
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2020

Refactoring an existing code base to improve modularity and Refactoring an existing code base to improve modularity and

quality quality

Souradeep Bhowmik
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Recommended Citation Recommended Citation
Bhowmik, Souradeep, "Refactoring an existing code base to improve modularity and quality" (2020).
Graduate Theses and Dissertations. 18279.
https://lib.dr.iastate.edu/etd/18279

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F18279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/18279?utm_source=lib.dr.iastate.edu%2Fetd%2F18279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Refactoring an existing code base to improve modularity and quality

by

Souradeep Bhowmik

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Simanta Mitra, Co-major Professor

Gurpur Prabhu, Co-major Professor

Ying Cai

The student author, whose presentation of the scholarship herein was approved by the program

of study committee, is solely responsible for the content of this thesis. The Graduate College will

ensure this thesis is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2020

Copyright © Souradeep Bhowmik, 2020. All rights reserved.

ii

DEDICATION

This thesis work is dedicated to my parents, Baran Kumar Bhowmik and Soma Bhowmik,

and my brother Barnadeep Bhowmik, who mean the world to me. Their constant words of

encouragement and support throughout my life has been the reason for my success. They have

been with me through highs and lows and have always given me the guidance required to help

me be successful in life.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES ...v

LIST OF TABLES ... vi

NOMENCLATURE ... vii

ACKNOWLEDGMENTS ... viii

ABSTRACT ... ix

CHAPTER 1. INTRODUCTION ..1

CHAPTER 2. LITERATURE REVIEW ...4

CHAPTER 3. QUALITATIVE REFACTORING STANDARDS ...6
Cohesion .. 6
Coupling .. 6

Code organization .. 7
Code reusability ... 7

Extensibility ... 7

CHAPTER 4. ANALYSIS OF EXISTING CODE ...8

Application Description Language .. 8
ADLApplication.java ... 8

Input.java .. 8
Ui.Java .. 9
Parser.java .. 9

ServerGenerator.java .. 9
ServerStringGenerator.java .. 9
ClientGenerator.java... 9

Utilities.java ... 10

Constants.java... 10

Analysis of ADL .. 11
Module cohesion .. 11
Module coupling... 12
Code organization... 13
Code reusability .. 13

Extensibility.. 13

CHAPTER 5. DESIGN AND IMPLEMENTATION ...14
Types of refactoring done on ADL .. 14

iv

Change class design.. 14

Split variable assignment.. 14

Repackaging ... 14
Slide statements .. 15
Removing of hard coded values ... 15
Class usage of static members .. 15
Extract functions... 16

Simplify code ... 16
Extract modules .. 16
Rename variables ... 17
Meaningful comments .. 17
Remove dead imports and code.. 17

Design Architecture of React app .. 17

Implementation of React app ... 19
AppContainer.jsx .. 19

Login.jsx ... 20

Signup.jsx ... 20
Contact.jsx .. 20
About.jsx .. 20

All Model Components .. 21
NavBar.jsx .. 21

ProfileNav.jsx ... 21
APICall.jsx ... 22
FormsComponent.jsx ... 22

TD.jsx ... 22

CHAPTER 6. COMPARISON ..24

CHAPTER 7. CONCLUSION AND FUTURE WORK ...26
Observations .. 26

Inheriting a poor quality code requires more resources for change 26
Time constraints leads to poor design choices ... 26
Verification of system functionalities after refactoring is important 26

Refactoring is a periodic process.. 27
Standardization is important for a shared workspace ... 27
Hard coded values should be avoided at any cost .. 27

REFERENCES ..28

APPENDIX. ENVIRONMENT SETUP ...30
Node Packages ... 30

@material-ui/core ... 30

Bootstrap .. 30
Reactstrap ... 31
React-data-table-component ... 31

v

LIST OF FIGURES

Page

Figure 4-1: Code organization of ADL ... 9

Figure 4-2: Contants.java file contents ... 10

Figure 4-3: Build failure for ADL .. 12

Figure 5-1: Component organization .. 18

Figure 5-2: React app component hierarchy ... 19

Figure 5-3: Client local storage with JWT .. 20

Figure 5-4: Example of a component screen .. 21

Figure 5-5: FormsComponent.jsx props example ... 22

Figure 5-6: Data table props passed from Song model ... 23

vi

LIST OF TABLES

Page

Table 4-1: ADL evaluation ... 11

Table 6-1: Comparison of features of both versions of ADL code base 24

Table 6-2: Analysis of refactored version of ADL ... 25

vii

NOMENCLATURE

 ADL Application Description Language

 JS JavaScript

 NPM Node Package Manager

 HTML Hyper Text Markup Language

 HTTP Hyper Text Transfer Protocol

 JSON JavaScript Object Notation

 POJO Plain Old Java Object

 UI User Interface

 IDE Integrated Development Environment

 JDK Java Development Kit

 JRE Java Runtime Environment

 JWT JSON Web Token

viii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my heartfelt gratitude to all who have

supported me throughout this journey and have extended a helping hand in shaping my academic

success. I would also like to extend my thanks to my Program of Study committee for their

exceptional guidance and support throughout the course of this thesis. This thesis would be

incomplete without the constant feedback from Dr. Simanta Mitra and the guidance from Dr.

