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ABSTRACT

Commercial airlines use revenue management systems to maximize their revenue by making

real-time decisions on the prices and booking limits of different fare products and classes offered

in each of its scheduled flights. Traditional approaches — such as mathematical programming,

dynamic programming and heuristic rule-based decision models — heavily rely on mathematical

models of demand and passenger arrival, choice and cancellation, making their performance sensitive

to the accuracy of these model estimates. Moreover, many of these approaches scale poorly with

increase in problem dimensionality. Additionally, they lack the ability to explore and “directly”

learn the true market dynamics from interactions with passengers and adapt to changes in market

conditions on their own. To overcome these limitations, this research uses deep reinforcement

learning (DRL), a model-free decision-making framework, for finding the optimal policies of seat

inventory control and dynamic pricing problems. The DRL framework employs a deep neural

network to approximate the expected optimal revenues for all possible state-action combinations,

allowing it to handle the large state spaces of the problems. Multiple fare classes with stochastic

demand, passenger arrivals and booking cancellations, and overbooking have been considered in

the problems. An air travel market simulator was developed based on the market dynamics and

passenger behavior for training and testing the agent. The results demonstrate that the DRL agent

is capable of learning the optimal airline revenue management policy through interactions with the

market, matching the performance of exact dynamic programming methods. The performance of

the agent in different simulated market scenarios was found to be close to the theoretical optimal

revenues and superior to that of the expected marginal seat revenue-b (EMSRb) method. Also, when

faced with market perturbations, the DRL agent has been observed to actively learn to change its

policy to maximize revenue in the new environment, demonstrating its ability to adapt to changes in

the market conditions.
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CHAPTER 1. INTRODUCTION

Few markets are as fiercely competitive as the current air travel market. This intense competition

dates back to the deregulation of the airline industry in 1978, after which US airlines could freely set

up their route network and quote fares for their offered itineraries. Since then, airline corporations

have been heavily relying on airline revenue management (ARM) systems, a decision support tool

designed for maximizing the total expected revenue generated from the sale of tickets in all their

flights [Belobaba et al. (2015)]. These systems strive to achieve their goal by optimally setting

the prices and booking limits of the different types of tickets offered by the airlines in each flight

at each decision-making instance based on the time remaining till flight departure, unused flight

capacity (seat capacity), demand and passenger characteristics. Considering the large scale nature of

operations of traditional network airlines, such as Delta Airlines, even small revenue increments per

flight provided by ARM is significant: the sale of only one seat per flight at full price instead of the

discount rate can contribute an additional $50 million to the airline’s annual revenues [Cross (2011)].

In today’s highly competitive airline industry, even if an airline carries out its fleet planning, route

planning, scheduling and other airline operations planning optimally, it still may not perform well

financially if it does not optimally conduct its revenue management.

In the remainder of this introductory chapter, the problem of ARM in the context of airline

business practices is detailed in the first section. The architecture of the traditional model-based

system widely used in practice to solve the ARM problem is described in the next section. The

research motivation for this work, the key concepts of our proposed model-free decision-making

framework for ARM, the DRL framework, and the application of DRL to ARM are then discussed

successively in the following three sections. An overview of the key contributions of this research
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Figure 1.1: A single nonstop flight between an O-D pair

is given in the following section. Finally, this chapter concludes with an outline of the rest of the

dissertation.

1.1 Airline Revenue Management

The characteristics of the ARM problem is defined by the airline business model, which may

vary in some respects for different types of airlines such as legacy network carriers, low cost carriers

and ultra low cost carriers. All passenger airlines operate scheduled flights between different origin-

destination (O-D) pairs in their route network. Figure 1.1 illustrates the operation of a nonstop flight

between one such O-D pair. For each of these flights, they have a limited number of seats to sell in

a limited amount of time as specified by the flight capacity of the aircraft used by the airline and

the booking period (or sales horizon) for that flight respectively. The constraint of flight capacity is

visualized in Fig. 1.2 [The Flight (2019)], which shows the seat map of the economy, business and

first class cabins of an Airbus A330-200 aircraft.

Passengers with different characteristics, such as willingness-to-pay (WTP), schedule flexibility

and purchase commitment ability, arrive in the airline booking system at different times throughout

the booking period to book a seat (buy a ticket). In the context of air travel, the WTP (also known as

the personal reservation price) of a passenger is the maximum fare the passenger is willing to pay

for booking a ticket. Based on these characteristics, passengers can be broadly categorized into two

groups: business and leisure (or vacationers). Business passengers are generally more price inelastic

than leisure travelers.
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Figure 1.2: Seat map of an Airbus A330-200 aircraft

In theory, the revenue generated from a flight is maximized when its seats are sold to passengers

at a price equal to their WTP in descending order. In other words, in any given flight, if the airline can

charge each passenger their WTP and there are n seats, then it should fill its aircraft to capacity with

the n highest WTP passengers seeking to book that flight to generate the maximum possible revenue.

In practice, it is difficult for airlines to obtain this theoretical maximum revenue due to several reasons.

Firstly, airlines cannot determine the WTP of each passenger arriving in their booking system with

certainty. Secondly, they do not know the exact number of passenger arrivals for the flight in advance

during the booking period. Thirdly, passengers with higher WTP typically arrive later than ones with

lower WTP. Lastly, passengers tend to buy the cheapest tickets that fulfill their requirements, making

it difficult for airlines to collect fares equal to the WTP of the passengers. Clearly, the policy of

accommodating passengers in a first-come-first-serve basis is not an optimal one as the airline may

not have enough seats left for all high WTP passengers near the end of the booking period for flights

where the total number of passenger arrivals is greater than the seat capacity. As a result, the airline

may miss out on revenue from not being able to collect higher fares from the high WTP passengers.

To deal with these challenges, each airline uses an ARM system to maximize revenue by pricing and

enforcing booking limits to control seat inventory based on estimates of demand, passenger arrival

times and WTP, and booking cancellation and no-show rates.

The practice of ARM begins with product differentiation, a process of creating various fare

products for each unique O-D itinerary through different combinations of service amenities and fare
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restrictions (or fare rules) to take advantage of the differences in passenger characteristics. Examples

of restrictions include advance purchase of ticket, a Saturday night minimum stay or a min/max stay

for a certain number of days, change fees, cancellation fees, etc. The service amenities of a fare

product determines the number of allowed luggage, the allowed size for each luggage, eligibility for

food and beverages, seat selection, priority boarding, earned miles, etc. An example of some typical

fare products offered within the economy cabin by an airline and the set of restrictions associated

with them are shown in Table 1.1. The group of fare products offered in each O-D market by an

airline is collectively called a fare structure. These fare products are created to segment the O-D

markets so that passengers with high WTP do not find lower priced products appealing and hence do

not “buy down”. As a result, passengers generally end up purchasing products with prices close or

equal to their WTP. For more details on the practice of using sale restrictions to segment demand, the

reader is referred to [Li (2001)].

