation of Uq(sp2n) has crystal graph

1 1−→ 2 2−→ · · · r−1−→ r r−→ r r−1−→ · · · 2−→ 2 1−→ 1 .

A tableau C ∈ KNT(r, (1k)) is called a column of length k. Similarly, R ∈ KNT(r, (k)) is called

a row of length k. As Bump and Schilling describe in [3], for a Young diagram Y ∈ YD(λ) with
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N boxes we wish to define embeddings of KNT(r, λ) into B⊗N , where B is the crystal graph of the

vector representation. For a column C, we define a map C 7→ CR(C) by

i1

· · ·
ik

7→ i1 ⊗ · · · ⊗ ik .

Given T ∈ KNT(r, λ), the far-eastern reading of T is given by concatenating the columns of T ,

from right to left, put through the map CR. In other words, if we have

T = 1 2 2 1

2 3 1

3

∈ KNT(3, (4, 3, 1))

then

CR(T ) = CR(C4)⊗ CR(C3)⊗ CR(C2)⊗ CR(C1)

= 1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 3 .

The middle-eastern reading of a tableau T , in contrast, moves across the rows from right to left

and from top to bottom. Both of these readings can be used for the following rule, but we will

choose to apply the far-eastern reading.

The action of f̃i on a tableau T ∈ KNT(2, λ) may be described by what is called the signature

rule: if i = r, then we proceed analogously to type A. That is, symbols r in RR(T ) are decorated

with −’s and symbols r are decorated with +’s. Then, all instances of a + before a − are bracketed

together, starting with the rightmost unbracketed + and the leftmost unbracketed −. Then, once

no more such inversions remain, f̃r changes the leftmost unbracketed r to a r, unless none remain

in which case f̃r(T ) = 0.

If i < r, the rule is slightly more complicated. As in type A, symbols i+ 1 in RR(T ) are given

a − while symbols i are given a +. However, we also give a − to symbols i, while symbols i+ 1 are

marked with +. As in the previous case, we now bracket +’s to the left of −’s with those −’s until all

such pairs are accounted for. Then f̃i changes the symbol associated with the leftmost unbracketed

+ to i+ 1, if it was i, or to i, if it was i+ 1. If no unbracketed + remains, then f̃i(T ) = 0.
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The action of ẽi on T is simply the reverse of the above: the symbol bearing the rightmost

unbracketed − is changed to its counterpart featuring a + unless none remain. Note that ϕi(T ) is the

number of unbracketed +’s, εi(T ) is the number of unbracketed −’s and 〈wt(T ), α∨i 〉 = ϕi(T )−εi(T ),

as desired.

Example 2.2.12. Let T ∈ KNT(3, (3, 3)) be given by

T = 2 3 3

3 3 2
,

and so

CR(T ) = 3 ⊗ 2 ⊗ 3 ⊗ 3 ⊗ 2 ⊗ 3 .

Then, applying the signature rule, we have

f̃3(T ) = f̃3(
3 ⊗ 2 ⊗ 3 ⊗ 3 ⊗ 2 ⊗ 3 )

= f̃3(
3
+
⊗ 2 ⊗ 3

+
⊗ 3
−
⊗ 2 ⊗ 3

−
)

= f̃3(
3
+
⊗ 2 ⊗ 3

+
⊗ 3
−︸ ︷︷ ︸⊗ 2 ⊗ 3

−
)

= f̃3(
3
+
⊗ 2 ⊗ 3

+
⊗ 3
−︸ ︷︷ ︸⊗ 2 ⊗ 3

−︸ ︷︷ ︸
)

= 0.

Since T has no unbracketed +’s and no unbracketed −’s with respect to f̃3, ϕ3(T ) = 0 and

ε3(T ) = 0.

Example 2.2.13. Let T ∈ KNT(3, (3, 3)) be given by

T = 2 2 3

3 3 2
,

and so

RR(T ) = 3 ⊗ 2 ⊗ 2 ⊗ 3 ⊗ 2 ⊗ 3 .
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Then, applying the signature rule, we have

f̃2(T ) = f̃2(
3 ⊗ 2 ⊗ 2 ⊗ 3 ⊗ 2 ⊗ 3 )

= f̃2(
3
+
⊗ 2
−
⊗ 2

+
⊗ 3

+
⊗ 2

+
⊗ 3
−

)

= f̃2(
3
+
⊗ 2
−︸ ︷︷ ︸⊗ 2

+
⊗ 3

+
⊗ 2

+
⊗ 3
−

)

= f̃2(
3
+
⊗ 2
−︸ ︷︷ ︸⊗ 2

+
⊗ 3

+
⊗ 2

+
⊗ 3
−︸ ︷︷ ︸)

= 3 ⊗ 2 ⊗ 3 ⊗ 3 ⊗ 2 ⊗ 3

and so

f̃2(T ) = 2 3 3

3 3 2
.

Since T has two unbracketed +s and no unbracketed −s with respect to f̃2, ϕ2(T ) = 2 and

ε2(T ) = 0.
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CHAPTER 3. CRYSTAL STRUCTURE IN TYPE A

3.1 Introduction

In this chapter we give explicit formulae for the crystal operators on ΓЦ(n, λ) and prove that

these equip the set with a crystal basis structure. We then prove that the bijection between the

sets SSYT(n, λ) and ΓЦ(n, λ) is an isomorphism of crystals. The proofs rely heavily on the fact

that, by the nature of the bijection, we may obtain various useful combinatorial data by examining

certain sums and differences of pattern entries. Of central importance to the crystal isomorphism

is that i-bracketing is preserved by the map. Clearly it is needed to satisfy all of the appropriate

definitions, but it is moreover very much the engine at the heart of the machine that is a crystal

basis. The proof, therefore, is heavily focused on demonstrating that the combinatorial quantities

we introduce allow us to push i-bracketing through the bijection as required.

As we will discuss at the beginning of the next chapter, an unexpected but clear connection with

tropical mathematics arises when one attempts to give similar formulae for crystals of symplectic

patterns. The same is in fact true in type A, but much as the bijection between SSYT and ΓЦ

may be viewed as relying on an almost-trivial application of jeu de taquin whereas the bijection we

provide between KNT and Z̆P requires a significantly less trivial application of the more complex

SJDT, it seems perhaps not coincidental that the type A behavior should resemble a simpler version

of the type C behavior. In particular, it is easy to see both the string length operators and the

raising and lowering operators as involving relatively simple tropical polynomials of pattern entries.

While we do not offer any conjecture as to the significance of this connection, it seems plausible

that if one were to shed more light on it, this may alleviate some of the difficulty in attempting to

adapt the proof strategy below to type C.
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3.2 Crystal structure on Gelfand-Tsetlin patterns

In this section we prove the first main result of the paper. We equip the set of Gelfand-Tsetlin

patterns with explicit crystal data, and prove that this makes ΓЦ(n, λ) into a crystal of type An−1.

To define the crystal data we will need some notation.

λ
(i+1)
j λ

(i+1)
j+1

λ
(i)
j−1 λ

(i)
j λ

(i)
j+1

λ
(i−1)
j−1 λ

(i−1)
j

Figure 3.1: Part of a Gelfand-Tsetlin pattern

−λ(i+1)
j+1

↙ ↖
+λ

(i)
j +λ

(i)
j+1

↘ ↗
−λ(i−1)j

Figure 3.2a. a(i)j (Λ)

+λ
(i+1)
j

↗ ↘
−λ(i)j−1 −λ(i)j

↖ ↙
+λ

(i−1)
j−1

Figure 3.2b. b(i)j (Λ)

Figure 3.2: Computing diamond numbers in Gelfand-Tsetlin patterns

Let Λ ∈ ΓЦ(n, λ). We introduce the following diamond numbers, which are alternating sums

around a diamond shape in Λ starting at λ(i)j :

a
(i)
j (Λ) := λ

(i)
j − λ

(i−1)
j + λ

(i)
j+1 − λ

(i+1)
j+1 , 0 ≤ j ≤ i, (3.2.1a)

b
(i)
j (Λ) := −λ(i)j + λ

(i−1)
j−1 − λ

(i)
j−1 + λ

(i+1)
j , 1 ≤ j ≤ i+ 1, (3.2.1b)

where by convention λ(i)j = 0 if not 1 ≤ j ≤ i. Note that,

b
(i)
j (Λ) = −a(i)j−1(Λ), 1 ≤ j ≤ i+ 1, (3.2.2)

and, by the interleaving conditions,

a
(i)
0 (Λ) ≤ 0, b

(i)
i+1(Λ) ≤ 0. (3.2.3)
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For notational convenience we put

a
(i)
j (Λ) = 0 ∀j > i, b

(i)
j (Λ) = 0 ∀j > i+ 1. (3.2.4)