Gurpur Prabhu. I would also like to thank my committee member Dr. Ying Cai for his support and

encouragement throughout this journey.

I also take this opportunity to express my gratitude for the unbounded support and love

from my family, although no amount of words will ever be enough to describe it.

In addition, I would also like to thank my friends, colleagues, the department faculty, and

staff for making my time at Iowa State University a wonderful experience and the journey

towards earning my degree a memorable one.

ix

ABSTRACT

Code written in modern programming languages (such as Java) can be almost impossible

to understand and maintain due to poor design and coding practices used during its development.

Instead of redeveloping the entire code from scratch (which is an expensive and time-consuming

proposition), typically a series of refactoring steps are applied to make the software better in

terms of both design and coding quality, which translates to better user experience because the

maintainability and scalability of the application is increased. In this project we consider an

existing code base that was written hastily in Java and was really poor in terms of design and

code quality. We share our experiences in refactoring this code base in order to make it modular

and with improved design and code quality. We first analyzed the existing code base to identify

areas for improvement and then used certain benchmark metrics to guide the refactoring. We

present a comparison of the final state of the code with the original code base to demonstrate the

use of good software development practices.

1

CHAPTER 1. INTRODUCTION

The notion of software engineering existed even before the emergence of modern

programming languages and writing a good quality code has become the topic of massive

research over the years as the discipline grew and saw a boom in the late 20th century. However,

the “quality” of software still appears to be a vague term for many. It is important to understand

that the quality of software does not depend on just one factor, it is the collection of a multitude

of metrics that help to verify the quality of code written. The development of software relies on

the design and a poorly designed software system leads to bad quality of code. Over time, the

entire software development lifecycle has evolved to adapt to the ever changing discipline.

However, even after all the metrics and guidelines available at the disposal of software

engineers, the code sometimes does not reflect good standards of development. We take a look at

one such code base, Application Description Language [1], that has poor quality of code and

share our experiences of refactoring it from a developer’s perspective in terms of changes that a

developer has to make to refactor the code base.

Refactoring code as an idea has been around for a long time. Even before the term was

coined, it was being used actively as part of the software engineering process. Arguably, the

most useful part of refactoring is its contribution towards maintainability. Software systems, over

time, will inevitably require changes to be implemented, but the motivation behind the changes

can vary. For example, a change may be required for addition of a new feature, a bug fix,

improve readability of the code, upgrading the version of technologies used etc. A good quality

of code helps reduce resources required for change, but the state of code may not always reflect

good quality. Refactoring the code base in such a scenario helps to maintain the software better

2

as it promotes good practices. However, one important thing to remember is that the refactoring

of a code base should not lose any of the functionalities of the previous version. This is one of

the reasons that legacy systems require more allocation of resources to refactor as important

business logic often hides deep in the code and it is very tough to identify and transform.

The Application Description Language (ADL) was identified to be one such code base

that has a lot of bottlenecks to maintainability in its implementation. ADL is a tool that can be

used to generate client-server based applications by providing the program with configurations as

input in the form of a JSON (JavaScript Object Notation) file. There are 3 parts to ADL: the

parser that parses the input configuration and generates the output, the server code generation

template that is used by the parser to generate the server output and, the client code generation

template that is used by the parser to generate client output. The ADL in its previous state had a

lot of bottlenecks to growth in the form of many poor design and development choices. Also,

inheriting this work from the previous developers creates a void in understanding the code

because of its complexity which contributes to the already sizeable list of bottlenecks. In this

report, we provide an initial analysis of the code base and identify specific portions of code that

need refactoring. We have defined 5 qualitative standards of modularity to help guide our

analysis of the code, viz. cohesion, coupling, code organization, code reusability and

extensibility. This analysis serves to guide our refactoring efforts and we have come up with

transformations that will get rid of the problems.

The refactoring is done in phases where each different type of refactoring required is first

linked to the portion of code that requires it, which is followed by an implementation of the

changes to the code. This work presents all the different types of refactoring that was required

and a brief summary of the implementation strategies.

3

We conclude this work by presenting a comparison of the features available in the

previous version of ADL and the refactored version to prove that the refactoring of the code base

has successfully retained all of the functionalities. This comparison is done manually where the

feature set of previous version of ADL is manually identified and the same is done with the

refactored version and is checked for any potential loss of functionalities.

The rest of the report is organized as follows. Chapter 2 talks about the related work in

this field. Chapter 3 introduces the standards of software quality that were used to analyze the

modularity of the code base, followed by an analysis of the existing code base in Chapter 4.

Chapter 5 discusses in detail our refactoring efforts and Chapter 6 provides a comparison and

evaluation of our refactored version. The report is concluded in Chapter 7 by presenting the

general observations from refactoring and scope of future work.

4

CHAPTER 2. LITERATURE REVIEW

Refactoring is essentially a two-step process. The first step is to incorporate the

transformations to the design and code, and the second step is to verify that there is no loss of

functionality during the transformation phase. It originated in Smalltalk circles and quickly made

its way into being an essential software engineering process. One of the first prominent works in

this field was the refactoring tool for Smalltalk [4]. It defines refactoring as a “behavior

preserving transformation”. The authors argue that the purpose of refactoring is to essentially

make the code be more reusable and easier to understand, rather than introduce more features.