Once the fare products are defined, the next step in the ARM process is pricing the fare products,

which involves determining a set of finite number of price points for each fare product based on

the airline’s business strategy, competitive environment of each O-D market in the network, and

other factors. The limitation of having to choose a price for any particular fare product at any

given time during the booking period from its corresponding finite set of price points as opposed

to any arbitrary price is a result of the legacy airline ticket distribution standards and technological

infrastructure currently used by the online travel agents, brick and mortar retailers, corporate travel

services, and metasearch websites; these standards and technologies were originally developed prior

to the creation of the internet [Niketic and Mules (1993); Vinod (2015)]. To overcome this limitation,

the International Air Transport Association proposed an advanced distribution standard called the

New Distribution Capability (NDC). With the expected widespread adoption of NDC in the near

future, airlines would soon not only be able to arbitrarily price their fare products dynamically in real

time, a practice known as continuous pricing in the airline industry, but also create customized offers

for individual passengers, a practice known as personalized pricing in the airline industry [Hoyles

(2015); Durivaux (2018)]. The association of a fare product belonging to a certain O-D itinerary
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Table 1.1: An example of fare products offered in the economy cabin of an O-D market

Economy Basic Economy Flexible Economy Premium
No cancellations allowed Cancellations allowed for a fee Free cancellations

No changes allowed Changes allowed for a fee Free changes
Min/max stay required No min/max stay requirements No min/max stay requirements

Fare: ${100, 125} Fare: ${200, 300} Fare: ${400, 600, 700}

(along with its set of restrictions) with a price point leads to the creation of a fare class or booking

class. These fare classes are then typically filed (or published) with a central distribution agency

such as the Airline Tariff Publishing Company (ATPCO) [Vinod (2010)]. At any given time, at most

one fare class corresponding to each O-D fare product is open for sale. In the example given in Table

1.1, there are two fare classes associated with Economy Basic, two with Economy Flexible, and three

with Economy Premium.

The typical arrival process of passengers seeking to book different fare products during a booking

period of 365 days is depicted in Fig. 1.3. Here, the light green, green, orange and blue colored

passengers are looking to buy Economy Basic, Economy Flexible, Business class, and First class

fare products respectively. Passengers interested in lower (cheaper) fare products (and fare classes)

typically arrive earlier than the ones of more higher (expensive) fare products (and fare classes).

Airlines generate revenue from the sale of tickets of different fare products. One of the Economy

Flexible passenger is shown to cancel the booking shortly after he/she has purchased it. In the case of

such cancellations, the airline loses some of the collected revenue as it provides fare reimbursements

to these passengers, which is equal to the amount remaining after cancellations fees are deducted

from the fares paid by the passengers.

The booking period, typically spanning for a duration between one year to six months, may

be divided into several small time intervals or steps during which the available fare classes remain

unchanged. The beginning of each of these time steps can be considered to be a decision-making

instance when the ARM system computes the booking limits — the number of available seats — for

all the fare classes based on the distributions of demand, passenger inter-arrival times, cancellations

and no-show rates of each fare class, and the remaining time to departure and seat capacity. These
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Figure 1.3: Passenger arrival, booking and cancellation process of different fare products

decision-making instances are also called data collection points (DCPs) as this is when airlines

collect data on the latest bookings in a given flight.

When the booking limit of a fare class is reached, the ARM system closes the fare class to make

it unavailable for sale. It is necessary to set booking limits for the lower fare classes to protect seats

for later arriving high WTP passengers. By opening and closing different fare classes associated

with a fare product, the ARM system is essentially varying the price of the fare product. Because

passengers arriving close to departure generally have higher WTP than the earlier arriving ones,

the ARM system typically increases the prices of the fare products by opening higher fare classes

and closing lower fare classes as the departure date approaches, a practice known as temporal price

discrimination. As the ARM system periodically recomputes the booking limits, it can dynamically

adjust the prices of the fare products based on stochastic demand in every flight.

The availability of fare classes is controlled at the flight leg-level in leg-based ARM systems and

at the network-level in network-based ARM systems (also known as O-D control systems). As their

names imply, network-based ARM systems aim to maximize total flight revenues across the network

while leg-based ARM systems strive to maximize flight revenues at each flight leg of the network

separately. While network-based systems have been found to produce 1-2% higher network revenues

than their leg-based counterparts [Williamson (1992) and Belobaba (2002)], they have substantially

higher implementation costs. As there are typically many O-D markets within an airline’s network,

the total number of fare classes across all flight legs in the network may be tremendously high. So,

for the sake of computational tractability in network ARM, all of these fare classes are typically
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mapped to a smaller number of groups, known as revenue value buckets or virtual inventory/fare

classes, in each flight leg of a given fare class’s O-D itinerary based on their “network revenue value”,

a method pioneered by American Airlines [Smith and Penn (1988)]. The network revenue value of a

fare class is computed by subtracting its displacement cost from its price. The displacement cost of a

multi-leg fare class passenger is the estimated cost incurred due to the displacement of passengers

and revenue on down-line and/or up-line legs of the fare class itinerary. The resulting set of fare

classes in each leg and their network revenue values is collectively called a displacement adjusted

virtual nesting (DAVN) inventory structure. Without the adjustment of prices of fare classes by their

displacement costs, network-based ARM systems tend to give preference to long-haul connecting

passengers over short-haul “local” single-leg passengers. Studies have found that the use of DAVN

method produces higher network revenues by overcoming this bias towards long-haul connecting

passengers [Hornick (1993),Wei (1997),Hung (1998)].

Henceforth, the problem of dynamically determining the optimal booking limits of each (virtual)

fare class for maximizing flight revenues is referred to as the seat inventory control problem, which

is also known as the fare class mix optimization problem. On the other hand, the problem of

dynamically selecting the optimal prices from the set of pre-filed price points for each fare product to

maximize flight revenues is referred to as the dynamic pricing problem in this dissertation. The seat

inventory control approach and the dynamic pricing approach are essentially two different approaches

to the problem of ARM which share the same objective. In the former approach, the control variables

are both price and booking limits whereas in the latter it is only price.

The seat capacity of a flight specified in the ARM system is sometimes more than the actual

value. This allows airlines to overbook their flights to avoid missing out on revenue from flying

empty seats due to certain passengers cancelling their booking or not showing up. Ideally, the

load factor of a flight — the ratio of the total number of passenger bookings to the actual flight

capacity at flight departure — should be one after accounting for all cancellations and no-shows.

If the overbooking is carried out too conservatively, the airline may still miss out on some revenue

from flying empty seats. On the other hand, if the overbooking is done too aggressively, the airline
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may face the undesirable situation where the number of passengers showing up for the flight at

the boarding gate is more than the flight capacity, leaving the airline with no option but to deny

boarding to or “bump” a few passengers to bring the load factor down to one. When this happens,

the airline needs to adequately compensate the displaced passenger(s) by accommodating them in

another flight and/or giving them monetary compensation for their inconvenience and arrival delay at

their destination. The cost associated with bumping a passenger is known as the bumping cost.

1.2 Traditional Model-Based ARM System

The architecture of a traditional model-based ARM system is depicted in Fig. 1.4. As discussed

in the preceding section, such systems require the distributions of demand, passenger inter-arrival

times, cancellations, and no-shows of each fare class as inputs. These distributions are encoded in

mathematical models of demand and passenger arrival, choice and cancellation behavior for each

fare class. Other inputs typically include the flight capacity, fare product characteristics, historical

booking data, cancellation and no-show data, and current booking data. The mathematical models

are estimated from the historical data. All the inputs go to the ARM engine, inside which there are

primarily two components, a forecaster and an optimizer (or solver). Given these inputs, the forecaster

estimates the fare class demands for the flights. Using the forecasts and other inputs, the optimizer

then determines the optimal booking limits for each fare class to maximize the flight revenues subject

to the constraint of the remaining flight capacities. The three types of solution methods commonly

used to build the optimizer are mathematical programming, dynamic programming and heuristics

or decision-rules. The different types of problem formulations and solution methods are detailed in

Chapter 2. When a passenger arrives to make a booking, they see the fares of the open fare classes

and their seat availability and make a decision on the basis of this information. Whenever a passenger

buys or cancels a ticket of a certain fare class, the booking or cancellation information is fed back to

the database to update the data. A similar data update process also occurs for no-shows at the time of

flight departure.
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Figure 1.4: Traditional model-based ARM system architecture

1.3 Research Motivation

Although traditional model-based ARM systems have helped airlines achieve incremental rev-

enues of varying amounts, they inherently suffer from the following drawbacks:

1. As these systems require models of market dynamics and passenger behavior as inputs to carry

out their computations, their performance is only as good as the accuracy of these models,

which is inevitably limited due to several factors. Firstly, no single airline or ARM system

developer has access to all the relevant historical market and passenger behavior data. Secondly,

historical data does not accurately capture all the relevant information on the explanatory

variables needed to estimate the models such as passenger characteristics (schedule preference,

income, WTP, choice set, buy-up/buy-down tendencies, demographics, etc.), unconstrained

demand, demand spill, etc. Thirdly, historical data does not guarantee to be representative of

the future. Lastly, market conditions and passenger behavior change with time.