Next, define these diamond-sums:

A
(i)
j (Λ) :=

i∑
k=j

a
(i)
k (Λ), 0 ≤ j ≤ i, (3.2.5)

B
(i)
j (Λ) :=

j∑
k=1

b
(i)
k (Λ), 1 ≤ j ≤ i+ 1. (3.2.6)

Note that (3.2.3) imply

A
(i)
0 (Λ) ≤ A(i)

1 (Λ), B
(i)
i+1(Λ) ≤ B(i)

i (Λ). (3.2.7)

The following relation will be useful:

A
(i)
0 (Λ) = A

(i)
j (Λ)−B(i)

j (Λ) = −B(i)
i+1(Λ) ∀j ∈ {0, 1, . . . , i+ 1}. (3.2.8)

Remark 3.2.1. In [24] the authors give the formula for the iA-string datum, where iA is the reduced

long word (1, 2, 1, 3, 2, 1, . . . , n−1, n−2, . . . , 1). Converting their notation (their aij is our λ
(n+i−j)
i )

gives the formula

di,j(Λ) =

j−i∑
m=1

(λ(j)m − λ(j−1)m ), 1 ≤ i < j ≤ n. (3.2.9)
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Definition 3.2.2. Let P = Zn with standard basis {ei}ni=1. Put ωi =
∑i

j=1 ej . Define for any

Λ ∈ ΓЦ(n, λ) and i ∈ {1, 2, . . . , n− 1}:

wt(Λ) =
n∑
j=1

(( j∑
k=1

λ
(j)
k −

j−1∑
k=1

λ
(j−1)
k

))
ej (3.2.10)

= A
(1)
0 (Λ)ω1 +A

(2)
0 (Λ)ω2 + · · ·+A

(n)
0 (Λ)ωn;

= −
(
B

(1)
2 (Λ)ω1 +B

(2)
3 (Λ)ω2 + · · ·+B

(n)
n+1(Λ)ωn

)
;

ϕi(Λ) = max
{
A

(i)
1 (Λ), A

(i)
2 (Λ), . . . , A

(i)
i (Λ)

}
; (3.2.11)

εi(Λ) = max
{
B

(i)
1 (Λ), B

(i)
2 (Λ), . . . , B

(i)
i (Λ)

}
; (3.2.12)

f̃i(Λ) =


Λ−∆

(i)
` (Λ), if ϕi(Λ) > 0,

0, if ϕi(Λ) = 0,
(3.2.13)

where ` = max
{
j ∈ {1, 2, . . . , i} | A(i)

j (Λ) = ϕi(Λ)
}

;

ẽi(Λ) =


Λ + ∆

(i)
` (Λ), if εi(Λ) > 0,

0, if εi(Λ) = 0,
(3.2.14)

where ` = min
{
j ∈ {1, 2, . . . , i} | B(i)

j (Λ) = εi(Λ)
}
.

Theorem 3.2.3. Let n be any positive integer and λ be a partition with n or fewer parts. Then the

set ΓЦ(n, λ) of all Gelfand-Tsetlin patterns with n rows and top row λ, equipped with the crystal

data wt, f̃i, ẽi, ϕi, εi as above, is a crystal of type An−1.

Proof. Let i ∈ {1, 2, . . . , n−1} be arbitrary. First we show that if Λ ∈ ΓЦ(n, λ) is such that ϕi(Λ) >

0, then f̃i(Λ) is a valid Gelfand-Tsetlin pattern. Let ` = max{j ∈ {1, 2, . . . , i} | A(i)
j = ϕi(Λ)}. Then

by definition, f̃i(Λ) = Λ−∆
(i)
` (Λ) which has integer entries, the top row still equals λ (since i < n),
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and the interleaving conditions hold everywhere except possibly near the λ(i)` entry. More precisely,

we must show the following inequalities hold:

λ
(i+1)
` λ

(i+1)
`+1

≥ ≥

λ
(i)
` − 1

≥ ≥

λ
(i−1)
`−1 λ

(i−1)
`

(3.2.15)

We have that ϕi(Λ) = A
(i)
` (Λ) = a

(i)
` (Λ)+a

(i)
`+1(Λ)+· · ·+a(i)i (Λ). Note that a(i)` (Λ) > 0, otherwise

j = ` + 1 would satisfy A(i)
j (Λ) = ϕi(Λ) (we can’t have A(i)

`+1(Λ) > ϕi(Λ) by the definitions of ϕi

and `), contradicting maximality of `. Now, a(i)` > 0 is equivalent to

λ
(i)
` − λ

(i−1)
` + λ

(i)
`+1 − λ

(i+1)
`+1 > 0 (3.2.16)

by definition of a(i)` . Since all entries of Λ are integers, (3.2.16) implies that

λ
(i)
` − 1 ≥ λ(i−1)` + λ

(i+1)
`+1 − λ

(i)
`+1. (3.2.17)

By the interleaving condition for Λ,

λ
(i+1)
`+1 ≥ λ

(i)
`+1, and λ

(i−1)
` ≥ λ(i)`+1. (3.2.18)

Combining (3.2.17) and (3.2.18) we obtain

λ
(i)
` − 1 ≥ λ(i−1)` and λ

(i)
` − 1 ≥ λ(i+1)

`+1 , (3.2.19)

which are the two rightmost inequalities in (3.2.15). The two leftmost inequalities in (3.2.15) are

trivial since λ(i+1)
` ≥ λ(i) and λ(i−1)`−1 ≥ λ

(i)
` by the interleaving conditions for Λ. This shows that if

ϕi(Λ) > 0 then f̃i(Λ) ∈ ΓЦ(n, λ).

Next, suppose that εi(Λ) > 0. We must show that ẽi(Λ) ∈ ΓЦ(n, λ). We have εi(Λ) =

max{B(i)
1 (Λ), . . . , B

(i)
i (Λ)}. Let ` = min{j ∈ {1, 2, . . . , i} | B(i)

j (Λ) = εi(Λ)}. Then εi(Λ) = B
(i)
` =

b
(i)
1 (Λ) + b

(i)
2 (Λ) + · · ·+ b

(i)
` (Λ). As before, b(i)` (Λ) > 0 by the minimality of `. So

−λ(i)`−1 + λ
(i−1)
`−1 − λ

(i)
` + λ

(i+1)
` > 0. (3.2.20)
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We have ẽi(Λ) = Λ + ∆
(i)
` (Λ) and hence we must show that

λ
(i+1)
` λ

(i+1)
`+1

≥ ≥

λ
(i)
` + 1

≥ ≥

λ
(i−1)
`−1 λ

(i−1)
`

(3.2.21)

Analogously to the previous case, the rightmost two inequalities λ(i)` +1 ≥ λ(i+1)
`+1 and λ(i)` +1 ≥ λ(i−1)`+1

hold trivially by the interleaving conditions for Λ. By (3.2.20) we have

λ
(i)
` + 1 ≤ −λ(i)`−1 + λ

(i−1)
`−1 + λ

(i+1)
` , (3.2.22)

which, together with λ
(i)
`−1 ≥ λ

(i−1)
`−1 and λ

(i)
`−1 ≥ λ

(i+1)
` , hold by the interleaving condition for Λ,

yielding the leftmost two inequalities in (3.2.21). This shows that if εi(Λ) > 0 then ẽi(Λ) ∈ ΓЦ(n, λ).

Next we show that property (i) in the definition of crystal holds. First we show that f̃i(Λ) = Λ′

iff ẽi(Λ
′) = Λ. Suppose f̃i(Λ) = Λ′. In particular ϕi(Λ) > 0. Then we need to prove ẽi(Λ′) = Λ.

We have Λ′ = Λ−∆
(i)
` (Λ), where ` is defined by

` = max{j ∈ {1, 2, . . . , i} | A(i)
j (Λ) = ϕi(Λ)}. (3.2.23)

First we show that εi(Λ′) > 0. By definition, εi(Λ′) = max{B(i)
1 (Λ′), B

(i)
2 (Λ′), . . . , B

(i)
i (Λ′)}. So it

suffices to show that B(i)
j (Λ′) > 0 for some j. For j = ` we have:

B
(i)
` (Λ′) = b

(i)
1 (Λ′) + b

(i)
2 (Λ′) + · · ·+ b

(i)
` (Λ′) = B

(i)
` (Λ) + 1, (3.2.24)

since b(i)j (Λ′) = b
(i)
j (Λ) for j = 1, . . . , i − 1, while b(i)` (Λ′) = b

(i)
` (Λ) + 1 by definition of b(i)j (Λ). By

(3.2.8),

B
(i)
` (Λ) + 1 = A

(i)
` (Λ)−A(i)

0 (Λ) + 1 = ϕi(Λ)−A(i)
0 (Λ) + 1. (3.2.25)

By definition of ϕi we have

ϕi(Λ)−A(i)
0 (Λ) ≥ 0. (3.2.26)
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Now (3.2.24)-(3.2.26) imply B(i)
` (Λ′) > 0, hence εi(Λ′) > 0. It remains to be shown that ẽi(Λ′) = Λ.