More work in this field quickly started being published around the same time and in the

following years [7]-[17]. All of the research presented different ways of incorporating better

quality of code by use of refactoring.

In recent years, many have presented techniques of automating the refactoring process,

including the verification of the functionalities [18]-[20]. In the work presented in [19], the

authors argue that legacy systems are much harder to refactor because of different reasons. They

make use of model equivalence checking to verify that a legacy system has not lost any

functionality during the refactoring process. If there is a loss, counter examples are generated,

which can be then used as reference to adapt the implementation and refine the model. [18] and

[20] both present an approach to automate the refactoring process. In [18], the authors aim to

make a recommender system for guiding the addition of features through refactoring. They have

proposed a system that will help the developer add new features with the help of refactoring, as

the developer often has to make transformations that end up introducing more code smells, rather

than remove them. The authors in [20] propose an alternative to traditional refactoring of legacy

5

code, which helps them introduce custom refactoring principles. They have taken an iterative

approach to making an automated refactoring tool for this purpose.

In most of the previous work done in this field, there seems to be a focus on the design of

the code and a lack of focus on the developer’s perspective on refactoring. In [5], the authors

report their experiences in developing an automated refactoring tool by taking feedback from the

developers of 5 different software companies. This is one of the first work to share their

experiences from the perspective of the developer. In this paper, the authors have presented

experiences in 2 categories. The first is the challenges to automate refactoring transformations,

and the second is the perception of the developer about the automatically refactored code. This is

different from the work presented in our thesis because we have presented the types of

transformations that a developer has to make at the grassroots level to refactor by analyzing a

poorly written code base. Our focus is not on automating the transformations but provide an

experience report on the tangible changes that a developer has to undertake.

6

CHAPTER 3. QUALITATIVE REFACTORING STANDARDS

The objective of refactoring a code is to introduce better quality that directly translates to

better user experience because the maintainability and scalability of the application is increased.

There have been many metrics of software refactoring, both qualitative and quantitative, that

were introduced over the years to help guide the process of refactoring, but the end goal still

remains the same, a better quality of code. Our goal is to set 5 qualitative standards of modularity

viz. cohesion, coupling, code organization, code reusability and extensibility to analyze the

existing code and also use them to evaluate the refactored code in order to compare them.

Cohesion

A software system, complex or otherwise, will have multiple parts to it. Implementing

these parts in separate code modules is the idea behind modularity in code. It stems from the idea

that each module should be responsible for executing only once aspect of the desired

functionality. The degree to which each element inside of a module are related is known as

cohesion. Using this measure as reference, a developer can transform the code to achieve high

cohesion between the elements of a module, which is the desired effect of modularity.

Coupling

Introducing cohesion alone in the software code is not enough to warrant a good quality

of code. The reason behind this is that the interaction between these modules play a very

important role in determining the complexity and it reflects in the user experience. The degree to

which all modules interact with each other is known as coupling. Low coupling of software

modules ensures that the interaction and consequently the complexity and readability of software

is controlled.

7

Code organization

A code written in any format, whether it is a single method with thousands of lines of

code or a very organized, modular code, is compiled the same way by a machine. It then

introduces a very important dilemma for the developer on whether to concentrate on just the

output or make it readable for the people as well. The authors in [3] argue that “programs must

be written for people to read, and only incidentally for machines to execute”. A software is never

perfect, it is only made better over time by revisioning and refactoring. Code organization thus

plays a very important role towards achieving a good quality of code that is maintainable and this

makes it easier for a person to revisit and make changes.

Code reusability

An important aspect of modern software engineering is to write code that is reusable.

Functions are a way of incorporating this in many programming languages, such as Java.

Reusable pieces of code are not limited to only one application. For example, the Node Package

Manager has an online repository of packages that can be imported and used in any project and

can be customized as the developer sees fit. A reusable module helps the developer get rid of

repeating code, which increases code maintainability and readability.

Extensibility

Extensibility in code promotes future growth. This growth can be in terms of adding a

new functionality, a bug fix etc. and it is very important for the modern software development

process to create opportunities for growth. It is a direct consequence of modularity in code and

refactoring a code base to incorporate modularity will result in the system being extensible.

8

CHAPTER 4. ANALYSIS OF EXISTING CODE

The ADL, as mentioned earlier, has three parts to its code. The first part deals with the

Java based parser that takes input configuration from the user and updates pre-constructed

templates using the Mustache compiler library. The other two parts of the ADL deals with the

actual code that gets generated for the client application and the server application. We first

present an overview of the ADL and then analyze all the three sections of the existing code in

rest of the chapter.

Application Description Language

This part is the core of the application, which has the Java based parser that can take a

user configuration in the form of a JSON text file and parse it to generate the client server

application as its output. This ADL application has 9 class files; one for the main method to start

the application, two POJOs to map the input configuration JSON text file as Java objects (one for

mapping the entire input and the other one to map only the front end UI configuration), and six

files that help with parsing the input and generating its corresponding output. All of these classes

are organized under 3 packages, a “launcher” package for the main class, “model” package for

the POJOs and a “parsing” package for all the parser code, as seen from Figure 4-1. An

introduction to all these individual classes is presented next.

