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Table 21. Amounts and percentages of organic N mineralized 
in soils incubated at 20 or 30®C for 14 weeks 

Percentage of 
Amount of N organic N 
mineralized at mineralized at 

Soil 200C 30OC 200C 300C Ratio^ 

-(ig N/g soil— 

Iowa soils 

Ida 15 26 2.1 3.4 1.6 2.0 
Hayden 49 83 6.2 10.4 1.7 1.8 
Downs 56 111 5.4 8.5 1.6 2.3 
Luther 55 89 5.5 8.8 1.6 1.9 
Fayette 53 110 3.1 6.4 2.1 2.3 
Tama 87 194 4.7 10.4 2.2 2.5 
Lester 65 167 2.6 6.6 2.5 3.0 
Clarion 41 140 1.5 5.2 3.5 4.7 
Muscatine 57 129 2.3 5.2 2.3 2.9 
Nicollet 75 161 2.7 5.7 2.1 2.5 
Harps 26 75 0.8 1.9 2.4 4.4 
Okoboji 91 161 2.4 4.2 1.8 1.9 
Canisteo 45 103 1.2 2.7 2.3 3.0 

Chilean soils 

Alhue 43 64 3. 3 5.0 1.5 1.8 
Constitucion 47 104 4.1 9.0 2.2 1.9 
Maipo 63 110 4.0 7.0 1.8 2.0 
Agua del Gato 49 79 1.7 2.7 1.6 2. 3 
Collipulli 57 128 2.5 5.7 2. 3 3.0 
Santa Barbara 73 201 1.2 3.3 2.8 3.4 
Osorno 105 236 1.4 3.1 2.2 2.3 

^Ratio of percentage of organic N mineralized at 30®C 
to that mineralized at 20°C. 

^Calculated from the ratio of the slope of the linear 
regression equation obtained for the results of N miner­
alized at 30°C to that of N mineralized at 20°C. 
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The corresponding values for the Chilean soils ranged from 43 

to 105 fig/g and from 64 to 236 fj,g/g. Expressed as percentages 

of organic N in soils, the amounts of N mineralized in the 

Iowa soils in 14 weeks at 20 and 30°C ranged from 0.8 to 6.2% 

and from 1.9 to 10.4%, respectively. The corresponding values 

for the Chilean soils ranged from 1.2 to 4.1% and from 3.1 to 

9.0%. The amounts and percentages of organic N mineralized 

in the Iowa soils are within the ranges reported by Tabatabai 

and Al-Khafaji (1980) for other Iowa soils. 

Temperature has a marked effect on N mineralization. 

The ratios of the percentage of organic N mineralized at 30° 

to that mineralized at 20®C ranged from 1.6 to 3.5 for the 

Iowa soils, and from 1.5 to 2.8 for the Chilean soils. The 

®10 values calculated from the ratio of the slope of the 

linear regression equation obtained for the results of N 

mineralization vs time at 30®C to that of N mineralized at 

20°C ranged from 1.8 to 4.7 for the Iowa soils and from 1.8 

to 3.4 for the Chilean soils (Table 21). In general, the 

values were somewhat higher than the ratio values ob­

tained for N mineralization in 14 weeks at 30 and 20°C. 

The Q q̂ values obtained for the Iowa soils are similar to 

those reported by Tabatabai and Al-Khafaji (1980) for other 

Iowa soils. 

Statistical analysis showed that the cumulative N min­

eralized in 14 weeks at 20 and 30°C was significantly 



143 

correlated with organic C in soils (Fig. 29). The r values 

for this linear relationship was 0.55* for the N mineraliza­

tion at 20°C and 0.74*** for N mineralization at 30°C. Simi­

larly, the cumulative N mineralized at 20°C was significantly 

correlated with organic N (r = 0.57**). The corresponding 

correlation coefficient for the relationship for N miner­

alized at 30°C was 0.71*** (Fig. 30). From these results, 

it is not surprising that dry matter and N yields of corn 

and ryegrass were significantly correlated with organic C 

and total N (Fig. 13 and 14 and Table 13, Part I). 

Statistical analysis showed that the cumulative N 

mineralized at 20 and 30°C in 14 weeks was significantly, 

but negatively, correlated with soil pH (Fig. 31). 

Estimation of N Mineralization Potential of Soils 

Nitrogen mineralization potentials (N^) of the soils 

calculated from N yield of plants, soil incubation at 20 or 

30°C with successive leaching every 2 weeks for a total of 

14 weeks, or from chemical hydrolysis by certain reagents 

are reported in Table 22. The values for the mineralization 

rate constant obtained by using the exponential equation 

proposed by Stanford and Smith (1972) are reported in Table 

23. The values obtained by using the reciprocal plot 

(plotting 1/N^ vs 1/t) are shown in Table 24. The values 

obtained by using N yields of the three croppings of corn and 



Figure 29. Relationship between total N mineralized in Iowa and Chilean field-
moist soils incubated in leaching columns at 20 or 30®C and organic C; 
the mineral N produced was removed by leaching with 5 nM CaCl^ every 
2 weeks for a total of 14 weeks 
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Figure 30. Relationship between total N mineralized in Iowa and Chilean field-
moist soils incubated in leaching columns at 20 or 30®C and organic N 
in soils; the mineral N produced was removed by leaching with 5 itM 
CaCl2 every 2 weeks for a total of 14 weeks 
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Figure 31. Relationship between total N mineralized in Iowa and Chilean field-
moist soils incubated in leaching columns at 20 or 30®C and pHj the 
mineral N produced was removed by leaching with 5 itM CaCl? every 2 
weeks for a total of 14 weeks 
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Table 22. Nitrogen mineralization potential (N^) calculated from N yield of plants, soil incuba­
tion at 20 or 30°C with successive leachings up to 14 weeks, or chemical hydrolysis by 
certain reagents^ 

NQ calculated from 
N yields 

N at indicated 
o^ c 
temperature 

NQ calculated from hydrolysis with 
reagent specified 

Soil Corn Ryegrass 20°C 30°C 2 M KCl PBB 1 M NaOH 0.5 M NaOH 

mg N/kg soil 

Iowa soils 

Ida - ( - ) 34 (58) 21 ( 55) 100 ( 79) 7 (10) 29 ( 42) 69 (115) 36 ( 70) 

Hayden 26 ( 32) 36 (48) 110 (104) 190 ( - ) 5 ( 7) 39 ( 46) 84 ( 99) 70 ( 90) 

Downs 37 ( 50) 52 (78) 77 ( 68) 187 (254) 11 (13) 66 ( 76) 134 (270) 86 (114) 
Luther 35 ( 46) 40 (58) 78 (126) - ( - ) 7 ( 8) 66 ( 88) 116 (192) 92 (192) 
Fayette 78 (104) 50 (64) 115 ( 96) 577 ( - ) 16 (18) 98 (130) 175 (204) 135 (175) 
Tama 68 ( 82) 64 (82) 162 (200) - ( - ) 12 (13) 134 (181) 237 (313) 177 (213) 
Lester 99 (130) 56 (76) 160 ( 90) - ( - ) 21 (27) 153 (400) 284 (333) 205 (250) 
Clarion 208 ( - ) 42 (60) 60 ( 45) - ( - ) 21 (20) 188 (397) 328 (385) 243 (294) 
Muscatine - (277) 36 (48) 79 (71) - ( - ) 19 (22) 161 (299) 280 (333) 234 (303) 
Nicollet 100 (136) 44 (64) 182 (120) - ( - ) 18 (19) 181 (291) 325 (556) 240 (255) 
Harps 33 ( 38) 36 (46) 29 ( 27) - ( - ) 23 (29) 173 (385) 291 (625) 204 (357) 
Okoboji 95 ( 99) 52 (84) 175 (206) 699 ( - ) 17 (17) 156 (196) 293 (357) 225 (278) 
Canisteo ( - ) 34 (46) ( 43) ( - ) 26 (27) 182 (322) 356 (435) 271 (345) 

Chilean soils 

Alhue 76 (106) 80(104) 48 ( 59) 147 (194) 12 (10) 57 ( 68) 99 (137) 64 ( 85) 

Constitucion 106 (141) 92(134) - ( - ) 152 (156) 12 (15) 45 ( 55) 96 (116) 57 ( 66) 

Maipo 67 ( 91) 56 (80) 98 (117) 625(1773) 14 (15) 60 ( 95) 157(1000) 63 ( 87) 



Agua del Gato 86 (112) 66 (90) 49 ( 52) 246 (207) 20 (37) 101 (179) 260 (625) 126 (204) 
Collipulli 106 (130) 54 (72) 58 ( 61) 261 (178) 23 (24) 128 (206) 238 (588) 153 (250) 
Santa Barbara 163 (209) 74 (72) 81 ( 83) 366 (365) 43 (39) 211 (298) 541(1000) 319 (833) 
Osorno 201 (234) 144(186) 146 (166) 337 (379) 89 (62) 430 (861) 798(1000) 453 (667) 

^Calculated by using the exponential equation of Stanford and Smith (1972) or the double 
reciprocal plot (figures in parentheses); - indicates that the convergence of the nonlinear model 
did not occur using 50 iterations (application of the double reciprocal plot on the same data 
showed negative values for N^). 

using N yield of corn tops + roots of three croppings and subtracting the N content in 
tops and roots of seedling grown in sand culture for 10 days. For ryegrass, the N yield of the 
three cuttings were used. 