Since Λ = Λ′ + ∆
(i)
` , we have to show that

` = min{j ∈ {1, 2, . . . , i} | B(i)
j (Λ′) = εi(Λ

′)}. (3.2.27)

For 1 ≤ j < ` we saw that B(i)
j (Λ′) = B

(i)
j (Λ) and (3.2.8) implies that B(i)

j (Λ) < B
(i)
` (Λ), while

B
(i)
` (Λ′) = 1 + B

(i)
` (Λ). So εi(Λ′) ≥ B

(i)
` (Λ′) and we will show equality. For ` < j ≤ i we have, by

definition of b(i)j (Λ),

B
(i)
j (Λ′) = 2 +B

(i)
j (Λ), (3.2.28)

and by (3.2.8),

B
(i)
j (Λ) = A

(i)
j (Λ)−A(i)

0 (Λ), (3.2.29)

while by definition of `, (3.2.23), we have

A
(i)
j (Λ)−A(i)

0 (Λ) < A
(i)
` (Λ)−A(i)

0 (Λ). (3.2.30)

Thus (3.2.28)-(3.2.30) imply that

B
(i)
j (Λ′) ≤ 1 +B

(i)
` (Λ) = B

(i)
` (Λ′). (3.2.31)

Therefore εi(Λ′) = B
(i)
` (Λ′) and (3.2.27) holds.

The converse is analogous but we provide some details for the sake completeness. Suppose that

ẽi(Λ
′) = Λ. We need to show that f̃i(Λ) = Λ′. We have εi(Λ′) > 0 and Λ = Λ′ + ∆

(i)
` (Λ) where ` =

min{j ∈ {1, 2, . . . , i} | B(i)
j (Λ′) = εi(Λ

′)}. First we show ϕi(Λ) > 0 by showing A(i)
` (Λ) > 0. We have

A
(i)
` (Λ) = A

(i)
` (Λ′)+1 and A(i)

` (Λ′) = εi(Λ
′)−B(i)

i+1(Λ
′) ≥ 0 by (3.2.8). It remains to show f̃i(Λ) = Λ′.

Since Λ′ = Λ − ∆
(i)
` (Λ), this is equivalent to showing that ` = max{j ∈ {1, 2, . . . , i} | A(i)

j (Λ) =

ϕi(Λ)}. For ` < j ≤ i we have A(i)
j (Λ) = A

(i)
j (Λ′) = B

(i)
j (Λ′) − B(i)

i+1(Λ
′) ≤ B

(i)
` (Λ′) − B(i)

i+1(Λ
′) =

A
(i)
` (Λ′) = A

(i)
` (Λ)−1 < A

(i)
` (Λ). So ` ≤ max{j ∈ {1, 2, . . . , i} | A(i)

j (Λ) = ϕi(Λ)}. For 1 ≤ j < ` we

have A(i)
j = 2 +A

(i)
j (Λ′) = 2 +B

(i)
j (Λ′)−B(i)

i+1(Λ
′) ≤ 1 +B

(i)
` −B

(i)
i+1(Λ

′) = 1 +A
(i)
` (Λ′) = A

(i)
` (Λ).

This proves the desired equality.
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Suppose now that f̃i(Λ) = Λ′ and ẽi(Λ′) = Λ hold. In this case, all the entries of Λ′ equal those

of Λ, except for one entry λ′(i)` in the ith row which equals λ(i)` − 1. Therefore

wt(Λ′) =

n∑
j=1

( j∑
k=1

λ
′(j)
k −

j−1∑
k=1

λ
′(j−1)
k

)
ej

= −ei + ei+1 +
n∑
j=1

( j∑
k=1

λ
′(j)
k −

j−1∑
k=1

λ
′(j−1)
k

))
ej

= wt(Λ)− αi,

which is equivalent to wt(Λ′) = wt(Λ) + αi.

To conclude the proof of (i) we need to show εi(Λ
′) = εi(Λ) + 1 and ϕi(Λ′) = ϕi(Λ) − 1. For

1 ≤ j, ` ≤ i and any Λ ∈ ΓЦ(n, λ) we have

A
(i)
j (Λ−∆

(i)
` (Λ)) =


A

(i)
j (Λ), 0 ≤ j < `,

A
(i)
j (Λ)− 1, j = `,

A
(i)
j (Λ)− 2, ` < j ≤ i.

Suppose ϕi(Λ) > 0 and let ` = max{j ∈ {1, 2, . . . , i} | A(i)
j = ϕi(Λ)}. Then for all 1 ≤ j ≤ i.

A
(i)
j (Λ−∆

(i)
` (Λ) ≤ ϕi(Λ)− 1 with equality for j = `. Therefore ϕi(f̃i(Λ)) = ϕi(Λ)− 1.

Let 1 ≤ j, ` ≤ i. Then for any Λ ∈ ΓЦ(n, λ) we have

B
(i)
j (Λ + ∆

(i)
` (Λ)) =


B

(i)
j (Λ) 1 ≤ j < `,

B
(i)
j (Λ)− 1 j = `,

B
(i)
j (Λ)− 2 ` < j ≤ i.

Suppose εi(Λ) > 0 and let ` = min{j ∈ {1, 2, . . . , i} | B(i)
j (Λ) = εi(Λ)}. Then B(i)

j (Λ + ∆
(i)
` (Λ)) ≤

εi(Λ)− 1 with equality for j = `. Thus εi(ẽi(Λ)) = εi(Λ)− 1.

For property (ii), we verify that for all Λ ∈ ΓЦ(n, λ) we have

ϕi(Λ)− εi(Λ) = 〈wt(Λ), α∨i 〉.
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We have ϕi(Λ) = max{A(i)
1 , A

(i)
2 , . . . , A

(i)
i } and εi(Λ) = max{B(i)

1 , B
(i)
2 , . . . , B

(i)
i }. We will use

relation (3.2.8). Writing A(i)
k = A

(i)
k (Λ) for brevity we have

ϕi(Λ)− εi(Λ) = max{A(i)
1 , A

(i)
2 , . . . , A

(i)
i } −max{A(i)

1 −A
(i)
0 , A

(i)
2 −A

(i)
0 , . . . , A

(i)
i −A

(i)
0 }

= max{A(i)
1 , A

(i)
2 , . . . , A

(i)
i } −max{A(i)

1 , A
(i)
2 , . . . , A

(i)
i }+A

(i)
0

= A
(i)
0

=
i∑

k=0

(λ
(i)
k + λ

(i)
k+1 − λ

(i−1)
k − λ(i+1)

k+1 )

= 2
i∑

k=1

λ
(i)
k −

i−1∑
k=1

λ
(i−1)
k −

i+1∑
k=1

λ
(i+1)
k .

On the other hand, using the first expression for the weight function, we have

wt(Λ) =

n∑
j=1

( j∑
k=1

λ
(j)
k −

j−1∑
k=1

λ
(j−1)
k

)
ej

so using

〈ej , α∨i 〉 = 〈ωj − ωj−1, α∨i 〉 = δji − δj−1,i

we get

〈wt(Λ), α∨i 〉 = 〈
n∑
j=1

( j∑
k=1

λ
(j)
k −

j−1∑
k=1

λ
(j−1)
k

)
ej , α

∨
i 〉

=
n∑
j=1

( j∑
k=1

λ
(j)
k −

j−1∑
k=1

λ
(j−1)
k

)
(δji − δj−1,i)

= 2
i∑

k=1

λ
(i)
k −

i−1∑
k=1

λ
(i−1)
k −

i+1∑
k=1

λ
(i+1)
k

This shows that ϕi(Λ) − εi(Λ) = 〈wt(Λ), α∨i 〉, which also equals the coefficient of ωi in wt(Λ),

proving the second and third equality in (3.2.10).

Lastly, since ϕi(Λ) and εi(Λ) are never −∞, condition (iii) in the definition of a crystal is

void.