2. Some of the traditional solution methods commonly employed by these systems, namely,

mathematical programming and dynamic programming, scale poorly with increase in problem
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dimensionality. For any given ARM problem formulation, the number of decision variables

associated with each flight leg or O-D itinerary in the problem increases with increase in the

number of fare products, price points and decision-making instances. As the scale of the

problem increases, the computation run time of these methods become prohibitively high.

3. These systems do not have any room for (online) exploration to try out different ARM strategies

to learn the true market dynamics and passenger characteristics. In other words, there is no

scope to deviate from the supposedly “optimal” ARM seat inventory control and pricing

policies for experimenting with other polices to determine the true global optimal policy.

4. These systems are not capable of “actively” and “directly” learning changes in market dynamics

and passenger characteristics by themselves from their interactions with passengers. Unless

the models are updated to reflect the changes, these systems assume the market to be stationary

and keep following a suboptimal policy.

The goal of this research is to overcome these shortcomings of traditional model-based ARM

systems. To do so, this research proposes using DRL, a model-free decision-making framework

capable of directly learning the optimal policy from interactions with the market. The DRL framework

permits exploration to find the true optimal policy and handles high problem dimensionality or large

state-action spaces by leveraging a deep neural network to approximate the expected return (or

payoff) from following the optimal policy. To investigate the potential advantages of using this

method for ARM, a DRL-based ARM system was developed to learn the optimal seat inventory

control and dynamic pricing policies. Henceforth, this system is referred to as DeepARM in this

dissertation. Additionally, an air travel market simulator was built to train and test the performance

of DeepARM relative to traditional ARM methods. The specific research questions investigated in

this work are:

1. a) Can DeepARM learn the optimal policy for controlling seat inventory of flights with

multiple fare classes characterized by stochastic demand, passenger arrivals and booking

cancellations to maximize flight revenues?
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b) Can DeepARM perform better than the traditional EMSRb method in the seat inventory

control problem?

2. a) Can DeepARM learn the optimal policy for dynamic pricing of flights with multiple fare

products characterized by stochastic demand, passenger arrivals, passenger WTP and

booking cancellations to maximize flight revenues?

b) Can DeepARM perform better than the traditional EMSRb method in the dynamic pricing

problem?

3. Can DeepARM autonomously adapt to changes in market conditions and passenger behavior?

1.4 Deep Reinforcement Learning

In reinforcement learning (RL), the key idea is to let an artificial intelligence (AI) agent learn

the optimal policy based on the rewards it receives from interactions with the environment. An

optimal policy is generally defined to be the policy that maximizes the total expected reward. It has

been successfully applied for solving sequential decision-making problems in many fields, such as

games, robotics, natural language processing, computer vision, neural architecture design, business

management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and

computer systems [Li (2017)].

1.4.1 Markov Decision Process

The first step in RL involves formulating the problem as a MDP. A MDP [Bellman (1957)] is

generally composed of six components: 1) a set of states s in the environment referred to as the state

space S (s∈S); 2) a set of actions a referred to as the action space A (a∈A); 3) a reward function

R(s,a,s′) which specifies the reward the agent receives from the environment when it moves from

state s to state s′ by taking action a; 4) a transition function T (s,a,s′) which specifies the probability

of the agent moving from state s to state s′ if it takes an action a in state s; 5) a discount factor γ

which specifies the worth of present rewards relative to future rewards (γ ∈ [0,1]) to the agent; and
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6) the initial state of the agent. A time step (or time index) or step count t is used to keep track of

the time or the number of actions taken by the agent. The total number of time steps or actions

(decisions) involved in one episode of the problem determines the problem horizon T . At any given

time step t, the state of the agent is denoted by st . Note that the state st may be any state s within S.

At any t ≤ T , the agent gets to take a valid action a, which causes it to probabilistically move from

from st to st+1 based on T (st ,a,st+1) and receive a reward rt = R(st ,a,st+1), as shown in Fig. 1.5.

This process repeats until t = T and the agent is at sT , from where any action taken by the agent

leads to the termination of the episode. The goal of solving the MDP is to find an optimal policy

π∗ : st 7→ a∗, which maps each state st to an optimal action a∗.

The optimal policy π∗ for a MDP is generally defined to be the policy that maximizes the total

cumulative expected reward [Kochenderfer (2015)]:

π
∗ = argmax

π

E

[
T

∑
t=0

γ
tR(st ,a,st+1)|π

]
, (1.1)

where a = π(st). The optimal value of a state st (U∗(st)), is defined as total expected reward obtained

from state st by acting optimally, and it is given by the Bellman equation:

U∗(st) = max
a ∑

st+1∈S
T (st ,a,st+1)(R(st ,a,st+1)+ γU∗(st+1)). (1.2)

The equation above is called the value function for the optimal policy. In the value function,

∑st+1∈S T (st ,a,st+1)R(st ,a,st+1) is the expected immediate (current time step) reward at state st

and ∑st+1∈S T (st ,a,st+1)γU∗(st+1) is the expected discounted future reward at state st . The optimal

state-action value or Q-value of a state st and action a (Q∗(st ,a)) is defined as the total expected

reward obtained from state st by first taking action a and then acting optimally afterwards:

Q∗(st ,a) = ∑
st+1∈S

T (st ,a,st+1)(R(st ,a,st+1)+ γ max
a′

Q∗(st+1,a′))). (1.3)
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Figure 1.5: The agent-environment interaction in the RL framework

The equation above is called the Q-function or optimal action-value function. Note that the ex-

pression for the expected immediate reward is the same as before, but the expression for the expected

discounted future reward at state st is now ∑st+1∈S T (st ,a,st+1)γU∗(st+1), which is computed using

Q-values instead of U∗(s).

The optimal action a∗ at a state st (π∗(st)) is the action that gives the highest expected return. If

the transition function, reward function and values of states are known, then the optimal policy (the

optimal action at each state), can be computed using:

π
∗(st) = argmax

a
∑

st+1∈S
T (st ,a,st+1)(R(st ,a,st+1)+ γU∗(st+1)). (1.4)

If all the Q-values are known, then the optimal policy can be computed using

π
∗(st) = argmax

a
Q∗(st ,a), (1.5)

in which case there is no need to explicitly know the reward and transition functions.
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1.4.2 Q-learning

Q-Learning [Watkins and Dayan (1992)] is a popular model-free RL algorithm for determining the

Q-values when the reward and transition functions of a MDP are unknown. The algorithm estimates

the Q-values based on the rewards the agent receives through interactions with the environment. It

iteratively updates the Q-values by applying the incremental estimation-based update rule

Q(st ,a)← Q(st ,a)+α(rt+1 + γ max
a′

Q(st+1,a′)−Q(st ,a)), (1.6)

where rt+1 is the reward received by the agent from the environment when it moves to state st+1

by taking action a from state st , α is the learning rate (α ∈ [0,1]), rt+1 + γ maxa′ Q(st+1,a′) is the

target value (or label) and the Q(st ,a) on the right hand side of the equation is the current prediction

of Q-value of state st and action a pair. The difference between the target value and the current

prediction is called the temporal difference error, which is also known as the prediction error or loss.