'^Calculated from cumulative N mineralized in soils incubated in leaching columns at 20 or 
30°C and leached with 5 mM CaClg every 2 weeks for a total of 14 weeks. 

'^The methods used are described in captions of Figures 32, 33, and 34 for NaOH, 2 M KCl, and 
PBB (phosphate-borate buffer), respectively. 



Table 23. Nitrogen mineralization rate constant (k) calculated by using the expo­
nential equation of Stanford and Smith (1972) from N yield of plants, 
soil incubation at 20 or 30°C and successive leachings up to 14 weeks, 
or chemical hydrolysis by certain reagents^ 

k calculated 
from N yields^ 

k at indicated 
temperature^ 

k calculated from hydrolysis 
from reaaent specified^ 

Soil Corn Ryegrass 20OC 30®C 
1 M 0.5 M 

2 M KCl PBB NaOH NaOH 

days ^ weeks ^ hours ^ minutes"^ 

Iowa soils 

Ida 0. 0199 0. 0986 0. 0214 0. 1871 0. 0863 0. 0810 0. 0854 
Hayden 0. 0137 0. 0356 0. 4210 0. 0417 0. 3605 0. 1822 0. 1742 0. 1246 
Downs 0. 0106 0. 0255 0. 0855 0. 0637 0. 1859 0. 1593 0. 0710 0. 1424 
Luther 0. 0204 0. 0275 0. 0864 - 0. 2472 0. 0612 0. 0826 0. 0787 
Fayette 0. 0118 0. 0345 0. 0433 0. 0152 0. 1616 0. 0683 0. 1617 0. 1143 
Tama 0. 0287 0. 0324 0. 0540 - 0. 2633 0. 0833 0. 1298 0. 1573 
Lester 0. 0119 0. 0284 0. 0359 - 0. 1946 0. 0556 0. 1500 0. 1463 
Clarion 0. 0053 0. 0252 0. 0738 - 0. 1061 0. 0536 0. 1847 0. 1447 
Muscatine - 0. 0315 0. 0848 - 0. 1450 0. 0598 0. 1460 0. 1213 
Nicollet 0. 0088 0. 0259 0. 0368 - 0. 1855 0. 0682 0. 0811 0. 0833 
Harps 0. 0266 0. 0322 0. 1400 - 0. 1066 0. 0406 0. 0786 0. 0809 
Okoboji 0. 0060 0. 0207 0. 0530 0. 0189 0. 2093 0. 0919 0. 1481 0. 0072 
Canisteo - 0. 0271 — - 0. 1289 0. 0535 0. 1405 0. 1150 

Chilean soils 

Alhue 0. ,0202 0. ,0178 0. ,1386 0. ,0402 0. 0866 0. , 1109 0. ,0853 0. 1000 
Consti tuci onO. ,0194 0. ,0267 - 0, ,0825 0. 2023 0. ,0441 0. 1509 0. 1965 



Maipo 
Àgua del 
Gato 

Collipulli 
Santa 
Barbara 

Osorno 

0.0191 

0.0204 
0.0089 

0.0157 
0.0318 

0.0278 

0.0308 
0.0322 

0.0451 
0.0354 

0.0689 

0.1804 
0.1719 

0.1407 
0.0870 

a»b,c,dg^^ footnotes of Table 22 

0.0138 

0.0275 
0.0465 

0.0565 
0.0822 

0.1478 

0.0714 
0.2644 

0.1168 
0.0691 

0.0517 

0.0399 
0.0698 

0.0731 
0.0449 

0.0479 

0.0552 
0.0710 

0.0759 
0.1228 

0.1028 

0.0830 
0.0974 

0.0637 
0.1255 



Table 24. Nitrogen mineralization rate constant (K.) calculated by using the 
double reciprocal plot from N yield of plants, soil incubation at 
20 or 30°C and successive leaching up to 14 weeks or chemical 
hydrolysis with certain reagents^ 

calculated at indicated calculated from hydrolysis 
from N yields^ temperature with reagent specified^ 

Soil Corn Ryegrass 20OC 30°C 
2 M 
KCl PBB 

1 M 
NaÔH 

0.5 
NaOH 

dayS"————— weeks-— — — —  hours 

Iowa soils 

Ida — 84 21.6 31.7 6.7 16 22 27 
Hayden 61 29 18.4 - 3.8 4 5 8 
Downs 108 56 6.3 19. 3 5.5 4 33 8 
Luther 52 47 18.0 - 3.7 19 21 32 
Fayette 95 30 14.8 - 5.2 16 5 9 
Tama 29 33 20.2 - 2.9 14 9 6 
Lester 101 42 5.0 - 6.0 57 5 6 
Clarion - 50 5.4 - 6.6 44 41 6 
Muscatine 443 34 6.7 - 6.6 33 6 9 
Nicollet 134 50 12.7 - 4.2 23 23 15 
Harps 27 32 3.5 - 11.7 60 34 23 
Okoboji 136 79 19. 8 - 2.9 11 6 7 
Canisteo —  42 6.5 — 6.1 34 6 9 

Chi lean soils 

Alhue 60 60 6.8 30.3 7.3 8 14 11 
Constitucion 57 52 - - 5.3 23 6 4 



Maipo 61 47 14.4 
Agua del Gato 51 39 3.4 
Collipulli 112 36 3.5 
Santa Barbara 65 15 4.4 
Osorno 23 29 10.2 

footnotes of Table 22. 

207.8 
26.1 
9.5 
13.9 
10.7 

0.6 30 
25.8 45 
2. 3 23 
5.3 17 
6.6 47 

180 12 
51 20 
42 18 
27 51 
8 12 
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three cuttings of ryegrass were markedly different and, in 

general, the results by the exponential equation markedly 

different from those calculated by using the reciprocal plot. 

Similarly, the calculated from the N mineralization in soil 

columns incubated at 20°C were markedly different from those 

obtained for N mineralization at 30®C. Temperature is not 

included in the exponential equation proposed by Stanford and 

Smith (1972) and, if this equation predicts N^, then the 

values obtained for N mineralization at 20°C should be simi­

lar to those obtained for incubation at 30®C. The results 

obtained for N yields or N mineralization for some soils 

did not obey the exponential equation; convergence of the non­

linear model did not occur by using 50 iterations. Similarly, 

the results obtained from the leaching columns, especially 

at 30®C, did not obey the exponential or the reciprocal model, 

and NQ could not be calculated (Table 22). 

The calculated, by using the exponential equation and 

the reciprocal plot, from the results obtained by successive 

5 min steam distillation with phosphate-borate buffer, 1 M 

NaOH, or 0.5 M NaOH, or by heat hydrolysis with 2 M KCl 

showed that the results varied considerably, depending upon 

the reagent used and method of calculation. 

The nitrogen mineralization rate constant (k) calculated 

by using the N yields of corn and ryegrass, the values of N 

mineralization at 20 and SO^C, and the release of NH^-N by 
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steam distillation with phosphate-borate buffer varied con­

siderably among the soils and method used (Table 23). The 

units were in weeks'^, days"^, hours and minutes"^, de­

pending on the method used in determination of the mineral N 

produced. The k values obtained for N mineralization in 

leaching columns incubated at 20 or 30®C were within the same 

order of magnitude as those reported by Stanford and Smith 

(1972) for 39 soils from the United States. 