3.2.1 Crystal isomorphism

In this section we prove our second main result which says that the natural bijection T from

SSYT(n, λ) to ΓЦ(n, λ) described in Section 2.1.4 is an isomorphism of crystals.
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We will let Ti denote the ith row of a semistandard Young tableaux T , and T≥` the subtableau

obtained by deleting the first `− 1 rows, and similarly for T≤`:

T =

T1

T2
...

Tn

T≥` =

T`

T`+1

...

Tn

T≤` =

T1

T2
...

T`

The following counting lemma will be useful.

Lemma 3.2.4. Let Λ ∈ ΓЦ(n, λ) and T = T(Λ).

(a) For all integers k with 1 ≤ k ≤ n, the number of letters i in Tk is equal to λ(i)k − λ
(i−1)
k .

(b) a(i)j (Λ) counts the number of i’s in Tj minus the number of (i+ 1)’s in Tj+1.

(c) b(i)j (Λ) counts the number of (i+ 1)’s in Tj minus the number of i’s in Tj−1.

(d) A(i)
` (Λ) counts the number of i’s in T≥` minus the number of (i+ 1)’s in T≥`+1.

(e) B(i)
` (Λ) counts the number of (i+ 1)’s in T≤` minus the number of i’s in T≤`−1.

Proof. (a) The number of boxes in Tk containing a letter from {1, 2, . . . , i} is λ(i)k . Then (b) and (c)

are immediate by part (a) and the definitions, (3.2.1), of the diamond numbers. Now (d) and (e)

follow from parts (b) and (c).

Theorem 3.2.5. Let n be a positive integer and λ a partition with n or fewer parts. The bijection

T from ΓЦ(n, λ) to SSYT(n, λ) given in Section 2.1.4 is an isomorphism of crystals.

Proof. Let Λ ∈ ΓЦ(n, λ), and let T = T(Λ).

wt(Λ) = wt(T ): For each i ∈ {1, 2, . . . , n − 1}, by Lemma 3.2.4(a),
∑i

j=1 λ
(i)
j −

∑(i−1)
j=1 λ

(i−1)
j

equals Ni(T ), since the letter i cannot occur below the ith row in an SSYT.

Let i ∈ {1, 2, . . . , n− 1} be arbitrary. In the rest of the proof, “bracketing” refers to i-bracketing.

Put A(i)
k = A

(i)
k (Λ) and B(i)

k = B
(i)
k (Λ) for brevity.
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ϕi(Λ) = ϕi(T ): By definition, ϕi(T ) is the number of unbracketed i’s in T . So ϕi(T ) ≥ ϕi(T≥j)

for any j ∈ {1, 2 . . . , i}. Let j1 ≥ j2 ≥ · · · ≥ jk be all the rows of T containing at least one

unbracketed i. Then ϕi(T≥j1) = A
(i)
j1

by Lemma 3.2.4(d). Furthermore, A(i)
j1

> A
(i)
k for k =

i, i− 1, . . . , j1 + 1. Next, ϕi(T≥j2) = ϕi(T≥j1) + ϕi(T≥j2/T≥j1) = A
(i)
j1

+ (A
(i)
j2
− A(i)

j1
) = A

(i)
j2
. (Here

T≥j2/T≥j1 denotes the subtableau of T consisting of row j2 through row j1 − 1.) And A(i)
j2
> A

(i)
k

for k = j1, j1 − 1, . . . , j2 + 1. Continuing recursively, we eventually obtain that ϕi(T ) = ϕi(T≥jk) =

A
(i)
jk
> A

(i)
j for j > jk. It remains to be shown that A(i)

j ≤ A
(i)
jk

for i = jk − 1, jk − 2, . . . , 1. Since

jk is the top row having unbracketed i’s, we have A(i)
j (Λ≤jk−1) ≤ 0 for j = jk − 1, jk − 2, . . . , 1,

where Λ≤r is defined to be T−1(T≤r) for all r. Since A(i)
j (Λ) − A(i)

jk
(Λ) = A

(i)
j (Λ≤jk−1), this shows

the required inequality.

εi(Λ) = εi(T ): This part can be proved completely analogously to the case of ϕi. But it also

follows from the case of ϕi and the fact that we already know that ΓЦ(n, λ) and SSYT(n, λ) are

crystals, and hence by property (ii) in the definition of crystal and that wt(Λ) = wt(T ),

εi(Λ) = ϕi(Λ)− 〈wt(Λ), α∨i 〉 = ϕi(T )− 〈wt(T ), α∨i 〉 = εi(T ).

T
(
f̃i(Λ)

)
= f̃i

(
T(Λ)

)
: We have seen already that ϕi(Λ) = ϕi(T ). Thus f̃i(Λ) 6= 0 iff f̃i(T ) 6= 0.

Suppose f̃i(Λ) 6= 0. Put Λ′ = f̃i(Λ) = Λ − ∆
(i)
` (Λ), where ` = max{i ∈ {1, 2, . . . , i} | A(i)

j (Λ) =

ϕi(Λ)}. By definition of the bijection T, the SSYT T(Λ′) is obtained from T by changing the

rightmost i in row ` to i + 1. On the other hand, f̃i(T ) is obtained by changing the rightmost

unbracketed i in T to i + 1. So we must show that ` equals the row index of the rightmost

unbracketed i in T . First we show that there is an unbracketed i in row ` of T . To do this we derive
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a series of equivalences. Let j ∈ {1, 2, . . . , i} be arbitrary. Then:

T has an unbracketed i in row j

⇔ ϕi(T≥j) > ϕi(T≥j+1)

⇔ ϕi(Λ≥j) > ϕi(Λ≥j+1), where Λ≥k := T−1(T≥k)

⇔ max{A(i)
k (Λ≥j) | k = 1, 2, . . . , i} > max{A(i)

k (Λ≥j+1) | k = 1, 2, . . . , i}

⇔ max{A(i)
k (Λ) | k = j, j + 1, . . . , i} > max{A(i)

k (Λ) | k = j + 1, j + 2, . . . , i}

⇔ A
(i)
j (Λ) > A

(i)
k (Λ) for all k ∈ {j + 1, j + 2, . . . , i}.

The penultimate equivalence holds by the counting lemma, Lemma 3.2.4(d), and that the first row

of T≥j is the jth row of T and so on. Now, by definition of ` we do indeed have

A
(i)
` (Λ) > A

(i)
k (Λ) for all k ∈ {`+ 1, `+ 2, . . . , i},

and therefore by the above series of equivalences there is at least one unbracketed i in row ` of T .

It remains to show that ` is the row of the rightmost unbracketed i in T . Since any i directly

to the right of an unbracketed i is itself unbracketed, any unbracketed i further to the right would

have to occur among the top ` − 1 rows of T . Any unbracketed i among the top ` − 1 rows of

T would remain unbracketed when considered as an entry of the truncated tableau T≤`−1. So

it suffices to show that T≤`−1 has no unbracketed i’s, or equivalently, that ϕi(T≤`−1) = 0. Let

Λ≤`−1 = T−1(T≤`−1). As previously shown, ϕi(T≤`−1) = ϕi(Λ≤`−1). By Lemma 3.2.4(d), for all

1 ≤ j ≤ i:

A
(i)
j (Λ≤`−1) = A

(i)
j (Λ)−A(i)

` (Λ),

which is less than or equal to zero by definition of `. Hence ϕi(Λ≤`−1) = 0.

T
(
ẽi(Λ)

)
= ẽi

(
T(Λ)

)
: We know that εi(Λ) = εi(T ). Thus ẽi(Λ) = 0 iff ẽi(T ) = 0. Suppose that

ẽi(Λ) 6= 0. Put Λ′ = ẽi(Λ) = Λ + ∆
(i)
` (Λ), where

` = min
{
j ∈ {1, 2, . . . , i} | B(i)

j (Λ) = εi(Λ)
}
.

Also recall that

εi(Λ) = max{B(i)
1 (Λ), B

(i)
2 (Λ), . . . , B

(i)
i (Λ)}.
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By definiton of the bijection T, the SSYT T(Λ′) is obtained from T by changing the leftmost i+ 1

in row ` of T to i. On the other hand, ẽi(T ) is the SSYT obtained from T by changing the leftmost

unbracketed i+ 1 to i. So we must show that ` equals the row index of the row in T which contains

the leftmost unbracketed i+ 1.