So, after each action, the update rule essentially changes the current Q-value in the direction of the

prediction error so that the error is reduced.

To be able to efficiently and accurately estimate the Q-values of the state space and maximize

the cumulative expected reward at the same time, a RL agent must carefully balance exploration of

environment with exploitation of knowledge already known. Exploration allows the agent to try and

experience new (not previously visited) state-action pairs and estimate their Q-values, which helps

the agent to find the optimal policy that maximizes the cumulative expected reward. However, if

exploration is carried out without restraint in real life, the agent may end up accumulating low levels

of rewards as a consequence of trying too many low-reward state-action pairs. On the other hand, if

no exploration is carried out, the agent’s estimation of Q-values may not improve and it may keep

following a suboptimal policy that will not maximize the cumulative expected reward.

At any given state, the action taken by the agent depends on its exploration policy (or strategy).

Some of the commonly used exploration policies are the greedy, ε-greedy, linear annealed ε-greedy,

softmax, interval exploration, Boltzmann, max Boltzmann and Boltzmann Gumbel policies. A greedy



15

policy is a zero-exploration policy which specifies the agent to greedily choose the action that has the

highest Q-value at any given state based on the current estimates. An ε-greedy policy specifies the

agent to choose a random action with probability ε and the exploitative action with probability 1− ε .

In a linear annealed ε-greedy policy, the value of ε is linearly decreased with time (experience) so

that the agent performs high exploration at the beginning and high exploitation at the end.

1.4.3 Deep Reinforcement Learning: Deep Q-Learning

Many real-world problems have a large and/or continuous state space, where it is impossible to

record Q-values for every state and action pair. Furthermore, the agent would not be able to visit

(experience) all states and try out all actions to obtain the observed rewards rt+1 needed to estimate

the Q-values using Q-learning. So, Q-values of state-action pairs that have not been encountered

yet needs to be generalized from limited experience. One way of doing this is by using perceptrons

to approximate the Q-values. A perceptron is essentially an artificial neuron that consists of three

components: input nodes, weights and a output node. The input to the perceptron are a set of

features or basis functions based on the state variables and the output of the perceptron is the

Q-value corresponding to a particular action at the input state. So, one perceptron is needed for

each action in the action space. Combining the idea of approximating Q-values using perceptrons

and training the agent with Q-learning resulted in the approximation method known as perceptron

Q-learning [Kochenderfer (2015)]. In this approach, the weights of the perceptron are updated using

the following rule:

θ ← θ +α(rt+1 + γ max
a′

θ
T

β̆ (st+1,a′)−θ
T

β̆ (st ,a))β̆ (st ,a), (1.7)

where θ is the weight vector and β̆ (st ,a) is the set of basis functions which are the inputs to the

perceptron.

An inherent drawback of a perceptron is that it can model only linear functions. However, a set

of perceptrons can be combined to form a (artificial) neural network which can approximate highly

nonlinear functions. Nonlinearity is introduced in the function approximation of neural networks
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using activation functions. Sigmoid, hyperbolic tangent (Tanh) and rectified linear unit (ReLU)

are a few commonly used activation functions. According to the universal function approximation

theorem, a feedforward neural network with one hidden layer, given sufficient neurons and under

mild assumptions on the activation function, can approximate any real continuous function. [Cybenko

(1989)] was one of the pioneers in proving this theorem for sigmoid activation functions.

A neural network possesses an input and an output layer with some number of hidden layers

between them. During training, the neural network learns the appropriate weights for accurately

mapping the input features to the predicted output. The backpropagation algorithm is widely used

for training (fitting) feedforward neural networks with the objective of minimizing the loss function,

which is given by the temporal difference error in the context of Q-learning. In backpropagation, the

key idea is to propagate the error backwards through the neural network one layer at a time. The

weights associated with the edges connected between the hidden nodes (in the last hidden layer)

and the output node(s) are optimized first, and then the weights associated with the edges connected

between the nodes in second last hidden layer and nodes in the last hidden layer are optimized, and

so on until the layer of input nodes is reached. This means that the gradient of the loss function is

not computed with respect to each individual weight of the neural network all at once, which is the

inefficient naive approach, but rather computed one layer at a time. While using the chain rule to

compute the gradient, this process helps to avoid redundant calculations of intermediate terms in the

chain rule as partial computations of the gradient from one layer are reused in that for the previous

layer so that the overall gradient computation is efficient.

In deep Q-learning (DQL), a deep neural network is used to approximate the Q-values [Mnih

et al. (2013); Mnih et al. (2015)]. Equivalent to a multilayer perceptron, the deep Q-learning neural

network (DQN) has several hidden layers, resulting in a large number of weights as its parameters.

Q-learning with backpropagation and mini-batch gradient descent is used to update the weights of

the neural network such that the temporal difference error loss function is minimized. The weights

are updated after each time step (or each action taken by the agent). The mini-batch comprises of a

batch of M experience samples, where each experience sample m = (sm,am,rm,s′m). Each experience
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sample m can be interpreted as follows: the agent was initially at state sm, from where it took action

am and consequently moved to state s′m and received a reward rm. These samples are generated as the

agent interacts with the environment. The experience samples in the mini-batch are drawn randomly

from an experience replay memory storing the agent’s past experience samples. At a time step t, the

loss function is

Lt(θt) =
1

2M

M

∑
m=1

(ym(rm,s′m;θt)−Q(sm,am;θt))
2, (1.8)

where,

ym(rm,s′m;θt) = rm + γ max
a′

Q(s′m,a′) (1.9)

is the target associated with experience sample m and θt is the neural network weight vector at time

step t. To update the weights at each time step t, gradient descent is applied:

θt+1← θt −α∇θ Lt(θt). (1.10)

After convergence is reached during training, the optimal policy can be found using Eq. 1.5. As

DQL involves the use of a deep neural network, it is considered to be a type of DRL algorithm. In

this doctoral research, DQL is primarily used for training the DRL agent of the DeepARM system. A

few variants of the DQL algorithm, namely, deep double Q-learning [Van Hasselt et al. (2016)] and

DQL with dueling DQN [Wang et al. (2016)], have also been tested.

1.5 Applying Deep Reinforcement Learning to Airline Revenue Management

The ARM problem is a sequential decision-making problem which can be formulated as a MDP.

The states may be represented by variables that inform the agent of the current number of bookings

and cancellations made in the different fare classes and the time remaining till flight departure. At

each decision-making state, the agent may be allowed to open or close fare classes to control seat

inventory and vary the prices of the fare products. As commercial airlines aim to maximize flight

revenues, the reward the agent receives at each state from taking a certain action may be specified
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to be revenue from fares paid by passengers for their bookings minus any fare reimbursements due

to cancellations in the time period between two successive states in the state trajectory. In such a

formulation, the state would evolve on the basis of the number of bookings and cancellations of the

different fare classes and time progression.

The implementation of a DRL-based ARM system in real life would first involve training the DRL

agent in an air travel market simulator. The simulator would have to be built based on the airline’s

existing demand model, passenger arrival, choice and cancellation models, and competition model.