The values (the time required to hydrolyze 50% of N^) 

calculated by using the reciprocal plot varied considerably 

among the soils and the method used (Table 24). The units 

are expressed in weeks, days, hours, and minutes depending on 

the method used in determination of the mineral N produced. 

Statistical analysis showed that the dry matter and N 

yields of corn tops + roots were significantly correlated 

with NQ calculated by using the reciprocal plot from the 

results obtained by successive 5 min hydrolysis of soil N 

with 0.5 M NaOH (Fig. 32). Similarly, the dry matter and N 

yields of corn tops + roots were significantly correlated 

with calculated by using the reciprocal plot from the 

results obtained by heat hydrolysis with 2 M KCl (Fig. 33). 

In the relationships between dry matter yield or N yield and 

NQ reported in Figures 32 and 33, the Iowa and Chilean soils 

fitted the same linear relationships. Regression analysis 

for the relationship between dry matter yield or N yield of 



Figure 32. Relationship between dry matter yield or N yield of corn tops + 
roots produced in three croppings and N mineralization potential 
(Nq) calculated from the values obtained by six successive 5 min 
steam distillation of 1 g soil with 10 ml of 0.5 M NaOHj a double 
reciprocal plot (1/t vs l/N^) was used to calculate Nq, where t = 
time of incubation and = cumulative N mineralized at time (t) 
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Figure 33. Relationship between dry matter yield or N yield of corn tops + 
roots produced in three croppings and N mineralization potential 
(Nq) calculated from the values obtained by hydrolysis with 2 M 
KCl (4 g soil/40 ml 2 M KCl) at lOQoc for 2, 3, 4, 6, and 20 hours; 
the NQ was calculated as described in the caption of Figure 32 
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corn tops + roots and calculated from hydrolysis with 

phosphate-borate buffer showed that the Chilean soils fitted 

a different linear relationship than that of Iowa soils 

(Fig. 34). These relationships were significant, except for 

that between dry matter yield and of the Iowa soils. 

Among the values calculated by the different methods 

and reagents, the highest significant linear relationship 

between dry matter yield or N yield of ryegrass and was 

obtained when the was calculated from the results of hy­

drolysis with 2 M KCl (Fig. 35). These and other r values 

for the relationships discussed above are summarized in 

Table 25. 

Further statistical analysis showed that the values 

calculated by the exponential equation for the results of N 

mineralization obtained for leaching columns incubated at 

30°C were significantly correlated (r = 0.85**) with 

calculated by the reciprocal plot for the results of heat 

hydrolysis with 2 M KCl (Fig. 36). Three points, however, 

deviated from this relationship. Similarly, the values 

calculated by the exponential equation for the results of N 

mineralization obtained for leaching columns incubated at 

30°C were significantly correlated, but curvilinearly (r = 

0.91**) with values calculated by the reciprocal plot for 

the results of hydrolysis with phosphate-borate buffer 

(Fig. 36). 



Figure 34. Relationship between dry matter yield or N yield of corn tops + 
roots produced in three croppings and N mineralization potential 
(Nq) calculated from the values obtained by six successive 5 min 
steam distillation of 1 g soil with 15 ml of phosphate-borate 
buffer (pH = 11.8); the was calculated as described in the 
caption of Figure 32; the upper regression lines are for the 
Chilean soils, the lower regression lines are for the Iowa soils, and 
the middle regression lines are for the Iowa and Chilean soils 
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Figure 35. Relationship between dry matter yield or N yield of three cuttings 
of ryegrass and N mineralization potential (Nq) calculated from the 
values obtained by hydrolysis with 2 M KCl (4 g soil/40 ml 2 M KCl) 
at lOQoc for 2, 3, 4, 6, and 20 hours; the No was calculated as 
described in the caption of Figure 32 
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Table 25. Correlation coefficients (r) between nitrogen 
mineralization potentials (Np) obtained with 
different methods and plant indexes 

Corn 

N 

N yield 
(tops + (tops + Dry matter 

o roots) roots) yield N yield 

-r-

N at 300C^ 0.22 0.05 0.03 -0.04 o 

^o N at 200C^ 0.22 0.21 0.30 0.25 

N by 2 M KCl 
hydrolysis^ 0.74*** 0.80*** 0.70*** 0.58*** 

Nq by phosphate- , 
borate hydrolysis 0.61** 0.71*** 0.51** 0.55* 

Nq by 1 M NaOH-
hydrolysis^ 0.59** 0.60** 0.47* 0.46* 

Nq by 0.5 m NaOH-
hydrolysisb 0.68*** 0.79*** 0.46* 0.47* 

^Stanford and Smith (1972). 

'^Present investigation. Calculated by using the re­
ciprocal plot. 

*,**,***Significant at P < 0.05, 0.01, 0.001, 
respectively. 



Figure 36. Relationship between N mineralization potential (N^) calculated from 
the results obtained in mineralization of N and those obtained in 
hydrolysis with 2 M KCl at 100®C or by successive steam distillation 
with phosphate-borate buffer (pH = 11.8); the results of N mineraliza­
tion were obtained by incubating soils in leaching columns at 30°C; 
the mineral N produced was removed by leaching with 5 itM CaCl2 every 
2 weeks for a total of 14 weeks; the exponential equation of Stanford 
and Smith (1972) was used to calculate the Nqvalues with 2 M KCl 
and phosphate-borate buffer were calculated as described in the 
caption of Figure 32; F, Fayette; M, Maipo; O, Okoboji 
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SUMMARY AND CONCLUSIONS 

The objectives of this study were: (1) to study the 

relationships between the available N determined by biologi­

cal and chemical methods and plant uptake of organic N in 

soils, and (2) to assess the potentially mineralizable N 

and N mineralization rates in selected Iowa and Chilean 

soils. The findings can be summarized as follows: 

1. The cumulative dry matter yields and N yields of 

roots produced in three croppings of corn grown under green­

house conditions were greater than those of corn tops. In 

general, the dry matter yields of tops and roots and their 

ratios decreased with successive cropping. Similarly, the 

ratios of N yields of tops and roots decreased with succes­

sive cropping. Nitrogen mineralization in the soils used 

was not rapid enough to meet the crop needs, and N defi­

ciency symptoms were increasingly observed with successive 

cropping with corn. This apparently resulted in the lower 

tops/roots ratio in the third cropping as compared with 

that of the first cropping. 

2. Both dry matter yields and N yields decreased with 

successive cutting of ryegrass, and the values obtained for 

ryegrass were lower than those obtained for corn tops. The 

dry matter yields of ryegrass roots were not obtained, and 

it is not possible to compare the significance of N yields 

of ryegrass roots with those obtained for corn roots. 
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3. In general, the dry matter or N yield of corn tops 

and roots was significantly correlated with each of the 7 

biological indexes studied. The amounts of mineral N pro­

duced in 14 days at 30°C under aerobic or waterlogged condi­

tions showed the highest correlation coefficients with corn 

dry matter or N yield. This was especially true when corn 

tops + roots were considered. Among the biological methods 

studied, the amounts of mineral N produced on incubation of 

soils under aerobic conditions at 30°C for 14 days were the 

most significantly correlated with dry matter and N yields 

of ryegrass. 

4. Among the chemical indexes studied, the values ob­

tained by heat hydrolysis with 2 M KCl for 20 hours, hydroly­

sis by autoclaving in the presence of 0.01 M CaClg, and hy­

drolysis with acid NagCrO^ showed the highest correlation 

coefficients for the relationships between these indexes and 

dry matter or N yield of corn tops, corn roots, or total 

corn tops + roots. Two regression lines were obtained (one 

for each of the Iowa and Chilean soils) for the relation­

ships between dry matter or N yields and the values obtained 

for hydrolysis by acid Na2CrO^. The values obtained by this 

method were significantly correlated with dry matter yield 

of corn tops + roots (r = 0.97***) and N yield (r = 0.96***) 

obtained for the Chilean soils. The values obtained by this 

method were not significantly correlated with the dry matter 
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yield obtained for corn grown on the Iowa soils, but they 

were significantly correlated at P < 0.05 when the N yields 

were considered (r = 0.60*). 

5. The values obtained by the chemical methods de­

scribed above (under 4) were significantly correlated (P < 

O.OOl) with dry matter or N yields of the three cuttings of 

ryegrass produced on the Iowa and Chilean soils. Regression 

analysis showed that organic C and total N were not as sig­

nificantly correlated with dry matter or N yields of rye­

grass as with those of corn tops + roots produced on the 

same soils. 