First we show that row ` of T contains an unbracketed i+ 1. For this, we derive an equivalent

condition. For all j ∈ {1, 2, . . . , i} we have:

T contains an unbracketed i+ 1 in row j + 1

⇔ εi(T≤j+1) > εi(T≤j)

⇔ εi(Λ≤j+1) > εi(Λ≤j) where Λ≤k := T−1(T≤k)

⇔ max{B(i)
k (Λ≤j+1) | k = 1, 2, . . . , i} > max{B(i)

k (Λ≤j) | k = 1, 2, . . . , i}

⇔ B
(i)
j+1 > B

(i)
k for all k ∈ {1, 2, . . . , j}

This condition holds for j+ 1 = ` by definition of `. Thus T contains an unbracketed i+ 1 in row `.

Next we show that no row of T contains an unbracketed i+ 1 further to the left. Such a row j

would have to be below `, i.e. j ≥ `+ 1. By the above equivalences we would get

B
(i)
j (Λ) > B

(i)
k (Λ) for all k ∈ {1, 2, . . . , j − 1}.

In particular, B(i)
j (Λ) > B

(i)
` (Λ), which contradicts the definition of `. This finishes the proof that

T(ẽi(Λ)) = ẽi(T(Λ)).

Alternative proof that T
(
ẽi(Λ)

)
= ẽi

(
T(Λ)

)
: As is well-known, if a function between crystals

preserve the string length functions and intertwines the f̃i crystal operators, then it automatically

intertwines the ẽi crystal operators. We illustrate this for the convenience of the reader. We know

that εi(Λ) = εi(T ). Thus ẽi(Λ) = 0 iff ẽi(T ) = 0. Suppose that ẽi(Λ) 6= 0. Since ϕi(T(ẽi(Λ)) =

ϕi(ẽi(Λ)) ≥ 1. Thus we have

T
(
ẽi(Λ)

)
= ẽif̃i

(
T(ẽi(Λ))

)
= ẽiT

(
f̃iẽi(Λ)

)
by Tf̃i = f̃iT

= ẽi
(
T(Λ)

)
.
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CHAPTER 4. BIJECTIONS AND CRYSTAL STRUCTURE IN TYPE C

4.1 Introduction

One initial goal for this project was to determine a bijection between Kashiwara-Nakashima

tableaux, which are very well-understood in combinatorial terms, and Z̆elobenko patterns. Given

the simplicity of the bijection between semistandard Young tableaux and Gelfand-Tsetlin patterns,

it seemed reasonable to try to approach the problem by explicitly constructing the bijection in

the form of a deletion algorithm. Furthermore, one interesting feature of the type A algorithm is

that, after deleting the boxes containing the symbol i, for instance, one may view the resulting

intermediate tableau as being an element of SSYT(i − 1, λi−1) for some partition λi−1 contained

in the partition λi from the previous step of the algorithm. Similarly, the associated Gelfand-

Tsetlin pattern may be truncated at the i − 1’st row to obtain a valid pattern in ΓЦ(i − 1, λi−1).

There are various applications in the representation theory of Sn and of gln where, far from being

coincidental, this perspective may be used to study induced and restricted representations of the

algebraic structures in question. Thus, a useful deletion algorithm in type C would ideally have

similar features.

One difference between type A and type C is that when it comes to the latter, everything comes

in pairs. In terms of KNT, this is evident from the barred and unbarred varieties of letters in ACn .

For Z̆P, it is the rows that come in pairs of equal length. In order for a step of a deletion algorithm

to admit an interpretation in terms of the restriction of a representation, it is reasonable to consider

removing an associated pair of symbols, or rows, to arrive at the next step. For the process to be as

reminiscent as possible of the type A version, it also seemed natural to attempt to remove the pair

of symbols or rows associated with the weight ωi at step i: the boxes containing the symbols i and

i and the rows containing λ(i)j and λ(i)
′

j , to be exact. From the perspective of Z̆P this seems exactly

as easy to accomplish as it is in type A, but from the perspective of KNT there is a significant
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complication, in that the ordering of ACn places those boxes closer to the “center” of the tableau the

closer i is to n. So, while deletion in type A involves peeling boxes off of the outside of a tableau,

a procedure that obviously preserves semistandardness, deletion in type C involves deleting boxes

from the middle of a tableau, an operation that leaves the status of the resulting object very much

in question. However, as we defined in the introduction to this thesis, there exist several algorithms,

the jeux de taquin, for just such applications. Indeed, it may be useful to imagine, in the course of

the type A pattern-tableau bijection, that each step involves the application of the type A jeu de

taquin on deleted boxes. It simply happens to be the case that since they are already outer corners

due to the structure of type A tableaux, it is a very easy game to play.

The formulation of the symplectic jeu de taquin developed by Sheats and expanded upon by

Lecouvey is not the only one available, and this is partly because Kashiwara-Nakashima tableaux

are not the only interpretation of type C tableaux. As discussed by Sheats in [20], Lecouvey in

[15] and Bump and Schilling in [3], King ([12]) and De Concini ([4]) gave different interpretations

of symplectic tableaux, with different applications in representation theory, that may be shown to

be equivalent to KNT. However, as the literature on crystal basis theory in particular focuses on

KNT, we opted to favor that standard.

Applying the SJDT to a given KNT T is straightforward once one makes the requisite effort

to understand the process, but applying it sequentially as the steps of a deletion algorithm raises

several new questions. After all, a step of the deletion algorithm may involve deleting all symbols

i from T , followed by recording its shape as a row of the associated Z̆elobenko pattern and then

repeating for all symbols i. However, since none of the i’s or i’s in T need be outer corners, we must

also select an order in which to delete them and then, for each occurrence of each symbol, perform

the SJDT until its associated puncture has become one and been removed. This should complete

one step of the overall deletion algorithm, and result in a tableau that is valid with respect to ACi−1 .

Since the application of the JDT on a type A tableau as a part of the algorithm is trivial, that

analogy was not helpful in determining a useful order in which to start deleting symbols in our KNT

T . However, since the SJDT forces punctures to move to the southeast out of T , it seemed most
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natural to begin by deleting the east-most occurrence of the symbol in question so as to remove

potential obstructions to its exit. As we will describe, this approach is successful in the case where

n = 2, so extending it for n > 2 seems plausible.

Even for n = 2, the bijection is significantly more intricate than that in type A. To summarize

the desired algorithm, given T ∈ KNT(2, λ), first delete all of the 2’s, record the resulting shape,

delete all of the 2’s, record the shape, delete all of the 1’s, record the shape, and you have now

constructed a pattern Γ ∈ Z̆P(2, λ). This would almost be as easy as treating the SJDT as though

it were the type A JDT, with the exception of tableaux containing the following subtableau:

T0 =
1 2

2 1
.

As described in section 1.1.7, if the 2 were deleted and the 1 simply slid to the left, there would

be a 1 and a 1 in the same column, which always violates the distance condition on columns for

KNT. However, when we apply SJDT we obtain the following sequence of steps:

1 2

2 1
−→

1 2

∗ 1
−→

2 2

∗ 2
−→

2 2

2 ∗
−→

2 2

2
,

at which point we may delete the newly-created 2, as it is the next-east-most one in the tableau,

resulting in tableau

2 2 .

Note that the above algorithm applied to T0 will result in the Z̆P

Γ0 =



2 2

2 0

0

0


.
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1 2

2 1
,

1 3

3 1
,

2 3

3 2
.

Figure 4.1: Blocks with interesting deletion algorithm steps in KNT(3, λ) .

If one were to start from Γ0 and try to recreate the associated tableau by naively noting that

its entries seem to imply the presence of two 2’s and two 2’s in the following configuration:

T1 =
2 2

2 2
,

then one might be surprised to discover that this is not actually an admissible KNT in the sense

defined in section 1.1.3. The reason for this is its violation of the distance condition on adjacent

columns, with the choice of i = j = 2. Observe, however, that it is a tableau in DC2 inadmissible

form. The idea behind the algorithm below for the case of n = 2, then, is to take the maximal

(possibly empty) subtableau exhibiting T0’s behavior from any T ∈ KNT(2, λ) and begin by swap-

ping it with a block resembling T1 of the same size. This can always be done in a unique way,

so this gives a bijection between KNT and what we call KNT′. Now, deletion and recording may

be performed as desired to generated the Z̆P Γ associated with T . Going from pattern to tableau

involves carefully replacing the correct quantity of each symbol to generate an appropriate KNT′,

before converting it back into a KNT.

So far, our attempts to adapt this to general n have not succeeded, as for n > 2 the number

of subtableaux requiring non-trivial SJDT application is greater than 1 and how different types

of such blocks should interact with one another in larger tableaux is not immediately obvious. In

particular, determining how to correctly fill in a KNT′ given a general Γ will likely require some

additional insight.