In practice, airlines estimate these models using historical market and booking data. The historical

data used by airlines in real-life typically include one or more of the following: 1) proprietary

in-house booking data that is generated over time from the airline’s ARM system’s interactions

with passengers; 2) commercial data spanning many decades purchased from airline data providers

such as International Air Transport Association (IATA), Airline Reporting Company (ARC), Global

Distribution Systems (GDS), etc.; and 3) publicly available aggregate data (e.g., O&D Survey

DB1A/B and T-100 Reports) spanning two or more decades from government agencies such as US

DOT [Holloway (2008)]. The size, accuracy and completeness of the data sets used by the airlines

will determine the accuracy of the model estimates, and, in turn, the fidelity of the simulator. As

the simulator can be used to potentially generate an unlimited number of data points, the amount of

data needed to initially train the DRL agent offline in the simulator is not an issue. Once the DRL

agent has been trained to learn the optimal ARM policy of the simulated market in the simulator, it

can be deployed on the real world market to directly interact with passengers. No external model

or data would be required any further. At this stage, it is essential to ensure that the DRL agent’s

hyperparameters is tuned or optimized so that it learns efficiently from the samples of experience

(revenue signal, number of bookings, and other observations) drawn from its interactions with the

market. The agent would need to balance exploitation (of its current policy) and exploration (of

new policies) to keep learning from its interactions and continue updating its ARM policy (neural

network weights) accordingly. This continuous learning would allow the agent to learn the true

market dynamics and adapt to changes in the market.
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1.6 Dissertation Structure

The remainder of this dissertation is organized as follows. Chapter 2 provides a literature review

and background of the traditional ARM methods. Chapter 3 describes the application of DRL to the

problem of seat inventory control and presents the results of the numerical experiments conducted

to evaluate the robustness and revenue performance of the proposed approach. Similarly, Chapter

4 covers the application of DRL to the problem of dynamic pricing and presents the results of the

numerical experiments conducted to evaluate the strength of the proposed approach. Finally, the key

research findings and promising extensions of this work are discussed in Chapter 5.
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CHAPTER 2. TRADITIONAL AIRLINE REVENUE MANAGEMENT

METHODS: LITERATURE REVIEW AND BACKGROUND

Since the time of its first application in the airline industry around four decades ago, the field

of ARM has been an active research area, leading to continuous improvements in ARM methods

and a steady expansion of the field’s body of literature. This interest has been primarily fueled by

the success of ARM systems in improving airline revenues by between 2 percent and 8 percent [Li

and Peng (2007)]. The use of different ARM approaches, formulations and assumptions for solving

the ARM decision-making problem have been reported in the literature. All of these approaches

employ one or more of the following three solution methods: mathematical programming, dynamic

programming and heuristic rule-based decision models [Talluri and Van Ryzin (2006)]. Without

exception, the objective of all these approaches is to maximize the total (expected) flight revenues

given a fixed booking period and subject to the constraint of limited seat capacity in each flight.

Some of the assumptions commonly made in these approaches are: 1) the arrival distribution of

passengers follows either a regular (homogeneous) Poisson process with a constant mean arrival rate

or a non-homogeneous Poisson process (NHPP) with a time-varying mean arrival rate [Weatherford

et al. (1993), Gallego and Van Ryzin (1994)]; 2) the passenger WTP probability distribution is

known; 3) demands for each fare class are separate and independent; 4) lower fare class passengers

arrive earlier than higher fare class ones; and 5) there is no competition in the O-D markets [Talluri

and Van Ryzin (2006)]. A literature review and background of these traditional approaches and

assumptions is presented in this chapter.
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Figure 4.4: The configuration of the deep neural network used to approximate Q-values

4.4.1.1 Neural Network Architecture

Based on the results of the hyperparameter tuning experiments, a dense, feedforward neural

network with three hidden layers was chosen to approximate the Q-values. The input layer has 8

nodes, one node for each variable in the state vector and an additional bias node. Each of the three

hidden layers are composed of 256 ReLU activated hidden neurons. The output layer has 6 linearly

activated nodes, one node for each action. The architecture of the neural network is depicted in Fig.

4.4.

4.4.1.2 Hyperparameter Setting

During training and testing, the deep Q-learning algorithm updated the weights of the neural

network based on the agent-market simulator interaction samples. Based on the results of the

hyperparameter tuning experiments, a hard weight update approach was chosen by setting the target

model update interval parameter of DQL to 10000. The learning rate of the optimizer was chosen to

be 0.0001. In all the hyperparameter tuning experiments, the optimization algorithm used was Adam;
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the training batch size was 32; and a linear annealed ε-greedy policy was chosen as the exploration

policy, where the value of ε was linearly decreased from 1 to 0 over 9500 flight episodes and kept at

0 for the last 500 episodes of the training phase. These settings were kept unchanged for the rest of

the study.

4.4.2 EMSRb Agent

The EMSRb agent uses the market distribution estimates to carry out its computations based on

the theory and equations described in Chapter 2. Each price point acts as a fare class for which the

EMSRb agent computes a booking limit. At a given time step, if the booking limit associated with a

price point is reached or if it is zero, then the price point is not selected (closed) and instead the next

higher price point is selected (opened). As the EMSRb agent is model-based, the two most important

hyperparameters for the EMSRb agent are the “model update interval” (MUI) and the “observation

count” (OC) for updating the estimates. The estimates are updated periodically after every n episodes,

where n is equal to the model update interval, and the updated estimates are based on the average of

last m observations, where m is equal to the specified observation count for updating.

A series of hyperparameter tuning experiments were carried out for the EMSRb agent in simulator-

T as was done for the DRL agent. The results obtained for the different combinations of model update

interval and observation count are listed in Table 4.5. The hyperparameter setting of experiment

number 4 is chosen for the EMSRb agent as it was found to generate the highest µRP∗ with a low

σRP∗ .

4.5 Results

Following the research methodology outlined in Fig. ??, the DRL agent was first trained in

simulator-T and the market parameter estimates were provided as inputs to the EMSRb agent, after

which both the agents were tested separately in simulator-A. To test the agents’ adaptability to

changes in the market, market perturbations were introduced in simulator-A and their performance

loss and recovery were recorded. In all experiments, the key performance metrics were the average
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Table 4.5: Results of EMSRb agent’s hyperparameter tuning experiments

Exp. MUI OC µRP∗ σRP∗ µLF σLF

no. (%) (%) (%) (%)

1 1 200 89.41 3.72 98.57 4.87
2 1 350 89.99 3.58 99.29 4.63
3 1 500 90.20 3.47 99.53 4.52
4 1 1000 90.33 3.55 99.73 4.55
5 10 200 89.43 3.71 98.58 4.87
6 10 350 89.96 3.51 99.26 4.63
7 10 500 90.15 3.47 99.49 4.51
8 10 1000 90.31 3.56 99.68 4.54
9 50 200 89.33 3.77 98.42 5
10 50 350 89.86 3.62 99.11 4.78
11 50 500 90.04 3.54 99.34 4.68
12 50 1000 90.12 3.58 99.51 4.71

percentage of optimal revenue and load factor the agents achieved by following their respective

policies. The results of training, testing and adaptability experiments are presented in the following

sections.

4.5.1 Training in Simulator-T

The training process followed for the seat inventory control problem is followed here as well.

While training the DRL agent, the weights of the agent’s neural network model were saved at intervals

of 250 flight episodes. So, for 10000 training flight episodes, a total of 40 neural network models

were saved. Each of these models were tested on a separate unseen set of 300 test flight episodes

generated by simulator-T. During testing in simulator-T, the neural network weights are not updated

and the models follow a greedy policy. Out of of all saved models, the model that gave the best

performance in terms of the average percentage of optimal revenue and the average load factor was

selected as the final model. Training was considered to converge when the change in optimal revenue

percentage moving average is less than 0.01 for 10 consecutive flight episodes.

This same process was followed for the hyperparameter tuning experiments. The training plots

of the DRL agent with our chosen hyperparameter setting are presented in Figs. 4.5 and 4.6. A trend
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similar to that observed for the training plots of the seat inventory control problem can be seen here.

With accumulation of experience during training, the agent’s average optimal revenue percentage

increases to 94.51% and average load decreases to 100.31%.