6. Among the alkali and alkaline reagents tested, the 

amounts of NH^-N released by steam distillation of soil for 

5 min with 1 M KOH, 1 M NaOH, 1 M LiOH, 4 M K^CO^, or 

phosphate-borate buffer (pH = 11.2 or 11.8) were the most 

significantly correlated with dry matter and N yields of 

three croppings of corn. Regression analysis showed that 

when the soils studied were grouped according to origin 

(Iowa or Chile), the amounts of NH^-N released from the 

Chilean soils by direct steam distillation for 5 min with 

1 M NaOH were highly significantly correlated with dry 

matter yields (r = 0.95***) and N yields (r = 0.96***) of 

tops + roots of three croppings of corn. This index was not 

significantly correlated for the dry matter yields obtained 

with the Iowa soils, but were significantly correlated (P < 
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0.05) with N yields, 

7. In general, the dry matter and N yields of the three 

cuttings of ryegrass were not as significantly correlated as 

those of corn tops + roots with the amount of NH^-N releasea 

by direct steam distillation of soils with the alkaline re­

agents studied. 

8. Statistical analysis showed that the values obtained 

with several of the chemical methods and alkali and alkaline 

reagents were significantly correlated with the values ob­

tained by the biological methods. Similarly, the values ob­

tained by direct steam distillation of soil for 5 min with a 

number of the alkali and alkaline reagents studied were sig­

nificantly correlated with those obtained by the traditional 

chemical methods. The highest r values, however, were ob­

tained by using 1 M LiOH, NaOH, or KOH. 

9. The relationship between the cumulative N miner­

alized and time of incubation was linear for some soils and 

slightly curvilinear with others. As expected, significantly 

higher amount of N was mineralized at 30°C than at 20®C in 

each of the soils studied. Expressed as percentages of or­

ganic N in soils, the amounts of N mineralized in the 13 

Iowa soils in 14 weeks at 20 and 30°C ranged from 0.8 to 

6.2% and from 1.9 to 10.4%, respectively. The corresponding 

values for the Chilean soils ranged from 1.2 to 4.1% and 

from 3.1 to 9.0%. The ratios of the percentage of organic N 
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mineralized at 30®C to that mineralized at 20^0 ranged from 

1.6 to 3.5 for the Iowa soils, and from 1.5 to 2.8 for the 

Chilean soils. The Q q̂ values calculated from the ratio of 

the slope of the linear regression equation obtained for the 

results of N mineralization vs time at 30°C to that of N 

mineralized at 20°C ranged from 1.8 to 4.7 for the Iowa 

soils and from 1.8 to 3.4 for the Chilean soils. 

10. The cumulative N mineralized in 14 weeks at 20 and 

30OC was significantly correlated with organic C and N in 

soils. The cumulative N mineralized at both temperatures 

in 14 weeks, however, was significantly, but negatively, 

correlated with soil pH. 

11. The values obtained by using N yields of the 

three croppings of corn and three cuttings of ryegrass were 

markedly different, and, in general, the results by the ex­

ponential equation markedly different from those calculated 

by using the reciprocal plot. Similarly, the calculated 

from the N mineralization in soil columns incubated at 20°C 

were markedly different from those obtained for N min­

eralization at 30°C. The k values obtained for N mineraliza­

tion in leaching columns incubated at 20 or 30®C were within 

the same order of magnitude as those reported by Stanford 

and Smith (1972) for 39 soils from the United States. 

12. Among the values calculated by the different 

methods and reagents, the highest significant linear rela­
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tionship between dry matter yield or N yield of ryegrass and 

N was obtained when the N was calculated from the results o o 

of hydrolysis with 2 M KCl (r = 0.70*** for dry matter yield 

and 0.68*** for N yield). The values calculated by the 

exponential equation for the results of N mineralization ob­

tained for leaching columns incubated at SCC were signifi­

cantly correlated, but curvilinearly (r = 0.91**) with 

values calculated by the reciprocal plot for the results of 

hydrolysis with direct steam distillation with phosphate-

borate buffer. 
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APPENDIX 



Table 26. Dry matter yields, total N, and N yields of above 
ground parts of three croppings of corn grown in 
soils under greenhouse conditions 

Dry matter yield 

Cropping Rep 
Soil no. I II III 

g/pot— 
Iowa soils 

Ida 1 0. ,60 0. 82 0. 66 
2 0. ,84 0. 66 0. 75 
3 0. ,41 0. 47 0. 55 

Hayden 1 0, ,74 0. 89 0. 75 
2 0. ,73 0. 58 0. 58 
3 0. ,43 0. 43 0. 40 

Downs 1 0. ,78 0. 77 0. 67 
2 0. ,55 0. 60 0. 57 
3 0. 30 0. 44 0. 33 

Luther 1 0. ,89 0. 82 0. 73 
2 0. 60 0. 52 0. 59 
3 0. 33 0. 41 0. 38 

Fayette 1 1. ,39 1. 28 1. 23 
2 0. ,92 1. 15 0. 81 
3 0. ,42 0. 56 0. 49 

Tama 1 1. , 14 1. 27 1. 27 
2 0. ,50 0. 50 0. 45 
3 0. ,46 0. 46 0. 51 

Lester 1 1. 15 1. 15 1. 05 
2 1. 85 0. 91 0. 70 
3 0. 71 0. 69 0. 63 

Clarion 1 1. ,10 1. 04 1. 15 
2 0. 81 0. 78 0. 62 
3 0. ,48 0. 45 0. 65 

Muscatine 1 0. ,76 0. 97 0. 67 
2 0. ,66 0. 58 0. 71 
3 0. ,38 0. 47 0. 46 

Nicollet 1 1. 16 1. 21 1. 09 
2 0. 93 0. 95 0. 88 
3 0. 69 0. 68 0. 70 
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Total N N yield 

I 

Rep 

II III I 

Rep 

II III 

1.80 1. 39 1.60 10. 80 11.40 10.56 
1.18 1.24 1..35 9.91 8.18 10.13 
1. 77 1.41 1.49 7.26 6.63 8.20 

1. 38 1. 25 1.51 10.21 11.13 11.33 
1.22 1.18 1.24 8.91 6.84 7.19 
1.73 1.50 1.48 7.44 6.45 5.92 

1.20 1.22 1.28 9.36 9.39 8.58 
1.27 1.27 1.44 6.99 7.62 8.21 
2.19 1.64 1.80 6.57 7.22 5.94 

1.40 1.42 1.55 12.46 11.64 11.32 
1. 57 1. 25 1.34 9.42 6.50 7.91 
1.77 1.63 1.70 5.84 6.97 6.46 

1.13 1.25 1.43 15.71 16.00 17.59 
1.33 1.13 1.17 12.24 13.00 9.48 
2. 33 1.66 1.84 9.79 9.30 9.02 

1.46 1.57 1.73 16.64 19.94 21.97 
1.72 1.60 2.05 8.60 8.00 9. 23 
1.66 1.52 1.73 7.64 6.99 8.82 

1.27 1.49 1.76 14.61 17.14 18.48 
1. 39 1.27 1. 31 11.82 11.56 9.17 
1.88 1. 36 1.54 13. 35 9.38 9.70 

1.22 1. 59 1.24 13.42 16.54 14.26 
1.05 1. 26 1. 34 8.51 9.83 8.31 
2.05 1.57 1.64 9. 84 7.07 10.66 

1.49 1.49 1.67 11.32 14.45 11.19 
1.52 1.32 1.34 10.03 7.66 9.51 
2.23 1.63 2.22 8.47 7.66 10.21 

1.41 1. 30 1.32 16. 36 15.73 14. 39 
1.47 1.06 1. 30 13.67 10.07 11.44 
1.45 1.49 1.57 10.00 10.13 10.99 



Table 26. (Continued) 

Dry matter yield 

Soil 
Cropping Rep 

Soil no. I II III 

g/pot— 

Harps 1 0.91 0.99 0.88 
2 0.68 0.46 0.59 
3 0.48 0.70 0.52 

Okoboji 1 1.04 1.13 1. 39 
2 0.57 0.79 0.57 
3 0.50 0.54 0.59 

Canisteo 1 0.88 0.98 0.79 
2 0.61 0.66 0.65 
3 0.49 0.55 0.51 

Chilean soils 

Alhue 1 1.40 1.46 1.47 
2 1.10 1.14 1.10 
3 0.61 0.48 0.74 

Constitucion 1 1.56 1.51 1.45 
2 1.14 1.03 0.90 
3 0.44 0.58 0.56 

Maipo 1 1. 32 1.25 1.30 
2 1.04 0.93 1.11 
3 0.53 0.53 0.77 

Agua del Gato 1 1.18 1.09 1.20 Agua del Gato 
2 0.86 0.77 0. 83 
3 0.54 0.42 0.63 

