

 17

Figure 4.2 Penn TreeBank Tagset

4.1.2 Stanford POS Tagger

This reads text and assigns each word a part of speech such as nouns, verbs etc. It uses

Penn TreeBank Tagset for tagging the words. For example, any verb will have an ending tag as

“_VBG”, any noun as “_NN” or “_PRP”. Figure 4.2 shows the different tags that the tagger uses.

This helped in recognizing text and thereby categorizing into activity.

 18

4.2 Database setup

 For the research purpose, MySQL database has been used. Currently, it has only two table,

one for storing the last user details and other for storing the activity, user is associated with.

Figure 4.3 Showing the userlog table.

 It stores user activity for the user and the tracking timestamp. These logs can be further

analyzed by some machine learning modules to identify any uncommon behavior or change in the

user’s daily activities. This may be helpful in determining any early signs of dementia.

Figure 4.4 Showing the user table.

 19

The user table stores the user location coordinates along with the timestamp at which it was

tracked. This table is being queried by two modules: data formatting module which uses this table

to check whether the location it has received is actually current location and the SketchUp module

which constantly reads the table to get the current location coordinates of the user to animate the

activity.

4.3 Animation using SketchUp

 SketchUp is a 3-d modelling tool, built in ruby language. First the exact model of the place

was built including the interior design. Then to access the model objects, we developed a plugin

for the animation. We used ruby API [10] in the plugin since it is available from within the

SketchUp.

4.3.1 Plugin

 Plugins extends the functionality of SketchUp and allow building of custom tools

according to the needs. We created a plugin to animate the user activity in real time by

communicating over socket.

4.3.1.1 Socket connection

 SketchUp acts as a client and makes request to the server using the sockets and in order to

make the request continuously, we have used the SketchUp in-built method start_timer() which

executes the same piece of code after a fixed amount of time and the process could be repeated

several times. Figure 4.5 shows a code snippet.

 20

Fig 4.5 Showing method start_timer

The method start_timer(seconds, repeat) has two parameters. First parameter is time in

seconds before the code is executed again and second parameter is a Boolean value: true for

repeating and false for not repeating and the default value is false.

 This keeps the data coming and helps in animating the activity. For each new data that it

receives, the avatar is moved to that location and then the active view is refreshed to reflect the

changes.

SketchUp.active_model.active_view.refresh

4.3.1.2 Movement

 Since SketchUp receives location coordinates, there is no issue in moving from one point

to another as the distance between the two points are usually less than 20 inches. However, as

SketchUp gets its data from the database which only holds the last user location information, the

database may get updated by new contents before it has been read by SketchUp. In this case, if the

 21

newer data points to a location which require turning the avatar because there is no straight path

or there is some obstacle on the straight path, then the avatar needs to be rotated.

4.3.1.2.1 Rotation ()

 If the new location to move is not in the current direction of movement then the avatar

needs to be first rotated and the angle of rotation is calculated by using the below formula.

 = sin−1(
√(𝑦2−𝑦1)2

√(𝑥2−𝑥1)2−(𝑦2−𝑦1)2
)

The angle () is with respect to the x-axis when the location to move lies in the first

quadrant ((x2 > x1) and (y2 > y1)). Figure 4.6 shows the scenario to find the angle.

Figure 4.6 Angle calculation

 Assume the avatar is at position (x1, y1) facing the y-direction and the position to move is

(x2, y2). Since the new position is not in the same direction of facing (y-direction), the avatar needs

 22

to be rotated to face the direction of new position. To do that we find angle with respect to x-

axis and subtract it from 90. For rotation, SketchUp uses clockwise direction as positive.

However, movement after rotation becomes difficult. This is because every component that

is created in SketchUp has its axis aligned with the global axis by default and when a component

is rotated, its local axis also gets rotated as shown in the figure 4.7.

Figure 4.7 Left before rotation, right after rotation (clockwise by 90 degrees)

This rotation made the movement of component difficult because SketchUp gets confused

between local and global axis. Two solutions were thought:

1. Change the local axis of the component to align with the global axis,

2. Change the global axis to align temporarily with the component axis.

 23

But SketchUp does not allow changing the global axis of the model. While component axis

can be changed from the SketchUp GUI, there is no way to change it from the ruby API. As none

of the above solutions worked, an alternate approach was applied.