ADLApplication.java

This class holds the main method of the application, which expects two arguments. The

first argument is a reference to the input configuration JSON file from the system directory and

the second argument is the output directory where the application code gets generated.

Input.java

This is a POJO representing the input fields from the JSON configuration text file.

9

Figure 4-1: Code organization of ADL

Ui.Java

This is a POJO representing the UI section of the input fields.

Parser.java

This class contains the method that takes as input the input file reference and output

directory from the main method and calls the corresponding server and client generator methods

from the respective classes.

ServerGenerator.java

This class is responsible for generating the server code using the pre constructed

templates and the input configuration.

ServerStringGenerator.java

This class has multiple methods that return the extra lines of code that needs to be added

to the template files for introducing custom functionalities to the application.

ClientGenerator.java

This class also serves a similar purpose as the server generator class in that it takes the

input configuration and updates template files for the client application using Mustache library.

10

Utilities.java

This class contains three methods for deleting a file, copying a file and removing certain

lines of code from a file. For removing lines of code, it makes use of the Constants file to get the

position and the corresponding number of lines for deletion from the file.

Constants.java

This file contains very important resources as hard coded values, that are used throughout

the ADL application. Figure 4-2 is a snapshot of the class from the previous version of ADL.

Figure 4-2: Contants.java file contents

The rest of the chapter is dedicated to the analysis of the previous ADL code. The

analysis is presented in the form of a table where each of the three parts of ADL are evaluated

against the quality standards that were defined earlier. A color coded severity of the problem

existing in each of these parts is also presented to help with the refactoring implementations.

11

Analysis of ADL

Table 4-1 provides an evaluation of the previous version of ADL in terms of its

modularity in the 5 quality standards that were introduced earlier. It can be clearly seen from this

evaluation that the client template of the ADL requires the most attention because it violates all

but one of the quality standards. The server template is fairly well coded but could use some

improvements in organization. The ADL parser as a whole also requires a lot of refactoring to

comply to the standards set. An explanation of the violations is presented below.

Table 4-1: ADL evaluation

Part of ADL Cohesion Coupling Organization Reusability Extensibility

Parser High Very tightly

coupled

Needs

improvement

Needs

improvement

Not

extensible

Server

template

High Loosely

coupled

Needs

improvement

Reusable Extensible

Client

template

Low Very tightly

coupled

Organized Not reusable Not

extensible

Module cohesion

The ADL in itself is fairly well developed in terms of introducing modularity to the code.

However, the templates used by ADL and the corresponding generated application code is very

poorly developed. The generated client code especially has just one “control.js” file that handles

all of the interaction for the web page, including fetching data from the server. As an example, a

template of this file contains 26 lines of code initially, but the output generated using 5 entities in

its input has 565 lines of code, and it will only increase with the number of entities and UI

aspects that gets introduced in future updates. The client application code is thus developed with

very low cohesion as this one module has various unrelated elements inside of it.

12

Module coupling

The ADL code is very deeply dependent on the Constants file. This file, as previously

mentioned, has hard coded values for various things used for generating the output. The hard

coded values represent line numbers in the template files for the generator classes to read and

add extra lines of code to. Hard coded values also represent the number of lines that are needed

to be deleted from the template files. Any change in the template files will require the developer

to spend extensive amounts of time trying to identify and update the specific variable(s) that is

(are) affected by the change. This high coupling resulted in our first execution of the inherited

code in a failure, which can be seen from the Figure 4-3. The client template itself represents a

very tightly coupled code, as everything in the client end is dependent on a single file, as

discussed earlier.

Figure 4-3: Build failure for ADL

13

Code organization

Looking back at Figure 4-1 we see that the utilities class is packaged under the parser. All

other classes in this package help in processing and generating the output application, however

this class still exists in this package. This utilities class should be packaged in a different

directory, so as to maintain the grouping together of similar things in one place. For the server

template, authentication needs to be separated out and organized in a package that represents

authentication feature, as it is completely different from where it currently resides in.

Code reusability

The ADL parser makes use of the Mustache compiler to update the pre constructed

template files. The lines of code that is required to achieve this is repeated multiple times

throughout the implementation and we identified 9 separate instances of repeated code for this

purpose. The client template is developed in such a way that every piece of functionality

available for interacting with the data corresponding to all the entities in the input has repeated

pieces of code. All of this needs refactoring to get rid of repeated code.

Extensibility

The ADL application in its existing implementation does not promote growth. There are

too many instances of bad design choices and hasty implementation techniques that exist

throughout the application, both in its parser code and also the template for the server and client

application code. This leaves it being a developer’s worst nightmare for anyone who intends to

do future work on ADL. Any new addition of functionalities, especially on the client end, will

require major revisit of the template code and development will be sluggish and costly due to the

time being spent on understanding the code.

The implementation details of all the different types of refactoring that were required for

ADL is discussed in the next chapter. Environment setup details can be found in Appendix.

14

CHAPTER 5. DESIGN AND IMPLEMENTATION

This chapter presents an in depth discussion on the implementation details of the different

types of refactoring that were required for ADL. It is important to note that the current

implementation of client end template using JavaScript is extremely tough to extend. Therefore,

for refactoring the client end, it was first required that this part be redesigned and developed

using a method that makes it easier to maintain and grow. A JavaScript library, React JS, was

used for this purpose and the details of implementation are presented later in the chapter.