What is true in general is that applying Φ, the bijection between the sets of admissible and

coadmissible columns, column-wise to tableaux gives a bijection between admissible tableaux and

tableaux in DC2 inadmissible form. This suggests the possibility of extending the strategy of the

rank 2 bijection if a means of constructing a tableau associated with a given pattern were found.
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Beyond type C2, in section 3.3 we define hook patterns in type Cn and prove a bijection between

hook patterns and hook tableaux. The crystal structure of row patterns, a special case of hook

patterns, is then proved in type Cn. We conjecture that a similar proof strategy will give the crystal

structure of column patterns, similarly defined, and indeed for hook patterns in general.

4.2 Weight-preserving bijection in type C2.

4.2.1 KNT↔ KNT′

We define KNT′(2, (λ
(2)
1 , λ

(2)
2 )) as follows: let T ∈ KNT(2, (λ

(2)
1 , λ

(2)
2 )). To obtain T ′ ∈ KNT′(2, (λ

(2)
1 , λ

(2)
2 )),

find the maximal occurrence of the subtableau

1 . . . 1 2 2 . . . 2

2 . . . 2 2 1 . . . 1︸ ︷︷ ︸
2k+1

or
1 . . . 1 2 . . . 2

2 . . . 2 1 . . . 1︸ ︷︷ ︸
2k

and replace it with
2 . . . 2 2 2 . . . 2

2 . . . 2 2 2 . . . 2︸ ︷︷ ︸
2k+1

or
2 . . . 2 2 . . . 2

2 . . . 2 2 . . . 2︸ ︷︷ ︸
2k

,

respectively, noting that in either case k 1s and k 1s have been exchanged for k 2s and k 2s. There-

fore, wt(T ′) = wt(T ). It is clear that one can convert a tableau T ′ ∈ KNT′(2, (λ
(2)
1 , λ

(2)
2 )) back to a

tableau T ∈ KNT(2, (λ
(2)
1 , λ

(2)
2 )) by reversing the above process. Tableaux in KNT′(2, (λ

(2)
1 , λ

(2)
2 ))

violate the distance condition on KNT when k ≥ 1, but they still have weakly increasing rows and

strictly increasing columns.

4.2.2 KNT′ → Z̆P

Let T ′ ∈ KNT′(2, (λ
(2)
1 , λ

(2)
2 )). To obtain Γ ∈ Z̆P(2, (λ

(2)
1 , λ

(2)
2 )), perform the following procedure:

1. Remove 2s starting from the rightmost box available. 1s left with punctures above them then

slide up, and 1s with punctures to their left then slide left, in that order of preference.
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2. Remove 2s starting from the rightmost box available. 1s with punctures above them then

slide up.

3. Remove 1s.

The first row of Γ corresponds to the shape (λ
(2)
1 , λ

(2)
2 ), the second to the shape (λ

(2)′

1 , λ
(2)′

2 ) of

the tableau resulting from step (1), the third to the shape (λ
(1)
1 ) of the tableau resulting from step

(2), and the fourth to the shape (λ
(1)′

1 ) of the tableau resulting from step (3).

4.2.3 Z̆P→ KNT′

Let Γ ∈ Z̆P(2, (λ
(2)
1 , λ

(2)
2 )):

Γ =



λ
(2)
1 λ

(2)
2

λ
(2)′

1 λ
(2)′

2

λ
(1)
1

λ
(1)′

1


To obtain T ′ ∈ KNT′(2, (λ

(2)
1 , λ

(2)
2 )), we reconstruct the tableau as follows:

1. Fill a Young diagram of shape (λ
(1)′

1 ) with 1s.

2. Extend the shape to (λ
(2)′

1 , λ
(2)′

2 ) and insert (λ
(2)′

1 + λ
(2)′

2 )− λ(1)1 2s starting from the leftmost

box available. If two boxes are tied, choose the one in the first row.

3. Extend the shape to (λ
(2)
1 , λ

(2)
2 ) and add λ(2)2 + (λ

(2)
1 − λ

(2)′

1 )− ((λ
(2)′

1 + λ
(2)′

2 )− λ(1)1 ) 2s to the

first row. Fill the rest of the 2s into row 2, and then add λ(1)1 −λ
(1)′

1 1s in the remaining boxes.
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Remark 4.2.1. In (3), (λ(2)2 + λ
(2)
1 − λ

(2)′

1 )− ((λ
(2)′

1 + λ
(2)′

2 )− λ(1)1 ) is the number of things needed

to support 1s in row 2 plus the number of 2s in row 1 which are not supporting 1s in row 2 minus

the number of 2s, which can do the same job.

4.2.4 Proof of theorem

Theorem 4.2.2. For any partition λ with `(λ) ≤ 2, the algorithms described above provide a

bijection between KNT (2, λ) and Z̆P(2, λ).

Proof. Let λ = (λ
(2)
1 , λ

(2)
2 ). Starting from pattern Γ ∈ Z̆P(2, λ), construct a tableau T ∈ KNT(2, λ)

by applying the Z̆P→ KNT′ → KNT procedure. Note that by inspection of T we can recover most

of the entries of Γ: λ(2)1 and λ(2)2 are apparent, λ(1)
′

1 is simply the number of 1s in T , and λ(1)1 −λ
(1)′

1

is the number of 1s. We also know that there are (λ
(2)′

1 + λ
(2)′

2 )− λ(1)1 2s in T , so by finding either

λ
(2)′

1 or λ(2)
′

2 we can fill in the rest of Γ. If λ(2)
′

2 ≤ λ(1)
′

1 then we’re done, as the number of 2s in row

2 is equal to λ(2)
′

2 , since 1s can’t be below 1s and since 2s can’t have occupied any of the first λ(2)
′

2

boxes of row 2.

Suppose that λ(2)
′

2 > λ
(1)′

1 . If that is the case, there must be something other than 2s in row 2, so

in particular we may consider the skew subtableau S of T of shape (λ
(2)
1 , λ

(2)
2 )/(T1(1)+T2(2), T2(1)+

T2(2)) whose entries are all 2s and 1s:

2 . . . 2 1 . . . 1

2 . . . 2

1 . . . 1︸ ︷︷ ︸
`

2 . . . 2 1 . . . 1 .

Note that there may be a rectangular subtableau of S of shape (`, `) comprised of 2s with 1s beneath

them. This can be removed to give a skew tableau S′ with no such overlap:

2 . . . 2 1 . . . 1

2 . . . 2 1 . . . 1
.

Now observe that, since T is in KNT′(2, λ), the 2s in S′ have 2s above them. Thus we have

T2(2) = λ
(2)
2 − λ

(2)′

2 , and λ(2)
′

2 = λ
(2)
2 − T2(2), both quantities that we can read off of T .
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Proposition 4.2.3. The above bijection preserves weights.

Proof. Let T ∈ KNT(2, (λ
(2)
1 , λ

(2)
2 )) with wt(T ) = (α1, α2) and let T ′ be the associated element of

KNT′(2, (λ
(2)
1 , λ

(2)
2 )). As previously discussed, the KNT ↔ KNT′ procedure is weight-preserving,

so wt(T ′) = wt(T ). Applying the KNT′ → Z̆P procedure to obtain Γ ∈ Z̆P(2, (λ
(2)
1 , λ

(2)
2 )), observe

that wt(Γ) = (2λ
(1)′

1 − λ(1)1 , 2(λ
(2)′

1 + λ
(2)′

2 )− (λ
(2)
1 + λ

(2)
2 )− λ(1)1 ) by definition. Since 2λ

(1)′

1 − λ(1)1 =

λ
(1)′

1 − (λ
(1)
1 − λ

(1)′

1 ) is the number of 1s minus the number of 1s in T ′ and 2(λ
(2)′

1 + λ
(2)′

2 )− (λ
(2)
1 +

λ
(2)
2 )− λ(1)1 = ((λ

(2)′

1 + λ
(2)′

2 )− λ(1)1 )− ((λ
(2)
1 + λ

(2)
2 )− (λ

(2)′

1 + λ
(2)′

2 )) is the number of 2s minus the

number of 2s in T ′, wt(T ) = wt(Γ).

4.2.5 Discussion of column combinatorics

One powerful advantage of type A crystals of tableaux is that column reading, for example, gives

a way to decompose any tableau into simpler parts. As we have seen, this decomposition is central

to the definition of bracketing, and it both makes use of and motivates the definition of tensor

products of crystals. For this reason, one strategy we used to attempt to give a crystal structure

on Z̆elobenko patterns was to decompose them into what we call column patterns, which are simply

the Z̆P associated with their respective column KNT via the bijection. In rank 2, the following is

an exhaustive list of possible column tableaux:

1

2
,

1

2
,

2

2
,

2

1
,

2

1
, 1 , 2 , 2 , 1 .