Explode the component into separate entities and recreate the component from those

entities. This approach worked because creating any component, by default has its axis aligned

with the global axis, thus allowing smooth movement.

4.3.1.2.2 Collision Detection

 SketchUp does not provide any collision detection from ruby API, hence the workaround

is to check whether a point lies inside or on the surface of a component and avoid that path if it

does. It is easier to check if the point is inside the component, but to check if it is on the surface,

all the faces in the entire model have to be considered for checking. Currently the model has 40476

entities, and each entity has one to six faces depending on whether it is 2-d or 3-d. Since the

number of faces is very large and every few seconds, a new point needs to be checked, it would

take some time to get the result and hence, it is not ideal for a real time animation.

 Checking if a point lies within component is much faster as the number of components is

much less than number of faces as components are collection of entities. Additionally, SketchUp

provides a virtual cuboid called bounding box that surrounds a component, and an API to check if

the point is inside the bounding box. Hence this approach has been implemented.

 24

CHAPTER 5. RESULTS

To test the whole system requires real time data from the sensors but the sensors are not

integrated yet, hence manual test data was used. Also, as the model is an exact replica of the house

and SketchUp uses x, y and z coordinates to locate any object in the model, both the building and

the model is assigned same origin. This is required because the data sent by sensors are in x, y, z

coordinates. This helps in placing the objects accurately in the model. The focus of the testing is

to be able to recognize and animate one basic ADLs - walking. The assumption is that the

individual starts at some fixed location, say origin (0,0,0). The test data is generated by a test client

which creates the location coordinates of the next position and sends it to the sever.

Walking is one of the most common ADLs and tracking this activity will help in locating

the current position of the individual. This is important in the event if some accident happens like

the individual has fallen. The animation will show that the person is not moving which may

indicate something has happened.

We tested the animation of activity, walking and found the results as expected. We

positioned the avatar at a starting location and then animated its movement based on the location

coordinates sent by the test client. Although, the best way to see the results is to watch the

animation, we have tired to give snapshots of animation here for the purpose of understanding. We

have analyzed few scenarios.

 25

5.1 Scenario 1

The person is walking from one point to another. This is the regular walk like a person is

going to the kitchen or living room from the bedroom. The result of animating this scenario is

shown in the figure 5.1. It shows logs from the server and a snapshot of the animation.

Figure 5.1 Showing a person is walking

 26

Figure 5.2 Showing a person is standing

5.2 Scenario 2

 The person is standing as the time passes. This may mean the individual is just standing,

but if the animation shows standing for a long time then it may indicate something has happened.

Figure 5.2 shows the same. The server logs indicate the action.

Since, sensor will give the exact location of the individual, the data will never include any

location inside any solid object. However, sometimes it will require for the avatar to turn left or

right because the individual has changed its course of movement that requires rotation.

 27

5.3 Scenario 3

The person walks and turns to some other direction. This is shown in figure 5.3 together

with the server logs.

Figure 5.3 Showing walk after turning

 28

CHAPTER 6. SUMMARY AND CONCLUSION

6.1 Summary

 We designed a system which does the activity recognition and animation of the activity in

real time. For recognizing the activity, we developed a language (grammar) which we called

A(DL)2. Though this language is not a complete language to describe an activity, it is a starting

point which could lead to a better language in time. We studied the limitations of ADeL and Persim

3D and combined their ideas into one. And finally, we successfully animated one of the basic

ADLs- walking, in the SketchUp with different scenarios.

6.2 Limitations

 Although we have implemented the system design in the desired way, it suffers from

various limitations. At first, there is no synchronizer that would synchronize the data it receives

from the sensors in some logical time. Though, timestamp has been used to keep track of the

sequence of events, we still need some way to store the data from various events before it is

formatted as there could be events with same timestamps. This becomes more important when

there are various activities happening simultaneously.