Types of refactoring done on ADL

Change class design

The two Java classes representing the input configuration were modified in their design

to accommodate for more fields in the input. This was done to help the parsing be done better in

terms of being able to convey the same information in a better way.

Split variable assignment

This type of refactoring separates the variable declaration and assignment. This is not

required for all declarations, but the usage of hard coded values for finding the base source

directories of client and server template prompted for a better approach which required fetching

these details at the run time. A function was implemented to return the absolute path of these

directories from the local file system. It was therefore important to separate the assignment of

values to these variables, as the return from the method may raise an exception and the

separation allows us to enclose the assignment with proper exception handling.

Repackaging

This type of refactoring means reorganizing the source code into proper packages. For the

ADL parser code, the utilities and constants classes were extracted into their own package as

15

they served more of a helper class role, than directly being used in the parser class for generating

the output. The server end code was refactored to extract the authentication from a controller

class to its own implementation, which is discussed later in the chapter.

Slide statements

This refactoring means rearranging the lines of code inside of a module. The previous

version of ADL had function declarations in between variable declarations inside of multiple

classes, and so it was important to rearrange these declarations to group together similar lines of

code for better understanding and readability.

Removing of hard coded values

The constants file, as previously discussed, makes it extremely difficult for the developer

to make any kind of changes to the ADL. To get rid of the tight dependency of the output

generator code with the constants file, comments were used as tags to identify specific line

numbers inside of the server and client template files. This enabled us to find the line numbers

during program execution and was not static as it was implemented earlier. A method was

implemented to help fetch line numbers from the template files using these tags and this ensures

that the return always represents the current value. Also, all changes to the template files were

implemented to be additions of lines of code, instead of addition and deletion. This helped to

eliminate specifying the number of lines to delete from a template, which was also present in the

constants file in its previous implementation.

Class usage of static members

The methods inside of the utilities class has a static modifier, meaning that they are a

property of the class. The usage of these methods only requires for the class to be imported as

they can be used directly with the help of the class name. The previous implementation created

16

objects to use these methods and this was an unnecessary step, hence all occurrences of usage of

the utilities class was modified to change the access using the class name only.

Extract functions

The piece of code that takes the input configuration and updates the template files were

extracted to a separate method to promote reusability. The method to get line number of a

template file by usage of comment tags was also extracted to a function for a similar purpose.

The piece of code that gets the absolute path in the local file system for a directory was extracted

and moved to a function as well. All these different refactoring helps the code be more modular

and reusable.

Simplify code

There is a library called lombok for Java that lets developers make use of annotations to

avoid writing repetitive code, like getters, setters, override of “toString()” method etc. We have

used this library to simplify the template for the server side. This refactoring ensures that the

readability of code is improved and hence it promotes future growth.

Extract modules

Similar to extracting functions, extracting modules means creating separate modules out

of existing code so as to increase module cohesion. As discussed earlier, the authentication

feature of the generated server application template was implemented inside of a controller class.

However, this needs extraction to a module and packaging accordingly because authentication is

a separate feature altogether. The authentication feature was introduced using a JWT based

authentication to increase security of the generated app. This implementation generated 9 new

class files and were packaged separately in a new security package in the template.

17

Rename variables

This type of refactoring was required throughout the code and helped to increase the

readability of the ADL code base.

Meaningful comments

Comments were introduced in various places to make the code more readable for the

developer, which would decrease the barrier to understanding of the code implementation for a

developer who has not previously worked with the ADL code base.

Remove dead imports and code

The code base was refactored to get rid of dead code which does not contribute to the

application anymore. This includes imports that are not used as well.

The client end code required major attention to restructure the implementation. At its

previous state, it was extremely difficult to do so. We have thus made use of a JavaScript library,

React JS, to introduce better code quality to the client end code. The rest of the chapter presents

the design and implementation details of the React JS client end code.

Design Architecture of React app

React JS development enforces certain design principles that helps in maintainability by

enabling the developer to make the code modular with the help of components. Figure 5-1 shows

the organization of modules and the corresponding packages of the generated application. Inside

of the components folder we have 4 separate folders, viz. Auth, Misc, Models and Utils. Auth

and Utils are self-explanatory. The Misc folder contains an “About.jsx” and a “Contact.jsx”

component that are responsible for rendering the information specified in the input configuration

file. Models folder contains all of the components representing the entities specified in the input.

18

They all share the same functionalities, but only those functionalities that are specified in the

input are allowed in the component, rest all are disabled.

Figure 5-1: Component organization

Figure 5-2 presents a visual representation of the component hierarchy in the generated

application using an input with 5 entities, with appropriate legends at the bottom of the figure

indicating the folder that they belong to and also the level of the component in the overall

hierarchy. At the root of the hierarchy is the “AppContainer.jsx” component, followed by the

“Login.jsx” and “Signup.jsx” and so on. At the second level we can see the 5 model components

corresponding to the 5 input entities, and specific actions are allowed/disabled inside of these

components based on the input configuration.

19

Figure 5-2: React app component hierarchy

Implementation of React app

The client end code required a cleaner, modern, and modular implementation that

promotes maintainability, scalability, and reusability. The rest of the chapter is dedicated to

describing the implementation details of each component and explaining the design decisions

taken in order to achieve our modularity targets.