4.5.2 Testing in Simulator-A

After training of the DRL agent in simulator-T was completed, both the DRL and EMSRb agents

were tested in simulator-A. During testing, both the DRL and the EMSRb agents were allowed to

continue updating its neural network weights and parameter estimates respectively based on the

observations from the market. The test performance plots are given in Figs. 4.7 and 4.8. The overall

average optimal revenue percentages of the DRL and EMSRb agents were found to be 93.08% and

89.82% respectively. As evident from Fig. 4.7, the DRL agent consistently scores a higher optimal

revenue percentage in each episode than the EMSRb agent, leading by 3.26% on average. Although

the overall average load factors of the DRL and EMSRb agents of 99.32% and 98.63% respectively

are similar, the difference in revenue performances clearly suggest that the DRL agent is following a

superior policy.

The DRL agent’s price evolution graph and passenger arrival bar plot of test flight episode 166,

shown in Fig. 4.9, reveals that the agent has learned to dynamically price the fare products in a way

that exploits the WTP of the arriving passengers and protects seats for later arriving passengers with

higher WTP to maximize the total expected flight revenue. In the first part of the flight episode, when

there are typically no passenger arrivals due to infinitesimally small probabilities in the passenger

arrival distributions, the agent is indifferent between the choices of price points for the fare products.

Between time steps 50 and 75, most of the low fare product passengers with WTP $150 arrive, during

which the agent sets the price of the low fare product to $150. After around time step 80, the agent

increases the low fare product’s price to $200 and keeps it fixed there until around time step 145

to book the passengers with WTP $200 and protect seats for later arriving higher WTP passengers

from passengers with WTP $150. As the flight capacity is getting filled up, the agent then keeps the

low fare product closed for the next around 20 time steps, as indicated by the dotted orange line, to
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Figure 4.5: Average optimal revenue percentage generated by DRL agent during training
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Figure 4.6: Average load factor achieved by DRL agent during training
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Figure 4.7: Optimal revenue percentage generated by agents during testing in simulator-A
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Figure 4.8: Load factor achieved by agents during testing in simulator-A
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Figure 4.9: The DRL agent’s price evolution graph (top) and passenger arrival bar plot (bottom) of
test flight episode 166

protect seats for the high fare product passengers. The agent can be observed to increase the price

of the high fare product at around time step 165 so that it is the same as the WTP of the arriving

passengers in the last part of the episode.

4.5.3 DRL vs Dynamic Programming: Learning the Optimal Dynamic Pricing Policy

The optimality of the DRL agent’s dynamic pricing policy can be assessed by comparing the

percentage of optimal revenue generated by following the DRL agent’s policy with that obtained

by following the optimal policy of the ARM dynamic pricing MDP, as explained in Chapter 3.

As mentioned previously, the optimal policy of the ARM MDP can be derived using DP methods.

However, DP methods are not attractive for use in practice as they require the complete knowledge of
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the transition function, which is never known exactly in real life, and their computational expense is

prohibitively high for realistically scaled ARM problems. Following the approach used for this test

for the seat inventory control problem, the current ARM MDP problem is scaled down by reducing the

flight capacity to 10, the booking period to 5 time steps, and the mean number of arriving passengers

with WTP $150, $200, $400, and $600 to 2, 2, 3 and 3 respectively. All the arriving passengers

with WTP $150, $200, $400, and $600 are now considered to arrive in the second, third, fourth and

fifth time step respectively. The state space size is now of the order of 104. The action space is the

same as before. Booking cancellations were not considered in problem, so the cancellation rates

were set to 0 and the cancellation state variables are removed from the state representation such

that s = (b600,b400,b200,b150, t). All other problem parameters were kept unchanged. For the given

problem, the transition function can be computed using the following set of equations:

T (s,a,s′) =



∏
l∈L

P(∆bt,l) if t ′− t = 1

1, if t ′ = 5, s = initial state

0, otherwise,

(4.15)

P(∆bt,l) =



P̂(∆bt,l;λl(t)), if l = 600, fH = l or l = 200, fL = l
∆bt,l

∑
q=0

P̂(q;λl(t))P̂(∆bt,l−q;λl′(t)), if l = 400, fH = l or l = 200, fL = l

1, if ∆bt,l = 0, l ∈ {150,200}, fL = close

1, if ∆bt,l = 0, l ∈ {150,200}, fL 6= l

1, if ∆bt,l = 0, l ∈ {400,600}, fH 6= l

0, otherwise,

(4.16)

P̂(∆b;λ ) =
λ ∆be−λ

∆b!
, (4.17)

where l′ is the price point immediately higher than l and P̂(∆b;λ ) is the Poisson probability mass

function. The reward function is the same as the one given in Eq. 4.9. To determine the optimal
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policy, the value iteration algorithm was used in this study. The DRL agent was trained to solve this

MDP using deep Q-learning with the same hyperparameter setting as before.

The training plots are given in Figs. 4.10 and 4.11. As training progresses, the optimal revenue

percentage generated by the agent can be seen to increase, while the load factor accomplished by

the agent can be seen to decrease, until both of these performance metrics settle to values close to

that achieved by following the optimal policy. More specifically, the µRP∗ and µLF achieved by the

DRL agent during testing were 96.67% and 100.33% respectively. The µRP∗ and µLF obtained by

following the optimal policy were 96.79% and 96.63% respectively. The difference in their µRP∗

values is only 0.12%. These results demonstrate that the DRL agent, given proper training, can

learn the optimal policy of the ARM dynamic pricing MDP without requiring as inputs the explicit

transition function and reward function of the problem unlike its DP counterparts.

4.5.4 Adaptability Testing

Air travel markets are generally not stationary. The total demand, the demand ratio for the fare

products, and passenger characteristics typically change with time due to changes in socioeconomic

and demographic factors (such as population size, age of population, disposable income, standards

of living, levels of education, etc.), competitors’ and alternative mode of transports’ offerings and

prices, regulations, jet fuel cost, and infrastructure developments and a host of other factors. Also,

the occurrence of unfavorable events like economic recession or slowdown, instability in financial

markets, terror attacks and pandemics, such as the current COVID-19 one, drastically reduces the

volume of O-D air travel market demands. So, it is highly desirable for an ARM system to be able to

adapt its policy to changes in the market conditions.

To test the adaptability of the DRL and EMSRb agents, two different types of market perturbations

were introduced in simulator-A in two separate experiments. In light of the current ongoing COVID-

19 pandemic, in adaptability experiment-1, a negative high fare product demand shock was simulated

by reducing the mean number of arriving passengers with WTP $600 from 14 to 5 and arriving

passengers with WTP $400 from 21 to 10. A similar but more severe negative demand shock
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Figure 4.10: Optimal revenue percentage generated by agent during training for the small scale
dynamic pricing MDP
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Figure 4.11: Load factor achieved by agent during training for the small scale dynamic pricing MDP
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Table 4.6: Results of DRL agent’s hyperparameter tuning experiments for adaptability test

Exp. NEE TMU LR Lowest Highest µRP∗ Avg. RP∗ in
no. avg. RP∗ (%) avg. RP∗ (%) (%) last 300 eps (%)

1 100 2500 0.0001 73.83 92.94 87.30 91.26
2 100 2500 0.001 61.65 93.10 82.90 91.14
3 250 2500 0.0001 71.45 93.09 86.77 90.88
4 250 2500 0.001 60.30 91.40 83.69 88.87
5 100 0.001 0.0001 71.39 93.21 89.70 91.98
6 100 0.001 0.001 64.01 93.15 86.88 91.06
7 250 0.001 0.0001 70.95 93.87 89.58 92.48
8 250 0.001 0.001 62.22 93.57 87.45 91.50

is currently being faced by the global airline industry due to the current COVID-19 pandemic.