Note that a partial order on this set exists in terms of assembling them into larger tableaux,

and that each of them clearly gives rise to a Z̆elobenko pattern given our bijection between the two

structures in rank 2. For example,

2

2
←→



1 1

1 0

0

0


(4.2.1)

is such a pairing. In much the same way as one may view a tableau as a horizontal stack of its

columns, one may think of a pattern as a stack of its column patterns. The upshot of this is
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potentially quite profound: if we can understand the bracketing of a tableau T in terms of its

columns and we can detect which column patterns T−1(T ) possesses based on its entries, then we

have a way of giving explicit formulae for the crystal structure of patterns, circuitous though it may

be.

Our efforts to provide the missing piece of this puzzle, the count of each type of column pattern

making up a given Γ ∈ Z̆P(2, λ), remain incomplete. In short, even in rank 2 the combinatorics in

play are daunting. To illustrate this, we give the following example.

Example 4.2.4. Let

N
Ä

1
ä

be the number of columns consisting just of one box containing a 1 occurring in the tableau T

associated with Γ ∈ Z̆P(2, λ). We claim that

N
Ä

1
ä

= max{0, λ(1)1 − λ
(2)
2 }.

The reason is that λ(2)2 is the length of the second row of T before the deletion of any symbols,

while λ(1)1 is the number of 1’s in T . The only way for the column containing one box with one 1 in

it to occur in T is for the latter number to exceed the former, based on our partial order on rank 2

columns.

Continuing in this fashion makes it possible to account for many of the column counts in similarly

straightforward ways, but some of them are much more resistant to this approach. For example, we

determined that

N

(
1

x

)
= (number of 1’s)−N

Ä
1
ä

= λ
(1)
1 −max{0, λ(1)1 − λ

(2)
2 }

= min{λ(1)1 , λ
(2)
2 },

where x ∈ {2, 2}. Further,

N

(
1

2

)
= min{λ(1)1 , λ

(2)′

2 },



48

since after deleting symbols 2, the second row contains only 2’s and 1’s and only a 2 may appear

below a 1. If λ(1)1 > λ
(2)′

2 , then T ′, the tableau at the step of the deletion algorithm where all 2’s

have been removed and no 2’s have been removed, is of the form

T ′ =
1 1 · · · 1 1 · · ·
2 2 · · · 2

and so λ(2)
′

2 , the length of the second row at that step, counts the columns of interest. However, if

λ
(1)
1 ≤ λ

(2)′

2 , then we have

T ′ =
1 1 · · · 1 x · · ·
2 2 · · · 2 y · · ·

where either x = 2, y = 1 or x ∈ {2, 1} and y does not occur. Note that in each case, the block of

columns containing a 1 and a 2 may be empty.

Using both of these expressions, we may now obtain

N

(
1

2

)
= N

(
1

x

)
−N

(
1

2

)

= min{λ(1)1 , λ
(2)
2 } −min{λ(1)1 , λ

(2)′

2 }

=


0 for λ(2)2 ≥ λ

(2)′

2 ≥ λ(1)1

λ
(1)
1 − λ

(2)′

2 for λ(2)2 ≥ λ
(1)
1 ≥ λ

(2)′

2

λ
(2)
2 − λ

(2)′

2 for λ(1)1 ≥ λ
(2)
2 ≥ λ

(2)′

2

.

Using this approach, the counts described above are radically simpler than what one obtains for

several of the other rank 2 columns. The difficulty we encountered was that some of the columns

may be accounted for combinatorially in more than one way, and the expressions we produced for

two different ways did not obviously agree with one another. The complexity of the situation made

it relatively easy to decide to pursue other avenues of investigation rather than continuing to try to

reach a breakthrough here. Nevertheless, we offer the relatively quaint conjecture that it is possible

to conclude this line of thought and end up with explicit formulae.

With that in mind, the form of the column count expressions that we were able to verify is

very interesting in that it seems to suggest a connection with tropical geometry. If one had such
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expressions for all types of rank 2 column, one could then give explicit formulae for bracketing

based on pattern entries, something that does not exist for crystals of tableaux. These expressions

would inescapably involve maxima or minima of sums and differences of pattern entries, which may

be interpreted as tropical polynomials. We offer no conjecture on the potential significance of this

interpretation, but as Bump and Schilling discuss in [3], it is well-known that crystal basis theory

and tropical geometry are intertwined in various ways. The possibility that Z̆elobenko patterns may

be used to illuminate a new facet of this connection is intriguing.

4.3 Type C hook patterns

2 2 3 2 2 1

3

1

←→



6 1 1

5 1 0

5 1

3 1

2

0


A hook tableau is a tableau of shape λ = (k, 1, . . . , 1) where 0 ≤ k ≤ n (such a λ is called a hook

partition). Note that row and column tableaux are special cases of hook tableaux. The bijection

between hook tableaux and Z̆elobenko patterns is as follows:

Theorem 4.3.1. Let n be a non-negative integer and λ a hook partition. There is a weight-

preserving bijection between KNT(n, λ) and Z̆P(n, λ).

Proof. Given a hook tableau T ∈ KNT(n, λ), we obtain Z̆elobenko pattern Γ ∈ Z̆P(n, λ), called a

hook pattern, by a process similar to that in the rank 2 case. Begin by recording the shape of T .

Starting from i = n and decrementing by 1 at each step, delete all symbols i, perform SJDT and

record the new shape, then delete all symbols i, perform SJDT and record the new shape. To see

that this results in a valid Z̆elobenko pattern, observe that there is at most one of each symbol in

the first column, so at each step either one of the 1’s in the part of the pattern off the first diagonal
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is switched with a 0 or it isn’t, satisfying interleaving in either case. For symbols i or i in the first

row, removal simply corresponds to decrementing the number in the first diagonal by the number

of symbols present, which obviously preserves interleaving.

Given Γ ∈ ΓЦ(n, λ), we may construct the associated tableau T ∈ KNT(n, λ) by reversing

this process, similarly to rank 2. Starting from the bottom of the pattern, any increases along the

diagonals of Γ represent i’s and i’s being added to the tableau at that step. To ensure that the

result is a valid KNT, we must insert the symbols being added in such a way that they respect

the ordering on rows and columns. In particular, if the next shape has an additional row, which is

visible in the pattern in the form of an additional 0 being increased to a 1, then one of the symbols

must have been added to the first column, with the rest going into the first row.

To see that this bijection is weight-preserving, note that adding an i or an i to the tableau

increments or decrements its weight by the same amount as making the stated changes to the

entries of Γ, by the weight formula in section 1.1.6.

4.3.1 Crystal structure on Type C row patterns

Let Γ ∈ Z̆P(n, (k)) where 0 ≤ k ≤ n. Since T(Γ) is a row tableau, we call Γ a row pattern.

Theorem 4.3.2. Let Γ ∈ Z̆P(n, (k)) where 0 ≤ k ≤ n. The crystal structure on row patterns may

be given as follows, with the weight as defined in section 1.1.6:

For i ∈ {1, . . . , n− 1},

f̃i(Γ) =


Γ + ∆

(i+1)′

1 (Γ) + ∆
(i)
1 (Γ) if λ(i+1)

1 − λ(i+1)′

1 > 0

Γ−∆
(i)
1 (Γ)−∆

(i)′

1 (Γ) if λ(i+1)
1 − λ(i+1)′

1 = 0 and λ(i)
′

1 − λ(i−1)1 > 0

0 otherwise.

For i = n, the above formula is simplified to

f̃i(Γ) =


Γ−∆

(i)′

1 (Γ) if λ(i)
′

1 − λ(i−1)1 > 0

0 otherwise.
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For i ∈ {1, . . . , n},

ϕi(Γ) = λ
(i+1)
1 − λ(i+1)′

1 + λ
(i)′

1 − λ(i−1)1 .

For i ∈ {1, . . . , n− 1},

ẽi(Γ) =


Γ−∆

(i+1)′

1 (Γ)−∆
(i)
1 (Γ) if λ(i+1)′

1 − λ(i)1 > 0

Γ + ∆
(i)
1 (Γ) + ∆

(i)′

1 (Γ) if λ(i+1)′

1 − λ(i)1 = 0 and λ(i)1 − λ
(i)′

1 > 0

0 otherwise.