Collipulli 1 0.84 1.12 0.90 
2 0. 86 0.90 0.76 
3 0.60 0.50 0.56 

Santa Barbara 1 2.15 2.30 2.35 
2 1.18 1.17 1.22 
3 0.88 0.76 0.84 

Osorno 1 3.50 3.33 3.23 
2 1.44 1. 34 1.23 
3 0.92 0.95 0.91 
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Total N N yield 

—Rep Rep 
II III I II III 

% -mg N/pot— 

1.38 1. 31 1.57 12.56 12.97 13. 82 
1.39 1. 38 1. 39 9.45 6.35 8.20 
1.66 1.33 1.71 7.97 9.31 8,89 

1.29 1.17 1.42 13.42 13.22 19.74 
1.35 1.13 1. 87 7.70 8.93 10.66 
1.79 1.86 1.65 8.95 10.04 9.74 

1.14 1.29 1.25 10.03 12.64 9.88 
1.57 1.32 1.31 9.58 8.71 8.52 
1.73 1.62 1.70 8.48 8.91 8.67 

1.31 1.41 1.37 18. 34 20.59 20.14 
1.30 1.24 1.15 14.30 14.14 12.65 
1.89 1.71 1.35 11.53 8. 21 9.99 

1.59 1.95 1.62 24.80 29.44 23.49 
1.41 1.46 1.47 16.07 15.04 13.23 
2.47 1. 88 1. 84 10. 87 10.90 10. 30 

1.27 1.27 1.55 16.76 15.88 20.15 
1.25 1.23 1.08 13.00 11.44 11.99 
2.00 1.46 1.41 10.60 7.74 10. 86 

1.71 1.71 1.91 20.18 18.64 22.92 
1. 34 1.42 1. 34 11.52 10.93 11.12 
1.94 1.83 1.47 10.48 7.69 9.26 

1.77 1.53 1.73 14.87 17.14 15.57 
1.16 1.13 1.06 9.98 10.17 8.06 
2.02 1.92 1. 84 12.12 9.60 10. 30 

1.34 1.23 1.34 28.81 28.29 31.49 
1.20 1.23 1.18 14.16 14.39 14.40 
1.52 1.71 1.54 13.38 13.00 12.94 

1.48 1.53 58 51.80 50.95 51.03 
1.04 1.20 1. 32 14.98 16.08 16.24 
1.76 1.51 1.44 16.19 14.35 13.10 



Table 27. Dry matter yields, total N, and N yields of roots 
of three croppings of corn grown in soils under 
greenhouse conditions 

Dry matter yield 

Cropping Rep 
Soil no. I II III 

g/pot 
Iowa soils 

I da 1 0. 86 0.97 0. 89 
2 1.05 1.06 1.14 
3 0.95 0.95 1.26 

Hayden 1 0.93 0.87 0.98 
2 0.88 0.50 0.79 
3 0. 84 0.74 1.02 

Downs 1 1.00 0.87 0. 83 
2 0.83 0.61 0.72 
3 0.65 0.94 0.65 

Luther 1 1.16 1.16 0.87 
2 0.89 0.65 0.78 
3 0. 89 0. 86 0.81 

Fayette 1 1. 31 1.46 1. 23 
2 1.10 1.14 0. 87 
3 0.94 1.03 0.78 

Tama 1 1.29 1.45 1.43 
2 0. 86 0.61 0.64 
3 0. 87 0.69 0.83 

Lester 1 1.48 1.48 1.67 
2 1.22 1.16 1. 30 
3 1.10 1.01 1.01 

Clarion 1 1.64 1.44 1.24 
2 1.16 1.00 0.87 
3 0.91 1.09 1.10 

Muscatine 1 1.08 1. 35 1.08 
2 1.18 1.16 1. 09 
3 1.01 1.10 1.09 

Nicollet 1 1. 27 1. 34 1. 30 
2 1.08 1. 35 1. 24 
3 1.01 0.97 1.08 



Total N N yield 

I II III I 
Rep 
II III 

1.12 0.96 1.14 9.63 9.31 10.15 
1.11 1.32 1.05 11.66 13.99 11.97 
1.50 1.19 1. 38 14.25 11.31 17.39 

1.07 1.12 0.94 9.95 9.74 9. 21 
1.08 1.56 1.22 9.50 7.80 9.64 
1.32 1.14 1.28 11.09 8.44 13.06 

1.54 1.20 1. 32 15.40 10.44 10.96 
1. 34 1.39 1.35 11.12 8.48 9.72 
1.63 1. 39 1.63 10.60 13.07 10.60 

1.28 1.24 1.09 14. 85 14. 38 9.48 
1.18 1.61 1.31 10.50 10.46 10.22 
1.45 1.11 1. 20 12.91 9.55 9.72 

0.93 1.20 0.90 12.18 17.52 11.07 
0.99 0.98 1.04 10. 89 11.17 9.05 
1. 50 1.26 1.31 14.10 12.98 10.22 

1.35 1. 33 1.43 17.42 19.28 20.45 
1.49 1.69 1.58 12.81 10. 31 10.11 
1.42 1.52 1.46 12.35 10.49 12.12 

1.08 1.07 1.04 15.98 15.84 17.37 
1.06 1.13 1.05 12.93 13.11 13.65 
1.18 1.16 1.12 12.98 11.72 11.31 

1.05 1.24 1.09 17.22 17.86 13. 52 
1.20 1.17 1.23 13.92 11.70 10.70 
1.32 1.12 1.22 12.01 12.21 13.42 

1.28 1. 12 1.15 13.82 15.12 12.42 
1.26 1.13 1. 37 14.87 13. 11 14.93 
1.66 1.46 1.49 16.77 16.06 16. 24 

1.25 1.22 0.93 15. 88 16.35 12.09 
0.88 0.93 1.04 9.50 12.56 12.90 
1. 32 1.24 1.25 13. 30 12.03 13.50 



Table 27. (Continued) 

Dry matter yield 

Cropping Rep 
Soil no. I II III 

g/pot 

Harps 1 1.43 1.08 1.37 
2 0.72 0.60 0. 82 
3 0.80 0.88 0.91 

Okoboji 1 1.19 1.08 0.86 
2 0.86 0.92 0.72 
3 1.00 0.89 0. 87 

Clarion 1 1.33 0.87 0.94 
2 0.91 0.89 0.92 
3 1.12 0. 85 0.99 

Chilean soils 

Alhue 1 1.72 1.54 1.45 
2 0.93 1.13 1.02 
3 0.93 0.80 1.06 

Constitucion 1 1.72 1.42 1.50 
2 1.08 0.91 0.92 
3 0.78 1.02 0.99 

Maipo 1 1.28 1.59 1.24 
2 1.25 1.02 1.22 
3 0.78 0.94 0.96 

Agua del Gato 1 1. 38 1.36 1.53 Agua del Gato 
2 1.11 0.98 1.06 
3 0.94 0.76 1.08 

Collipulli 1 1.34 1. 35 1.55 
2 1.29 1.41 1.02 
3 1.05 0.96 0.94 

Santa Barbara 1 2.43 2.36 2.52 
2 1.45 1.67 1.57 
3 1.67 1.45 1.61 

Osorno 1 3. 59 3.12 3.16 
2 1. 23 1.24 1.28 
3 1.44 1.45 1.41 
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Total N N yield 

—Rep Rep 
II III I II III 

% 

1.04 0.95 1.03 14.87 10.26 14.11 
0.91 1. 31 1.19 6.55 7.86 9.76 
1.14 0.97 1.23 9.12 8.54 11.19 

1.08 0.93 0.98 12. 85 10.04 8.43 
1. 30 1.21 1.51 11.18 11.13 10.87 
1. 30 1.33 1.67 13.00 11.84 14.53 

1.14 1.00 0.92 15.16 8.70 8.65 
1. 31 1.11 1.27 11.92 9. 88 11.68 
1. 38 1.31 1.50 15.46 11. 14 14.85 