Currently, our implementation only stores the current status of the user location and if that

gets updated before it has been read for animation, then the data is lost. It is not ideal to store every

location details of a person every second into the database, hence a better approach could be

applied to sort this issue. The use of POS tagger introduces a delay of 0.5-1 seconds and this is not

preferred in a real time system. Our grammar is very generic as it describes all the activities, but

 29

we need a specific grammar for a particular activity, so that it solely recognizes that activity.

SketchUp too, has its own limitations, absence of collision detection features makes it difficult to

move, issue of global and local axis etc.

Most of these limitations could be reduced, for example, by using some queueing technique

like Rabbit MQ- synchronizer could be implemented, attribute grammar will probably make the

grammar more specific which would mean POS tagger could be eliminated and finally instead of

using SketchUp, some game engine like unity or blender could be used for animation.

6.3 Future Work

 Future work would include making the system more robust by mitigating the limitations.

We have tested only one ADL, but it could be upgraded to test other ADLs as well. Maintaining

the security and privacy of the user data will also be a challenge since the data will be routed

through cloud. A complete language could be developed that would ease the activity recognition

process. Activity recognition also opens the scope of including user intentions. Hence, future

activity could be predicted based on the current activity and the history of activities. This would

be more useful in surveillance and security to detect any suspicious activity.

6.4 Conclusion

 We designed a system that performs the activity recognition and animates the activity in

real time. Our initial results are promising and although, this was only tested in one of the basic

ADL (walking), we are confident that the same could be applied to other ADLs and even more

complex ADLs.

 30

REFERENCES

[1] UN, Department of Economic and Social Affairs, World Population Aging 2019

[2] CDC, Promoting Health for Older Adults.
https://www.cdc.gov/chronicdisease/resources/publications/factsheets/promoting-health-for-
older-adults.htm

[3] CDC, Older Adult Falls Data.

https://www.cdc.gov/falls/data/index.html

[4] Peter F. Edemekong; Deb L. Bomgaars; Sukesh Sukumaran; Shoshana B. Levy, “Activities

of Daily Living”, Europe PMC, 2020

[5] Yunfei Feng, Carl K. Chang and Hua Ming, “Recognizing Activities of Daily Living to

Improve Well-Being”, IEEE IT Professional, (2017)

[6] Ines SARRAY, Annie RESSOUCHE, Sabine MOISAN, Jean-Paul RIGAULT and Daniel

GAFFE, “An Activity Description Language for Activity Recognition”, IEEE, International

Conference on Internet of Things, Embedded Systems and Communications (IINTEC), 2017

(Gafsa, Tunisia).

[7] Jae Woong Lee, Seoungjae Cho, Sirui Liu, Kyungeun Cho, Member, IEEE, and Sumi Helal,

Fellow, IEEE, “Persim 3D: Context-Driven Simulation and Modeling of Human Activities in

Smart Spaces”, IEEE Transactions on Automation Science and Engineering, 2015

[8] Real-Time Indoor Movement Animation System In 3D Environment, Weijia Zhao, ISU

digital repository, 2019

[9] Kristina Toutanova and Christopher D. Manning. 2000. Enriching the Knowledge Sources

Used in a Maximum Entropy Part-of-Speech Tagger. In Proceedings of the Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very Large Corpora

(EMNLP/VLC-2000), pp. 63-70.

https://nlp.stanford.edu/software/tagger.shtml

[10] “Sketchup Ruby API Documentation”, Sketchup Developer.

https://ruby.sketchup.com/

[11] Scarpino, Matthew. Automatic SketchUp: Creating 3-D Models in Ruby, Eclipse

Engineering LLC; 0 edition (March 8, 2010)

https://www.cdc.gov/chronicdisease/resources/publications/factsheets/promoting-health-for-older-adults.htm
https://www.cdc.gov/chronicdisease/resources/publications/factsheets/promoting-health-for-older-adults.htm
https://www.cdc.gov/falls/data/index.html
http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf
http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf
https://nlp.stanford.edu/software/tagger.shtml
https://ruby.sketchup.com/