For i = n, the above formula is simplified to

ẽi(Γ) =


Γ + ∆

(i)′

1 (Γ) if λ(i)1 − λ
(i)′

1 > 0

0 otherwise.

For i ∈ {1, . . . , n},

εi(Γ) = λ
(i+1)′

1 − λ(i)1 + λ
(i)
1 − λ

(i)′

1 = λ
(i+1)′

1 − λ(i)
′

1 .

Proof. The proof that these provide the crystal structure is combinatorial: note that a row pattern

is a special case of a hook pattern. Since a single row is always totally ordered according to the

alphabet, no i-bracketing may take place. Therefore, if a symbol i or i+ 1 occurs in the tableau, f̃i

can always change it. Given the order of the symbols in a row and the fact that f̃i will first change

the rightmost available symbol, first we check for symbols i+ 1 to change into i’s. These exist in

the tableau if and only if λ(i+1)
1 − λ(i+1)′

1 > 0, by the above bijection for hook patterns. If there are

no i+ 1’s but there are i’s to change into i + 1’s, then λ(i+1)
1 − λ(i+1)′

1 = 0 and λ(i)
′

1 − λ(i−1)1 > 0.

The difference in the case of i = n is due to the fact that f̃n only changes n’s to n’s, and there is

therefore only one symbol to check, and one pattern element to decrement. The formula for ẽi is

analogous. The expressions for ϕi and εi count the occurrences of the appropriate symbols in the

tableau. Finally, interlacing will be satisfied while modifying Γ’s entries as long as the conditions
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are met: λ(i+1)
1 − λ(i+1)′

1 > 0 means that there is room to increment λ(i+1)′

1 , and it is always the

case that λ(i+1)′

1 ≥ λ(i)1 so changing both at once is safe, for example.

4.3.2 Crystal structure on Type C column patterns

Let Γ ∈ KNT(n, (1, 1, . . . , 1)). Since T(Γ) is a column tableau, we call Γ a column pattern. Note

that f̃i(T(Γ)) will first change an i-unbracketed i to an i + 1, and then change an i-unbracketed

i+ 1 to an i if either is present, since in a column tableau at most one of each symbol occurs. For

a column tableau, an i may be i-bracketed by an i or by an i+ 1, and an i+ 1 may be i-bracketed

is by an i+ 1 or by an i. So, in order to define the crystal structure on columns, it is necessary to

detect all of these possibilities in Γ. We conjecture that interleaving after the application of f̃i and

ẽi coincides with these conditions being met.

Let Γ ∈ Z̆P(n, (1, 1, . . . , 1)). Define

Ai(Γ) :=
i∑

j=1

λ
(i)′

j − λ(i−1)j ,

Bi(Γ) :=
i+1∑
j=1

λ
(i+1)′

j − λ(i)j ,

Ci(Γ) :=
i∑

j=1

λ
(i)
j − λ

(i)′

j ,

Di(Γ) :=

i+1∑
j=1

λ
(i+1)
j − λ(i+1)′

j ,

and note that Ai(Γ) = 1 indicates the presence of an i in Γ, Bi(Γ) = 1 an i + 1, Ci(Γ) = 1 an

i and, unsurprisingly, Di(Γ) = 1 an i+ 1. As in type A, it seems reasonable to think that these

quantities may represent a good starting point for the development of explicit formulae for the

crystal operators for column patterns.
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CHAPTER 5. GENERAL CONCLUSION

Crystal basis theory offers a combinatorial perspective on the representation theory of Lie al-

gebras and other algebraic structures that is both powerful and approachable due to its relative

simplicity. In Chapter 1, we provided an overview of the area and some context for the study of

Young tableaux and tableaux-like structures.

The type A semistandard Young tableaux are remarkable for the sheer variety of applications

they lend themselves to in representation theory and beyond, and not least among these is their

ubiquity in the theory of crystal bases. In Chapter 3, we provided a crystal structure on Gelfand-

Tsetlin patterns that is independent of that given on semistandard Young tableaux. As patterns

have their own diversity of applications, this represents a new way to make connections within and

without representation theory. Moreover, the tropical nature of the expressions we obtained presents

an intriguing question as to what deeper connection may be at work. Finally, we demonstrated that

this crystal structure on patterns is compatible with the existing bijection between Gelfand-Tsetlin

patterns and semistandard Young tableaux, rendering translation between the settings as easy as

the bijection itself.

The picture in type C remains less clear, but we succeeded in Chapter 4 at giving a bijection

between Kashiwara-Nakashima tableaux and Z̆elobenko patterns in rank 2. We also offered some

potential strategies for extending this bijection should it be possible to answer some of the combi-

natorial questions that seem to make type C more challenging to tackle than type A. The special

cases of the bijection and of crystal structure in rank n could be helpful along these lines, and when

combined with the tensor product rule for crystals they do offer some additional insight in arbitrary

rank. Beyond type C, it would be natural to ask the same sort of questions in the orthogonal cases

of types B and D. Crystals of tableaux are well-understood here, and patterns exist and have similar

applications.
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CHAPTER 6. EXAMPLES

Below we provide several examples of crystals of tableaux with their associated crystals of

patterns. First we give crystal graphs for sl3(C), λ = (3, 1), followed by some discussion. Then,

to illustrate crystals of row patterns and the conjectured crystal of column patterns, we provide

crystal graphs for graphs for sp6(C), λ = (2) and λ = (1, 1).
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
3 1 0

3 1
3




3 1 0

3 1
2




3 1 0

2 1
2




3 1 0

2 0
2




3 1 0

2 0
1




3 1 0

2 0
0




3 1 0

1 0
0




3 1 0

3 1
1




3 1 0

2 1
1




3 1 0

1 1
1




3 1 0

1 0
1




3 1 0

3 0
3




3 1 0

3 0
2




3 1 0

3 0
1




3 1 0

3 0
0



1
2

1
2 1

2
1

2 1

2 1
2

1

2 1
2

1
2

Figure 6.1: The Crystal ΓЦ(2, (3, 1))
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1 1 1

2

1 1 2

2

1 1 3

2

1 1 3

3

1 2 3

3

2 2 3

3

2 3 3

3

1 2 2

2

1 2 3

2

1 3 3

2

1 3 3

3

1 1 1

3

1 1 2

3

1 2 2

3

2 2 2

3

1
2

1
2 1

2
1

2 1

2 1
2

1

2 1
2

1
2

Figure 6.2: The Crystal SSYT(2, (3, 1))
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The above are two isomorphic crystal graphs for sl3(C). If we take the element

Λ =


3 1 0

3 1

2


in the crystal of patterns C, note that we have

A
(1)
1 (Λ) = a

(1)
1 (Λ) = λ

(1)
1 − λ

(0)
1 + λ

(1)
2 − λ

(2)
2 = 2− 0 + 0− 1 = 1,

which gives

ϕ1(Λ) = max{A(1)
1 (Λ)} = 1.

We also have

A
(2)
1 (Λ) = a

(2)
1 (Λ) + a

(2)
2 (Λ) = (3− 2 + 1− 1) + (1− 0 + 0− 0) = 1 + 1 = 2

and

A
(2)
2 (Λ) = a

(2)
2 (Λ) = 1− 0 + 0− 0 = 1,

giving

ϕ2(Λ) = max{A(2)
1 (Λ), A

(2)
2 (Λ)} = max{2, 1} = 2.

Note also that f̃1(Λ) = Λ − ∆
(1)
1 (Λ) so the entry λ

(1)
1 is being decremented, and f̃2(Λ) =

Λ−∆
(2)
1 (Λ), giving

f̃1(Λ) =


3 1 0

3 1

1

 f̃2(Λ) =


3 1 0

2 1

2


The rest of the crystal operators may be described in a similar way.
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

2 0 0
2 0 0

2 0
2 0

2
2





2 0 0
2 0 0

2 0
2 0

1
1





2 0 0
2 0 0

1 0
1 0

1
1





2 0 0
2 0 0

2 0
2 0

0
0





2 0 0
1 0 0

1 0
1 0

1
1





2 0 0
2 0 0

1 0
1 0

0
0





2 0 0
2 0 0

2 0
1 0

1
1





2 0 0
1 0 0

1 0
1 0

0
0





2 0 0
2 0 0

0 0
0 0

0
0





2 0 0
2 0 0

2 0
2 0

2
1





2 0 0
2 0 0

2 0
1 0

0
0




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Figure 6.3: The Crystal Z̆P(3, (2))
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Figure 6.5: The Crystal Z̆P(3, (1, 1))
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Figure 6.6: The Crystal KNT(3, (1, 1))
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