1.12 1.00 0.92 19.26 15.40 13. 34 
0.92 1.14 1.00 8.56 12.88 10.20 
1.01 1.12 1.01 9.39 8.96 10.71 

1.16 1.21 1.09 19.95 17.18 16.35 
0.97 1.49 1.11 10.48 13.56 10.21 
1. 35 1.13 1.22 10.53 11.53 12.08 

1.12 1.14 1.03 14.34 18.13 12.77 
0. 80 0.99 0.88 10.00 10.10 10.74 
1.05 1.03 1.03 8.19 9.68 9. 89 

1.34 1.43 1.18 18.49 19.45 18.05 
1.03 1.42 1.10 11.43 13.92 11.66 
1. 32 1. 31 1.20 12.41 9.96 12.96 

1.18 1.18 1.06 15. 81 15.93 16.43 
1.09 1.15 1.00 14.06 16.22 10.20 
1.44 1.40 1.45 15.12 13.44 13.63 

1.10 1.06 0.93 26.73 25.02 23.44 
1.00 0.98 0.96 14.50 16.37 15.07 
1.02 1.10 1.11 17.03 15.95 17.87 

1.16 1.24 1.06 41.64 38.69 33.50 
0.76 0.90 0.98 9.35 11.16 12.54 
1.03 1.10 1.05 14.83 15.95 14.81 



Table 28. Dry matter yields, total N, and N yields of three 
cuttings of above ground parts of ryegrass grown 
in soils under greenhouse conditions 

Dry matter yield 

Cropping Rep 
Soil no. I II III 

g/pot 

Iowa soils 

Ida 1 0.38 0.36 0.33 
2 0.34 0.32 0.42 
3 0.18 0.11 0.16 

Hayden 1 0.53 0.49 0.47 
2 0.36 0.35 0. 39 
3 0.15 0.08 0.12 

Downs 1 0.38 0.34 0. 33 
2 0.27 0.38 0. 36 
3 0.08 0.12 0.09 

Luther 1 0.50 0.47 0.48 
2 0.49 0.46 0.52 
3 0.16 0.12 0.11 

Fayette 1 0.60 0.64 0.62 
2 0.42 0.48 0.44 
3 0.22 0.17 0.14 

Tama 1 0.76 0.71 0.66 
2 0.50 0.49 0.52 
3 0.14 0.20 0.25 

Lester 1 0.70 0.65 0.71 
2 0.43 0.48 0.50 
3 0.20 0.23 0.27 

Clarion 1 0.53 0.56 0.57 
2 0.51 0.43 0.42 
3 0.20 0.20 0.20 

Muscatine 1 0.51 0.42 0.48 
2 0.34 0. 32 0.35 
3 0.21 0.14 0.16 

Nicollet 1 0.49 0.57 0.63 
2 0.46 0.44 0.51 
3 0.19 0.13 0.19 
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Total N N yield 

Rep Rep 
II II III I II III 

% mg N/pot' 

2.04 1.74 2.61 7.75 6.26 8.61 
1.52 1.37 1. 33 5.17 4. 38 5.59 
1.11 1.16 1.15 2.00 1.28 1.84 

2.13 2.22 2.98 11.29 10. 88 14.01 
0.87 1.22 1. 38 3.13 4.27 5. 38 
1.11 1. 33 1.00 1.67 1.06 1.20 

3.73 3. 82 4.08 14.17 12.99 13.46 
2.33 2.36 2.16 6.29 8.97 7.78 
1.93 1.96 2.00 1.54 2. 35 1. 80 

2.20 2.07 2.70 11. 00 9.73 12.96 
1.05 1. 31 1. 19 5.15 6.03 6.19 
1.14 0.97 1.27 1.82 1.16 1.40 

2.42 2.52 2. 85 14. 52 16.13 17.67 
1.00 1.37 1.41 4.20 6.58 6.20 
1.17 1. 13 1.25 2.57 1.92 1.75 

2.80 2.63 2.86 21. 28 18.67 18. 88 
1.88 1.22 1.66 9.40 5.98 6.97 
1.58 1.38 1. 34 2.21 2.76 3. 35 

2.35 2. 35 2.23 16.45 15.28 15.83 
1.50 1.46 1.53 6.45 7.00 7.65 
1.16 1.14 1.11 2.32 2.62 2.99 

2.01 2.43 1.69 10.65 13.61 9.63 
1.02 1.43 1.49 5.20 6,15 5.04 
1.24 1.11 1.20 2.48 2.22 2.40 

2.17 2.46 2.50 11.07 10. 33 12.00 
0.94 1.37 1.43 3.20 4.38 5.00 
1.04 1.08 1.04 2. 18 1.51 1.66 

2.20 2.05 2.11 10.78 11.69 13.29 
1.02 1.43 1.44 4.69 6.29 7. 34 
1.28 1.16 1.13 2.43 1.51 2.15 



Table 28. (Continued) 

Dry matter yield 

Cropping Rep 
Soil no. I II III 

g/pot— 

Harps 1 0, .51 0. 48 0. 50 
2 0, .35 0. 37 0. 39 
3 0. .19 0. 18 0. 16 

Okoboji 1 0, .47 0. 54 0. 51 
2 0. .49 0. 48 0. 44 
3 0, .24 0. 16 0. 20 

Canisteo 1 0. ,49 0. 53 0. 43 
2 0. ,38 0. 31 0. 38 
3 0. ,19 0. 16 0. 21 

Chilean soils 

Alhue 1 0. ,85 0. 72 0. 71 
2 0. ,57 0. 58 0. 57 
3 0. ,15 0. 18 0. 20 

Constitucion 1 0. ,89 0. 77 0. 82 
2 0. ,76 0. 82 0. 79 
3 0, ,20 0. 23 0. 20 

Maipo 1 0. ,63 0. 65 0. 54 
2 0. ,50 0. 55 0. 50 
3 0. ,14 0. 19 0. 21 

Agua del Gato 1 0. 72 0. 75 0. 76 Agua del Gato 
2 0. 58 0. 58 0. 60 
3 0. 15 0. 23 0. 25 

Collipulli 1 0. 69 0. 57 0. 59 
2 0. 52 0. 49 0. 49 
3 0. 01 0. 17 0. 19 

Santa Barbara 1 1. 00 0. 98 0. 96 
2 0. 39 0. 47 0. 46 
3 0. 12 0. 14 0. 11 

Osorno 1 1. 42 1. 42 1. 52 
2 0. 99 0. 97 1. 03 
3 0. 29 0. 23 0. 30 
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Total N N yield 

—Rep Rep 
II III I II III 

% —mg N/pot--

2.55 2.22 1.95 13.00 10.66 9.75 
1.08 1. 30 0.90 3.78 4.81 3.51 
1.02 0.94 1.08 1.94 1.69 1.73 

2.22 1.86 2.73 10.43 10.04 13.92 
1.49 1.51 1.78 7.30 7.25 7.83 
1.30 1.24 1.14 3.12 1.98 2.28 

2.06 2.03 1.87 10.09 10.76 8.04 
0.91 1.31 1.25 3.46 4.06 4.75 
1.12 1.14 1.02 2.13 1.82 2.14 

2.31 2.50 2.06 19.64 18.00 14.63 
1.16 1. 33 1.37 6.61 7.71 7. 81 
1.15 1. 27 1.19 1.73 2.29 2.38 

3.20 3.11 2.56 28.48 23.95 20.99 
1.60 1.73 1.72 12.16 14.19 13.59 
1.45 1.40 1.61 2.90 3.22 3.22 

2.63 2.67 2.32 16.57 17.36 12.53 
1.87 1.32 1. 36 9.35 7.26 6.80 
1.18 1.07 1.17 1.65 2.03 2.46 

2.59 2.77 2.54 18.65 20.78 19. 30 
1.89 1.22 1.41 10.96 7.08 8.46 
1.11 0.97 1.02 1.67 2.23 2.55 

2.68 3.02 2.22 18.49 17.21 13.10 
1.40 1.39 1.34 7.28 6.81 6.57 
1.45 1.41 1.49 1.45 2.39 2. 83 

2.79 2.99 2.61 27.90 29.30 25.06 
1.55 1.61 1.69 6.05 7.57 7.77 
1.55 1. 35 1.43 1. 86 1.89 1.57 

3.46 3. 39 2.89 49.13 48.14 43.93 
1.49 1.71 1.85 14.75 16.59 19.06 
1.69 2.09 1. 85 4.90 4.81 5. 55 