In adaptability experiment-2, a surge in passenger cancellations was simulated by increasing the

cancellation rates of high fare product passengers from 0.01% to 5% at all time steps. As the

adaptability of the DRL agent depends primarily on its exploration policy and that of the EMSRb

agent on its market estimates updating policy, different hyperparameter settings for both agents were

first investigated in the new market environment of experiment-1 to tune their hyperparameters for

adaptability testing. The results of hyperparameter tuning experiments for the DRL and EMSRb

agents are given in Tables 4.6 and 4.7 respectively, where NEE is the number of initial episodes

in which exploration was carried out. For the DRL agent, the hyperparameter setting associated

with experiment number 5, and for the EMSRb agent, the hyperparameter setting associated with

experiment number 3, from their respective experiment sets produced the highest µRP∗ . These best

respective set of hyperparameters were used for both agents in both experiments.

Figure 4.12 shows the change in revenue performance of both agents in experiment-1. Initially,

the revenue performance of both agents are low compared to their previously achieved overall

average optimal revenue percentages in simulator-A, as reported in Section 4.5.2, and the DRL

agent’s average optimal revenue percentage is lower among the two agents. As the testing progresses,

the agents gain more experience and observations from interacting with the market. As a result, the

EMSRb agent’s model estimates get more accurate and the DRL agent’s neural network weights get
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Table 4.7: Results of EMSRb agent’s hyperparameter tuning experiments for adaptability test

Exp MUI OC Lowest Highest µRP∗ Avg. RP∗ in
no. avg. RP∗ (%) avg. RP∗ (%) (%) last 300 eps (%)

1 1 200 57.16 63.96 60.88 60.82
2 1 350 63.75 75.95 71.86 73.01
3 1 500 81.88 88.96 86.76 87.54
4 10 200 57.16 67.71 60.98 60.82
5 10 350 63.92 75.76 71.89 72.92
6 10 500 81.86 88.91 86.75 87.53
7 50 200 57.16 82.99 61.43 60.83
8 50 350 63.86 82.99 72.10 72.92
9 50 500 81.98 88.91 86.72 87.54
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Figure 4.12: Optimal revenue percentage generated by agents in the event of a negative high fare
product demand shock (adaptability experiment-1) in simulator-A
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Figure 4.13: Optimal revenue percentage generated by agents in the event of a surge in high fare
product cancellation rates (adaptability experiment-2) in simulator-A

closer to the new optimal values, leading to an increase in their revenue performances. The average

optimal revenue percentage curve of the DRL agent quickly overtakes the EMSRb agent’s one at

around flight episode 250, after which it consistently remains at a higher level. In the last 300 flight

episodes, this difference is 4.44% on average. The increasing trend of both curves stop at around

flight episode 750. The overall average optimal revenue percentages in the entire test interval of

the DRL and EMSRb agents are 89.70% and 86.76% respectively. Figure 4.13 shows the change

in revenue performance of both agents in experiment-2. A similar trend can be observed in this

experiment as well.

To sum up, the plots indicate that the DRL agent was able to adapt faster and better than the

EMSRb agent. While engaging in exploration of the state-action space causes the DRL agent to lose

some revenue in the short term, it allows faster learning of the new optimal policy in this new market

environment which eventually leads to higher revenue returns in the long term and overall. A more

thorough trade-off study to investigate the optimal balance of exploration and exploitation in the

context of ARM can be an exciting topic for future research.
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4.6 Summary

The problem of dynamic pricing in ARM is concerned with finding a policy for directly varying

the prices of an airline’s fare products during the booking period based on demand and WTP of

passengers to maximize the total expected flight revenues. In this study, we have formulated this

problem as a MDP and solved it using DRL to find the optimal dynamic pricing policy. The fare

product demands, passenger arrivals with varying wTPs, and booking cancellations were considered

to be stochastic in the problem. The research methodology adopted for this study follows a real world

DRL-based ARM system implementation process. The simulation results demonstrate that the DRL

agent can closely match the revenue performance of exact DP methods, which indicates that it can

learn the optimal dynamic pricing policy through interactions with the market despite not having any

prior knowledge of the market dynamics, passenger characteristics and problem parameters. Also,

the results show that the DRL agent generates higher than 90% of optimal revenues on average in all

flight episodes in this uncertain market environment. Compared to the EMSRb-based ARM agent,

the DRL agent produces an average optimal revenue percentage increment of 3.26%. In the event of

changes in market conditions in the simulator, the DRL agent was observed to recover from the drop

in revenue performance faster and subsequently produce consistently higher revenues by learning

a new superior policy based on the new market conditions relative to the EMSRb agent. The DRL

agent is able to achieve this better adaptability through limited and controlled exploration of the

state-action space of the ARM MDP.
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CHAPTER 5. CONCLUSIONS

In this doctoral research, a DRL approach was applied to ARM, a critical operations management

problem faced by all airlines that determine their financial success. The primary motivation of this

research was to overcome some of the limitations of traditional model-based ARM methods by using

the model-free decision-making framework of DRL, investigate its capability to learn the ARM

optimal policy, analyze its revenue performance, and examine its adaptability to changes in the

market conditions. First, the problem of leg-based seat inventory control, and, then, the problem of

dynamic pricing was tackled using DRL. The two problems are related in many aspects, but their

formulations are different. For both problems, the objective was to maximize the total expected

flight revenues. Multiple fare classes and products with stochastic demand, arrival of passengers

with varying WTPs, and booking cancellations during the booking period have been considered

in the problems. A standard air travel market simulator was developed based on the commonly

adopted market dynamics, passenger behavior and problem specification for simulating passenger

arrivals and booking cancellations during the booking period in the flight episodes. The simulator

was used for training and testing the DRL agent. Various numerical experiments were conducted

in the simulator to evaluate the performance and robustness of the proposed approach. A summary

of the key contributions, key research findings of these experiments and steps for future work are

presented in this chapter.
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5.1 Key Contributions

To the best of our knowledge, we are the first research group in academia to explore specifically

the use of DRL for ARM to overcome the shortcomings of traditional ARM methods and generate

superior performance. While the airline industry have been pursuing this research direction for a

few years now, their data sets, simulators and solution method details have been kept private for

proprietary reasons. So, their research and results are not reproducible. We, however, are going to

make our simulator, training data, test data, and complete software implementation of the DeepARM

system in Python for both the seat inventory control and dynamic pricing problems publicly available

on GitHub from August 2020 in an effort to motivate and accelerate further research in this direction.

Another notable difference in our work is that we have considered a much higher number of decision-

making instances in the problems (one decision-making instance per day), which significantly scales

up the problem and makes it more realistic.

5.2 Key Research Findings

Both the seat inventory control and the dynamic pricing problems are sequential decision-making

problems as they involve taking a series of actions at different points in time till the date of departure.

So, they can be formulated as MDPs, which make them especially suitable for solving using DRL.

In the seat inventory control study, a total of 9 different numerical experiments were conducted by

varying the mean number of passenger arrivals and cancellation rates of the fare classes to simulate

different market settings. In these experiments, during training, the agent was observed to learn from

its interactions with the market simulator to achieve higher percentage of optimal revenue and bring

the load factor down to close to 100% despite not having any prior domain knowledge of the problem

and market dynamics, such as flight capacity, fare class fares, the distribution of passenger arrivals

and the cancellation rates of each fare class, etc. During testing, the DRL agent was observed to

outperform the EMSRb agent in carrying out the task of seat inventory control and overbooking. In

all experiments, the DRL agent achieved an average optimal revenue percentage of between 96%

and 97%, whereas the EMSRb agent achieved a value of between 94.5% and 95.6%. On average,
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the DRL agent achieved a 1.58% optimal revenue percentage improvement relative to the EMSRb

agent. These results were made possible by the way the DRL agent controlled the seat inventory

during the flight episodes. The agent was observed control seat inventory in a way that protects seats

for later arriving higher fare class passengers from earlier arriving lower fare class passengers and

overbook flights before departure based on the specified passenger arrival distributions and fare class

cancellation rates. The state space size of the problem was in the order of approximately higher than

109. Using a deep neural network to approximate the expected optimal revenues for all possible

state-action combinations allowed the DRL agent to handle the large state space of the problem.