AppContainer.jsx

This is the root of the application; this is where the application boots from. This

component therefore provides us the opportunity to set up the navigation paths to be used in the

application. We have used “react-router-dom” package to set up the routes as this is a very easy

to use and easy to maintain package.

20

Login.jsx

This is a stateful component that is rendered to give the user a login interface. The state

of the component is updated with the help of default HTML “onChange” property that updates

on every key press. A variable is used to keep track of form errors and is updated with

corresponding values for errors in input for either name or password from the user. The form

submission is not allowed until all error messages are cleared (by entering valid entries into the

text input sections). The validity of the password is checked with the help of a regular

expression. After a successful login, the component also keeps a copy of the JSON Web Token

(JWT) in the local storage of the client, as shown in Figure 5-3, to send with every subsequent

server request so that the client does not have to validate again.

Figure 5-3: Client local storage with JWT

Signup.jsx

This component is very similar to the login component in its implementation. Similar to

the login component, the validity of the input is checked against a regular expression. Upon

successful request submission to the server, this component redirects the user to the login page to

now login to the application.

Contact.jsx

This page renders contact information provided in the input configuration.

About.jsx

This component is identical to the contact component. The only difference with the other

one is that the text is different as it is a separate field in the input configuration.

21

All Model Components

All model components have the same basic structure. Figure 5-4 shows an example of

how every component looks like. Every component has a navigation bar with links to all model

components. All model components make use of the “componentDidMount()” React lifecycle

method to check for user login information. In the login component we discussed that the JWT is

saved in the client’s local storage and the lifecycle method reads this local storage to check for a

JWT. Only if a valid token is found in the storage, the client is able to access the component.

Else, the client is redirected to the login screen to work on authentication again. Each of the

buttons in a model component represents actions that can be performed with the model’s data

which is defined in the input configuration.

Figure 5-4: Example of a component screen

NavBar.jsx

The navigation bar component is an implementation of “reactstrap” navbar component. It

has a default routing link and links to all other models and a button on the far right for logout.

ProfileNav.jsx

This component is the button on the far right of the navbar component and is a dropdown

with two options: a link to the profile page of the user and a link to logout from the session.

22

APICall.jsx

This component, in contrast to the other components discussed, is not a visual

component. It does not get rendered anywhere on the UI. This is a component that holds 3

reusable methods (HTTP GET, POST and DELETE requests) used for interacting with the

server, i.e. every call to the server is served through these methods. All the methods use the fetch

API to make requests to the server and every request adds the JWT as a header to have it verified

on the server end. “async” and “await” commands are used wherever there is a call to the server

to handle them asynchronously.

FormsComponent.jsx

This component gives a form input interface to the user. This is a reusable component

and is used heavily throughout the application for different purposes. It takes as props the form

input fields to render into the UI and then iterates through these fields to add those fields as part

of the form. It also takes other props attributes from the parent component. Figure 5-5 shows an

example of the props passed down to this component from the “Artist.jsx” model component. It

also supports a multipart file as part of the form input.

Figure 5-5: FormsComponent.jsx props example

TD.jsx

This reusable component is at the heart of an application like this where the bulk of the

task is to interact with data, i.e. add, edit and delete it. This component takes care of rendering

23

the records into the UI for the user to interact with. It imports and implements the table from the

globally available package “react-data-table-component”. This package provides a fresh and

visually beautiful table which is customized for our purposes.

This table provides the functionality of pagination by clicking the corresponding

dropdown button from the bottom right, along with buttons to navigate between the pages. Each

record can be individually edited by clicking the corresponding “Edit” button, which renders a

form component. The user can also select individual records or all records and then delete them

by clicking on the delete button that slides in after a selection is made. The search box is

customized for this application in such a way that it can take any input from the user and then

iterate through all available records to find a match and then display only those records. All of

this is done in the client end for it to be faster. This component can also render a picture for the

models that have a file attribute. This is done by setting a special property to the column that

carries the server location of the picture file. Since this is not rendered as a text in the UI, it is not

sortable. Figure 5-6 shows a snapshot of props sent to this component for a render.

Figure 5-6: Data table props passed from Song model

24

CHAPTER 6. COMPARISON

Table 6-1 presents a comparison of the total number of features available in the previous

version of the ADL against the refactored version of ADL.

Table 6-1: Comparison of features of both versions of ADL code base

Features ADL previous version ADL refactored version

Generate client app (parser) Yes Yes

Generate server app (parser) Yes Yes

Define entity relationships (server) Yes Yes

Authentication (client and server) Yes Yes

Add a record (client and server) Yes Yes

Edit a record (client and server) Yes Yes

Delete a record (client and server) Yes Yes

List all records (client and server) Yes Yes

Search a record (client) Yes Yes

Get record by name (client and

server)

Yes Yes

Sort records table (client) Yes Yes

Pagination of table UI (client) Yes Yes

Display picture (client and server) Yes Yes

Bulk upload records (client and

server)

Yes Yes

Download all records as csv file No Yes

25

As can be seen from Table 6-1, there is no loss of functionality during the refactoring

process. We were able to improve upon some of the features, for example authentication,

redesign the entire client end application template and also incorporate a new feature, which is to

download all records from a table as a csv file. All the changes made to ADL code base has

helped it be useful in a realistic sense, whereas it was in more of a proof of concept state in its

previous implementation.