Table 29. Amounts of N mineralized within successive incubation periods (weeks) 
in soils incubated at 20°C under aerobic conditions 

N mineralized within successive incubation periods (wks) 

Soil Rep 

CM 1 
o
 2-4 4—6 6-8 8-10 10-12 12-14 Total 

Iowa soils 

Ida 1 3.8 3.7 1.7 1.6 1.7 2.3 1.2 16.0 
2 4.8 2.5 1.7 1.6 1.5 2.4 1.3 15.8 

Hayden 1 10.4 6.7 6.6 7.9 6.9 6.4 5.2 50.1 
2 10.4 7.1 6.6 7.1 6.2 5.4 5.9 48.7 

Downs 1 17.0 8.3 5.7 6.4 6.5 6.9 6.3 57.1 
2 17.0 5.8 5.4 6.4 6.2 6 . 2  8.5 55.5 

Luther 1 12.6 7.6 9.2 7.5 5.4 5.7 4.4 52.4 
2 12.6 14.3 6.7 7.5 5.8 6.8 4.4 58.1 

Fayette 1 10.4 8.3 7.1 7.1 8.1 6.9 6.7 54.6 
2 13.5 5.4 7.1 6.4 6.9 6.2 5.9 51.4 

Tama 1 20.4 11.3 13.3 12.1 9.2 12.1 8.9 87.3 
2 16.5 15.0 11.3 17.1 5.4 10.7 10.7 86.7 

Lester 1 15.7 6.7 6.7 8.6 7.7 9.3 8.9 63.6 
2 15.7 8.0 6.7 9.3 8.5 8.6 9.6 66.4 

Clarion 1 12.6 3.8 3.6 4.3 5.0 4.6 4.4 38.3 
2 13.0 4.2 3.6 5.0 5.4 5.4 6.7 43.3 

Muscatine 1 17.4 6.7 7.5 7.1 6.5 6.4 7.0 58.6 
2 16.5 6.7 5.8 6.4 6.5 6.4 6.7 55.0 

Nicollet 1 16.5 9.2 6.3 9. 3 10.8 10.0 9.6 71.7 
2 17.4 8.8 13.3 9.3 8.5 9.6 11.5 78.4 



Harps 

Okoboji 

Canisteo 

Chilean soils 

Alhue 

Constitucion 

Maipo 

Agua del Gato 

Collipulli 

Santa Barbara 

Osorno 

1 10.4 2.5 2.1 
2 10.4 2.5 2.2 

1 19.6 9.2 20.0 
2 19.6 9.6 20.8 

1 11.7 3.3 3.3 
2 10.4 2.5 2.5 

1 15.7 5.7 6.7 
2 12.2 7.5 6.4 

1 5.2 8.3 5.7 
2 5.2 7.5 5.7 

1 16.5 9.7 7.1 
2 12.6 13.2 6.1 

1 19.5 5.7 4.6 
2 20.9 6.1 4.6 

1 21.7 7.2 5.4 
2 24.4 7.0 4.3 

1 29.5 8.3 6.8 
2 24.8 9.2 6.8 

1 26.1 19.3 12.9 
2 29.1 16.7 12.1 

3.0 2.5 3.0 3.2 26.7 
2.7 2.4 2.9 3.0 26.1 
12.1 10.4 10.7 10.4 92.4 
12.9 10.0 10.0 7.4 90.3 
4.6 5.8 7.9 8.9 45.5 
4.3 6.2 7.9 9.6 43.4 

4.3 4.2 3.9 3.4 43.9 
4.7 3.1 3.9 3.7 41.5 
6.0 5.8 6.5 7.4 44.9 
7.3 8.3 6.0 9.1 49.1 
7.3 7.5 7.7 7.0 62.8 
6.7 9.2 5.4 8.9 62.1 
4.3 4.2 4.6 5.2 48.1 
4.3 4.2 4.6 4.8 49.5 
5.0 5.8 6.5 6.7 58.3 
4.7 5.0 4.6 5.2 55.2 
7.9 6.9 7.3 6.3 73.0 
10.2 7.5 7.2 6.3 72.0 

12.9 12.7 12.3 8.9 105.1 
10.7 11.5 13.9 10.4 104.4 



Table 30. Amounts of N mineralized within successive incubation periods (weeks) 
in soils incubated at 30®C under aerobic conditions 

N mineralized within successive incubation periods (wks) 

Soil Rep 0-2 2-4 4-6 6-8 00
 

1 H
 

O
 

10-12 12-14 Total 

Iowa soils 

Ida 1 4.1 5.2 2.4 3.1 5.7 3.0 3.0 26.5 
2 5.5 3.5 2.5 3.5 3.5 4.0 3.0 25.5 

Hayden 1 12.3 15.1 11.9 10.7 12.9 10.0 6.9 79.8 
2 13.6 18. 3 13.8 10.0 14.3 9.2 6. 6 85.8 

Downs 1 24.5 18.3 14.4 13.3 20.0 13. 3 11.4 115.2 
2 23.6 19.1 18.8 12.5 14.6 7.4 10.3 106.3 

Luther 1 9.1 17.5 10.9 11.4 15.0 11.5 9.0 84.4 
2 10.9 19.1 10.6 15.7 15.0 11.2 11.0 93.5 

Fayette 1 17.3 18.3 16.3 16.8 17.7 11.9 12.1 110.4 
2 14.5 17.5 15.6 15.4 18.5 12.6 15.2 109.3 

Tama 1 25.5 29.3 25.4 35.0 31.7 27.2 26.4 200.5 
2 20.9 30.1 26.8 31.7 33.0 22.8 22.1 187.4 

Lester 1 21.8 27.0 18.1 25.0 33.6 26.9 21.4 173.8 
2 21.1 22.2 16.3 20.7 31.4 26.9 21.4 160.0 

Clarion 1 12.3 17.1 17.8 17.1 26.9 25.2 22.8 139.2 
2 13.6 17.9 16.9 25.0 18.1 26.0 23.5 141.0 

Muscatine 1 13.6 19.5 17.1 19.2 18.3 20.4 20.7 128.8 
2 15.5 19.1 18.2 19.6 20.0 20.0 18.6 131.0 

Nicollet 1 15.5 26.6 23.2 31.7 25.8 27.2 20.7 170.7 
2 15.5 28.1 18.2 23.3 22.5 24.0 18.6 150.2 



Harps 

Okoboji 

Canisteo 

Chilean soils 

Alhue 

Constitucion 

Maipo 

Agua del Gato 

Collipulli 

Santa Barbara 

Osorno 

1 9.1 9.9 11.3 
2 9.1 9.5 10.3 

1 20.5 29.7 22.9 
2 20.9 30.9 25.4 

1 8.2 14.1 17.5 
2 9.1 13.3 16.1 

1 11.4 10. 8 8.9 
2 12.7 10.8 8.9 

1 29.1 14.1 14.3 
2 28.5 13.7 14. 3 
1 17.3 16.3 15.7 
2 16.4 18.1 16.1 

1 15.5 10.4 11.1 
2 14.5 11.1 10.7 

1 31.4 15.3 13.2 
2 32.7 16.3 12.9 

1 50.9 33.3 19.6 
2 42.7 33.3 17.9 

1 61.8 41. 3 30.4 
2 59.1 38.1 27.1 

12.9 13.6 11.5 9.0 77. 3 
11.1 12.1 12. 3 8.6 73.0 
24.2 21.7 20.8 16.8 156.6 
24.2 25.0 20.8 18.2 165.4 
16.7 16.7 14.4 15.0 102.6 
16.7 15.4 17.6 14.3 102.5 

10.0 9.2 7.5 8.7 66.5 
5.0 9.2 5.8 9.7 62.1 
13.5 17.4 8.3 6.7 103.4 
13.5 14.9 10.0 10.3 105.2 
14.6 16.9 14.2 14.0 109.0 
15.4 16.5 14.2 14.7 111.4 
10.8 10.8 10.0 9.3 77.9 
12.3 11. 5 9.2 10.6 79.9 
16.2 16.9 15.8 14.7 123.5 
16.9 16.2 20.8 16.0 131.8 
26.4 27.7 25.9 17.9 201.7 
34.1 28.0 26.0 18.2 200.2 
26.8 30.8 25.9 24.0 241.0 
26.1 30.4 23.7 25.9 230.4 
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Table 31. Amounts of ammonium N produced by digestion of 
field-moist soils with 2 M KCl at 100°C for dif­
ferent times 