To assess the capability of the DRL agent to learn the optimal policy of the seat inventory control

problem, the revenue performance of the trained DRL agent’s policy was compared with that of the

optimal policy determined using the value iteration DP method. A scaled-down problem was used

for this experiment to make it computationally tractable for the DP solution method. The difference

in their average optimal revenue percentage and average load factor values were found to be only

0.17% and 1.35% in magnitude respectively. These results demonstrate that the DRL agent, given

proper training, can learn the optimal policy of the ARM MDP.

For the dynamic pricing study, the research methodology followed closely resembles a real world

DRL-based ARM system implementation process. Two market simulators were used, one acted as

the actual market, and the other as the training simulator for the DRL agent. The state space size of

the problem was in the order of approximately higher than 1010. Several different types of numerical

experiments were performed. Firstly, hyperparameter tuning experiments were carried out for both

the DRL and EMSRb agents with different hyperparameter settings to fine tune their hyperparameter

values. As for the previous study, among all the different neural network architectures considered, a

deep neural network with three hidden layers and 256 nodes per hidden layer was found to generate

the highest average optimal revenue percentage. Also, the simple DQL learning algorithm and its

more advanced variants were found to produce similar performances. Secondly, the agents were

tested in the actual market simulator. The DRL agent was observed to generate a average optimal

revenue percentage gain of 3.26% on average relative to the EMSRb agent. Thirdly, the DRL agent’s
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performance was compared to that of the optimal policy derived using the value iteration DP method

for a scaled-down version of the problem. The optimality gap was found to be only 0.12%, which

indicates the DRL agent, given proper training, can learn the optimal policy of the ARM dynamic

pricing MDP, without requiring as inputs the explicit transition function and reward function of the

problem unlike its DP counterparts. Lastly, market perturbations in the form of a demand disruption

and change in cancellation behavior of passengers were introduced in the actual market simulator

to test the adaptability of both agents. As the agents were not given any initial knowledge of the

change in market conditions, they initially followed their previous policy, leading to a degradation

of their revenue performance. However, after an initial interval of about 50 episodes, the revenue

performance of both agents started climbing again. This rate of recovery or adaptability strongly

depended on their learning abilities. For the EMSRb agent, the learning occurred indirectly through

update of its model estimates. For the DRL agent, the learning occurred directly based on the revenue

signals and observations it received from its interactions with the market. By following a controlled

exploration policy, the DRL agent was observed to recover faster than the EMSRb agent, surpassing

its revenue performance within the first around 250 flight episodes, and learn a superior policy based

on this new market setting, leading the EMSRb agent by 4.44% in the last 300 flight episodes and

2.94% in all episodes on average in terms of the optimal revenue percentage generated.

In conclusion, the DRL agent was observed to generate higher revenues than the EMSRb method

in all experiments. In the smaller-scale versions of the problems, the DRL agent was observed

to match the revenue performance of exact DP methods. This research has also demonstrated

that a DRL-based ARM system have the following four major advantages over traditional ARM

approaches:

1. Integrity: Unlike the traditional approaches, the DRL agent does not require any external

data or models, such as demand, and passenger arrival, choice and cancellation models, after

it has been trained in the simulator. Hence, once it is deployed in the real world market, its

performance does not depend on the accuracy of such external data or models.

2. Scalability: As the scale of the problem increases, the number of decision variables and size
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of the state-action space increases drastically, rendering traditional methods, like exact DP

methods and dynamic optimization approaches, impractical. A DRL approach can however

handle large state-action spaces of the problem by using a deep neural network to approximate

the expected optimal revenue for any state-action pair. The deep neural network also allows

the agent to generalize from limited experience, meaning that it is not necessary for the DRL

agent to experience all state-action pairs to get an accurate approximation.

3. Optimality: Given sufficient interactions with the market and exploration of the state-action

space, the DRL agent can directly learn the true optimal ARM policy, whereas the optimality

of the policy derived using traditional methods depends on the accuracy of the model estimates,

which are never known with complete accuracy, and the policy derived using heuristics-based

traditional methods are not optimal.

4. Adaptability: Because the agent is continuously learning from its interactions, it can au-

tonomously adapt to changes to the market. Through sufficient exploration, it can quickly

learn a new optimal policy when market conditions change.

5.3 Future Research Directions

The promising results found in this research is expected to serve as strong motivation for future

research that builds on this current work. Some of the potential areas of research that form exciting

topics for future research are listed below.

1. The focus of this research was on leg-based ARM, where individual flight leg revenues in

the airline network are optimized separately. So, one natural extension to this current work

would be to apply DRL to network ARM to maximize the total revenue generated in the entire

network. For small networks with a limited number of flight legs, a single DRL agent may

still be adequate for practicing ARM. The state representation would have to be extended to

include the booking counts of the various fare classes in all flight legs. The action space would

also have to be extended to allow the agent control of seat inventory and pricing in all flight
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legs. For large networks with many connecting flight legs, one promising DRL approach for

this problem would be multi-agent reinforcement learning, where multiple cooperative DRL

agents may be employed to practice ARM, with each assigned to one or more flight legs, and

coordinate their policies with each other.

2. Another extension of this work involves adding one or more competitors in the market simulator

and applying game theoretic principles to investigate if the DRL agent can determine the Nash

equilibrium optimal ARM strategy. To make the agent more aware of its competitors in

the market, the state representation may be extended by including additional state variables

denoting competitors’ offerings and prices at each time step.

3. During adaptability testing, the DRL agent engaged in controlled exploration of the state-action

space, causing it to lose some revenue in the short term, but allowing it to learn faster the

new optimal policy in the new market environment which eventually led to higher revenue

returns in the long term and overall. As air travel market characteristics, such as demand,

competition and passenger behavior, typically change with time, a more thorough trade-off

study to investigate the optimal balance of exploration and exploitation in the context of ARM

is a worthwhile future research endeavor.

4. As the adaptability of the DRL agent in the true market simulator highly depends on the

efficiency of its learning, another beneficial future research direction is to optimize the learning

of the agent by exploring the use of more efficient learning algorithms or customized algorithms

to have better generalization and/or parallel computing on simulators to speed up learning.

5. As the airline industry is experiencing changes in business practices and industry standards

in recent times [Belobaba et al. (2017)], another promising future research pursuit involves

incorporating some of these changes in the DRL-based ARM framework and simulator to

further improve its practical applicability and forward compatibility. It would be especially

interesting to include dynamic adjustment of price points, continuous pricing and dynamic

offer generation capabilities in the system. For dynamic adjustment of price points, the agent’s
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action space would need to be modified to allow it mark up and down the initial set of price

points. For continuous pricing, the agent’s action space would need to be made continuous to

allow it to select any arbitrary price point. For dynamic offer generation, the agent’s action

space would need to be extended to include actions that allow it to dynamically create fare

products by bundling itineraries and add-on services such as extra legroom seats, checked

bags, and lounge access.

6. Another exciting future research direction is to adopt the DRL-based ARM system for use in

other industries that also control their inventory and price their products in a way similar to the

airline industry, such as the hospitality, rental car and advertising industries.
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