Table 4-1 in chapter 4 presents an analysis of the previous version of ADL code base

with respect to the 5 standards of quality that we intended to incorporate. A similar analysis of

the refactored version of the ADL is presented below in Table 6-2. Through the analysis we can

prove that the refactored version of ADL has better code quality, which directly translates to a

better user experience and this promotes future growth.

Table 6-2: Analysis of refactored version of ADL

Part of ADL Cohesion Coupling Organization Reusability Extensibility

Parser High Loosely

coupled

Organized Reusable Extensible

Server

template

High Loosely

coupled

Organized Reusable Extensible

Client

template

High Loosely

coupled

Organized Reusable Extensible

The next chapter provides an insight on our experiences and observations and discusses

the scope of future work in this field.

26

CHAPTER 7. CONCLUSION AND FUTURE WORK

Our work serves to be a case study or a reference for the experiences in refactoring a

poorly written code base. Upon close analysis of the existing ADL code it was evident that the

quality of current code creates technical debt on the contributors to ADL. Through our

refactoring efforts, we were able to generate a newer version of ADL that is modular and

extensible. We were also able to introduce certain new functionalities to ADL to prove that

future development will be significantly less resource hogging and will provide a better user

experience for the end user and also encourage growth. In this chapter we provide a list of

experiences and observations made during the entire refactoring process.

Observations

Inheriting a poor quality code requires more resources for change

The quality of code inherited was bad, hence it required significantly greater time to

analyze and refactor. This is why it is important to incorporate best practices of software

development as a developer.

Time constraints leads to poor design choices

Software development is a very big process involving many steps and every step should

be given the same level of priority because of its complexity. Time constraints in development

inherently leads to shortcuts and poor design choices and the quality of code takes a hit.

Verification of system functionalities after refactoring is important

Refactoring process should be promoting future growth, but this growth should not be at

the cost of current functionalities. Hence, it is important to always verify that there is no loss of

functionalities through this process.

27

Refactoring is a periodic process

Any software system requires periodic maintenance. The same way, it is important to

periodically review and refactor the current code base. This helps to always keep the code up to

date and comply with good software development practices, so that it does not become legacy

code, which is significantly harder to refactor because of a multitude of factors.

Standardization is important for a shared workspace

JavaScript is both a very powerful language and difficult to maintain. In a shared

workspace, it is important to introduce some form of standardization (like in Java) because

different developers have different preferences and bias towards development and it is important

to maintain the quality of code in spite of these differences. It also helps with readability as

changing the modules will not require a reader to change the context of understanding because of

similarities in implementation strategies.

Hard coded values should be avoided at any cost

Using hard coded values for anything in the code base leads to extremely tight coupling

between the modules, which in turn makes it very tough to incorporate any change. Eliminating

the hard coded values is a top priority for any refactoring process.

This work presented a report on the experiences of refactoring a poor quality code base

from a developer’s perspective, along with sharing the different types of refactoring

implemented to reduce the technical debt. However, the refactoring reflects the preferences of a

single developer. This is a very small sample space and any extension to this work will require a

contribution from more developers. It will also be very interesting to consider the different

backgrounds and cultures of the developers to understand the influences of such factors in the

refactoring expectations of the developers.

28

REFERENCES

[1] Ghosh, Tanmay Kumar. “APP DESCRIPTION LANGUAGE,”

[2] Pandian, Preethi. “Application Description Language v1.2”

[3] Abelson, Harold, and Gerald Jay Sussman. Structure and Interpretation of Computer

Programsnull. The MIT Press, 1996.

[4] Roberts, Don, John Brant, and Ralph Johnson. “A Refactoring Tool for Smalltalk.” Theory

and Practice of Object Systems 3, no. 4 (1997): 253–63.

[5] G. Szóke, C. Nagy, R. Ferenc and T. Gyimóthy, "Designing and Developing Automated

Refactoring Transformations: An Experience Report," 2016 IEEE 23rd International

Conference on Software Analysis, Evolution, and Reengineering (SANER), Suita, 2016,

pp. 693-697, doi: 10.1109/SANER.2016.17+

[6] Schuts M., Hooman J., Vaandrager F. (2016) Refactoring of Legacy Software Using Model

Learning and Equivalence Checking: An Industrial Experience Report. In: Ábrahám E.,

Huisman M. (eds) Integrated Formal Methods. IFM 2016. Lecture Notes in Computer

Science, vol 9681. Springer, Cham. https://doi.org/10.1007/978-3-319-33693-0_20

[7] Roberts, D.B. and Johnson, R., 1999. Practical analysis for refactoring. University of Illinois

at Urbana-Champaign.

[8] Fowler, M., 1997, June. Refactoring: Improving the design of existing code. In 11th

European Conference. Jyväskylä, Finland.

[9] Tichelaar, S., Ducasse, S., Demeyer, S. and Nierstrasz, O., 2000, November. A meta-model

for language-independent refactoring. In Proceedings International Symposium on

Principles of Software Evolution (pp. 154-164). IEEE.