NH4-N produced at time 
(hours) specified 

Soil 2 3 4 6 20 

N/g soil' M^g N/g soil' 

Iowa soils 

I da 2.3 3.0 3.6 5.1 7.0 
Hayden 2.3 2.7 4.2 4.6 4.6 
Downs 3.6 4.1 5.8 6.9 10. 3 
Luther 2.9 3.2 3.4 5.9 6.4 
Fayette 5.4 5.7 7.0 10.7 15.6 
Tama 5.5 5.9 6.8 9.7 11.5 
Lester 6. 8 9.0 10.9 14.3 20.1 
Clarion 5.0 5.7 7.0 9.5 18.5 
Muscatine 5.4 6. 3 8.3 10.9 17.9 
Nicollet 6.8 7.1 7.4 14. 3 17.6 
Harps 4.6 5.3 6.2 12.9 19.9 
Okoboji 7.4 7.8 8.9 11. 3 16.8 
Canisteo 7.2 8.0 9.9 14.2 24.2 

Chilean soils 

Alhue 2.3 2.7 3.5 4.2 9.5 
Constitucion 4.2 5. 1 6.8 8. 3 11.7 
Maipo 4.4 4.9 6.0 8.5 13.6 
Agua del Gato 2.6 4.1 5.0 6.8 15. 2 
Collipulli 12.1 12.5 13.6 18.1 23.6 
Santa Barbara 11.6 12.9 15.0 20.4 38.7 
Osorno 15.8 17.7 20. 3 28.1 66.8 

^4 g of field-
basis) and 40 ml 2 

-moist 
M KCl. 

soils (<5 mm, on an oven-dry 
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Table 32. Amounts of N produced by steam distillation of 
field-moist soils with 1 M NaOH at successive 
periods 

NH4-N produced at successive distillation 
periods (min) specified^ 

Soil 0-5 5-10 10-15 15-20 20-25 25-30 Total 

M-9 iN/y o01± —— 

Iowa soils 

Ida 21.2 18. 8 9.0 4 . 9  4.8 4.9 63.6 
Hayden 51.4 17.1 5.8 4 . 9  4.0 4.1 87. 3 
Downs 35.1 35.1 19.6 13.8 6. 6 7.3 117.5 
Luther 36.7 30.2 17. 2 9.7 6.6 6.5 106.9 
Fayette 104.5 32.6 14.7 12. 2 9.0 8.2 181. 2 
Tama 114.2 61.2 25. 3 14.7 11.5 10.6 237.5 
Lester 163. 2 51.4 27.8 20.4 16. 3 13.0 292.1 
Clarion 210.5 57.2 27.7 16. 3 17.2 11.4 340. 3 
Muscatine 154.2 58.0 27.7 18.0 14.6 13.9 286.4 
Nicollet 98.7 84.9 50.6 28.6 17.1 14.7 294.6 
Harps 78. 3 89. 8 39. 2 22.8 16. 3 16.4 262. 8 
Okoboji 164.0 57.1 31.0 20.4 14.7 10.6 297.8 
Canisteo 193.4 70. 2 36.7 27.7 18. 8 14.7 361. 5 

Chilean soils 

Alhue 35. 1 23.7 10.6 8.9 8.2 6.6 93.1 
Constitucion 53.0 22. 1 8. 1 6.6 4.0 4.1 97.9 
Maipo 26.1 35.9 20.4 15.5 12. 3 7.3 117.5 
Agua del Gato 54.7 57.9 36.7 27.0 16. 3 16.6 209.2 
Collipulli 58. 8 69.4 30.2 24.4 14.7 9. 8 207. 3 
Santa Barbara 151.8 142.8 84. 8 44.1 34. 3 24.5 482. 3 
Osorno 386.0 176. 2 93.0 61.2 44.9 35.1 796.4 

^1 g of field-moist soil (<6 mm, on an oven-dry basis) 
and 10 ml of 1 M NaOH. 



207 

Table 33. Amounts of ammonium N produced by steam distil­
lation of field-moist soil with 0.5 M NaOH at 
successive periods 

NH4-N produced at successive distillation 
periods (min) specified^ 

Soil 0-5 5-10 10-15 ! 15-20 20-25 25-30 Total 

t^g 1\/g ———-

Iowa soils 

Ida 10.6 12.3 2.4 4.9 0.8 2. 5 33.5 
Hayden 33.5 16.3 8.1 5.7 4.1 0. 8 68.5 
Downs 42.4 26.1 5.8 5.7 4.0 1. 7 85.7 
Luther 25. 3 26.9 13.9 7.3 5.7 3. 3 82.4 
Fayette 61.2 31.0 16.3 11.4 7.4 5. 7 133.0 
Tama 100.4 39.1 16.4 11.4 6.5 6. 5 180. 3 
Lester 113.4 40.8 22.0 14.7 8.2 9. 8 208.9 
Clarion 131.4 50.6 25. 3 16.3 11.4 6. 5 241.5 
Muscatine 111.0 53. 8 28.6 15.5 13.1 12. 2 234.2 
Nicollet 70. 2 73.4 29.4 21.2 15.5 8. 2 217.9 
Harps 62.0 56.3 27.8 15.5 13.8 12. 3 187.7 
Ikobo ji 113.4 48.1 28.6 16.3 9.8 8. 2 224.4 
Canisteo 127.3 57.1 32.7 21.2 17.9 13. 9 270.1 

Chilean soils 

Alhue 26.1 15.5 6.5 4.9 5.8 3. 2 62.0 
Constitucion 35.9 12.2 4.9 1.7 1.6 0. 8 57.1 
Maipo 25. 3 15.5 8.2 6.5 0. 8 4. 9 61.2 
Agua del Gato 40.0 34.3 13.8 14.7 7.4 4. 9 115.1 
Collipulli 53.0 46.6 18.7 12.2 8.2 4. 9 143.6 
Santa Barbara 71. 8 82.7 48.7 29. 3 21.3 13. 8 267.6 
Osorno 190.1 137.9 78. 3 16.3 4.1 4. 9 431.6 

^1 g of field-moist soil (<6 mm, on an oven-dry basis) 
and 10 ml of 0.5 M NaOH. 
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Table 34. Amounts of N produced by steam distillation of 
field-moist soil with phosphate-borate buffer at 
successive periods 

NH4-N produced at successive distillation 
periods (min) specified^ 

Soil 0-5 5-10 10-15 15-20 20-25 25-30 Total 

(ig N/g soil 

Iowa soils 

Ida 10. 1 7.2 3.6 2.1 2.2 2.1 27.3 
Hayden 25. 2 7.2 2.1 2.9 1.4 2.9 41.7 
Downs 41. 0 9.4 5.7 5.8 3.6 4.3 69.8 
Luther 18. 7 11.5 8.6 6.5 5.8 5.0 56.1 
Fayette 30. 9 18.0 13.0 9.3 7.9 8.7 87.8 
Tama 48. 2 27.3 18.7 13.0 10.0 7.2 124.4 
Lester 31. 6 36.0 21.6 12.9 12.3 9.3 123.7 
Clarion 10. 3 68. 8 27.3 18.0 13.7 12.2 150. 3 
Muscatine 38. 8 36.0 20.9 17.2 10.1 12.2 135.2 
Nicollet 51. 1 41.7 23.7 15.8 14.4 13.7 160.4 
Harps 29. 5 28. 8 21.5 17.3 13.0 11.4 121.5 
Okoboji 64. 0 28.8 20. 8 15.1 11.5 10.1 150. 3 
Canisteo 41. 0 36.7 23.0 16.5 16.6 12.2 146.0 

Chilean soils 

Alhue 27. 3 9.4 7.2 6.4 2.9 2.9 56.1 
Constitucion 10. 1 6.4 4.4 4.3 5.7 2.2 33.1 
Maipo 13. 7 10.8 7.1 6.5 5.8 2.8 46.7 
Agua del Gato 18. 0 14.4 14.3 8.7 7.9 7.2 70.5 
Collipulli 36. 7 28.8 17.9 13.0 8. 6 7.9 112.9 
Santa Barbara 66. 9 43.9 27.3 21.6 15. 8 14.4 189.9 
Osorno 81. 3 76.9 53.2 42.5 35.2 28.1 317.2 

^1 g of field-moist soil (<6 mm, on an oven-dry basis) 
and 15 ml of phosphate-borate buffer (pH = 11.8). 