[10] M. Balazinska, E. Merlo, M. Dagenais, B. Lague and K. Kontogiannis, "Advanced clone-

analysis to support object-oriented system refactoring," Proceedings Seventh Working

Conference on Reverse Engineering, Brisbane, Queensland, Australia, 2000, pp. 98-107,

doi: 10.1109/WCRE.2000.891457.

[11] Ivan Moore. 1996. Automatic inheritance hierarchy restructuring and method refactoring.

SIGPLAN Not. 31, 10 (Oct. 1996), 235–250.

DOI:https://doi.org/10.1145/236338.236361

[12] K. Maruyama and K. Shima, "Automatic method refactoring using weighted dependence

graphs," Proceedings of the 1999 International Conference on Software Engineering

(IEEE Cat. No.99CB37002), Los Angeles, CA, USA, 1999, pp. 236-245, doi:

10.1145/302405.302627.

[13] Sang-Uk Jeon, Joon-Sang Lee and Doo-Hwan Bae, "An automated refactoring approach to

https://doi.org/10.1007/978-3-319-33693-0_20

29

design pattern-based program transformations in Java programs," Ninth Asia-Pacific

Software Engineering Conference, 2002., Gold Coast, Queensland, Australia, 2002, pp.

337-345, doi: 10.1109/APSEC.2002.1183003.

[14] Rocco Oliveto, Malcom Gethers, Gabriele Bavota, Denys Poshyvanyk, and Andrea De

Lucia. 2011. Identifying method friendships to remove the feature envy bad smell (NIER

track). In Proceedings of the 33rd International Conference on Software Engineering

(ICSE '11). Association for Computing Machinery, New York, NY, USA, 820–823.

DOI:https://doi.org/10.1145/1985793.1985913

[15] M. O. Cinneide, "Automated refactoring to introduce design patterns," Proceedings of the

2000 International Conference on Software Engineering. ICSE 2000 the New

Millennium, Limerick, Ireland, 2000, pp. 722-724, doi: 10.1145/337180.337612.

[16] Beck, K., Fowler, M. and Beck, G., 1999. Bad smells in code. Refactoring: Improving the

design of existing code, 1, pp.75-88.

[17] Fowler, M., 2000, July. Refactoring. In TOOLS (34) (p. 437).

[18] Fernandes, E. “Stuck in The Middle: Removing Obstacles to New Program Features

through Batch Refactoring.” In 2019 IEEE/ACM 41st International Conference on

Software Engineering: Companion Proceedings (ICSE-Companion), 206–9, 2019.

https://doi.org/10.1109/ICSE-Companion.2019.00083.

[19] Schuts, Mathijs, Jozef Hooman, and Frits Vaandrager. “Refactoring of Legacy Software

Using Model Learning and Equivalence Checking: An Industrial Experience Report.” In

Integrated Formal Methods, edited by Erika Ábrahám and Marieke Huisman, 311–25.

Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016.

https://doi.org/10.1007/978-3-319-33693-0_20.

[20] Dams, D., A. Mooij, P. Kramer, A. Rădulescu, and J. Vaňhara. “Model-Based Software

Restructuring: Lessons from Cleaning up COM Interfaces in Industrial Legacy Code.” In

2018 IEEE 25th International Conference on Software Analysis, Evolution and

Reengineering (SANER), 552–56, 2018. https://doi.org/10.1109/SANER.2018.8330258.

https://doi.org/10.1109/ICSE-Companion.2019.00083
https://doi.org/10.1007/978-3-319-33693-0_20
https://doi.org/10.1109/SANER.2018.8330258

30

APPENDIX. ENVIRONMENT SETUP

The three parts of ADL code require different environment setups. We configured the

IntelliJ IDE platform to refactor the ADL parser code. At the time of development, we used the

IntelliJ IDEA (Community Edition) version 2020.2.3 along with JDK version 11.0.1 to build and

JRE version 18.9 to run the application. Gradle build tool version was updated in the project

from 4.4 to 5.6.3 to work with JDK 11.

The server application code that will be later used to create templates out of is developed

in Spring Tools Suite version 4.5.1 for Eclipse. The server application uses Maven build tool and

the version used is 2.3.4.

For developing the refactored client end code, we have used Visual Studio Code version

1.51.1. Node.js version 12.13.0 was used as our runtime environment, which uses Chrome’s V8

engine. The package manager used is Node Package Manager (NPM) version 6.13.0, which

comes bundled with Node.js. Below is a list of all the node packages that we used for the

development of the client end code.

Node Packages

@material-ui/core

Material UI package contains many useful components that provide very helpful

functionalities (icons, custom inputs, menu bars etc.) to develop a React JS application. The

version used is 4.9.4.

Bootstrap

This is a very popular CSS and JavaScript based package that helps develop a mobile

friendly web application. The version used is 4.4.1.

31

Reactstrap

This is a component based implementation of bootstrap functionalities that can be used in

React JS development. The version used is 8.2.0.

React-data-table-component

ADL generates an application that is mainly used for manipulating data. This requires it

to have a very accessible front end UI for the user to interact with. This package contains

components that help render a functional table, which can be further extended with custom

functionalities. The version used is 6.3.1.

	Refactoring an existing code base to improve modularity and quality
	Recommended Citation

	tmp.1610749804.pdf.6vsPQ

