Spreading information in social networks containing adversarial users

Madhavan Rajagopal Padmanabhan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Recommended Citation
Rajagopal Padmanabhan, Madhavan, "Spreading information in social networks containing adversarial users" (2020). Graduate Theses and Dissertations. 18384.
https://lib.dr.iastate.edu/etd/18384

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Spreading information in social networks containing adversarial users

by

Madhavan Rajagopal Padmanabhan

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Pavan Aduri, Co-major Professor
Samik Basu, Co-major Professor
Jia(Kevin) Liu

The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation/thesis. The Graduate College will ensure this dissertation/thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University
Ames, Iowa
2020

Copyright © Madhavan Rajagopal Padmanabhan, 2020. All rights reserved.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTER 1. OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Driving problem</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Contributions</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Organization</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 2. REVIEW OF LITERATURE</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Diffusion Models</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 The Triggering Model</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Linear Threshold model</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Influence Maximization (IM) Problem</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Submodular functions</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Algorithms for estimating IM</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Estimating influence using Reverse Influence Sampling (RIS)</td>
<td>9</td>
</tr>
<tr>
<td>2.6 Variations of the IM problem and Related problems</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER 3. CONSTRAINED INFLUENCE MAXIMIZATION</td>
<td>12</td>
</tr>
<tr>
<td>3.1 Theoretical analysis of CIM</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Algorithms for CIM</td>
<td>13</td>
</tr>
<tr>
<td>3.2.1 Natural Greedy Algorithm</td>
<td>14</td>
</tr>
<tr>
<td>3.2.2 Multi Greedy Algorithm</td>
<td>16</td>
</tr>
<tr>
<td>3.2.3 An efficient Multi Greedy Heuristic</td>
<td>17</td>
</tr>
<tr>
<td>3.2.4 Efficient implementation with RIS</td>
<td>18</td>
</tr>
<tr>
<td>CHAPTER 4. EXPERIMENTS</td>
<td>20</td>
</tr>
<tr>
<td>4.1 Labelling Strategies</td>
<td>21</td>
</tr>
<tr>
<td>4.2 Experimental setup</td>
<td>21</td>
</tr>
<tr>
<td>4.3 Experimental Observations</td>
<td>22</td>
</tr>
<tr>
<td>4.3.1 Comparison with Baseline Implementations</td>
<td>22</td>
</tr>
<tr>
<td>4.3.2 Budget vs. Influence</td>
<td>23</td>
</tr>
</tbody>
</table>
4.3.3 Threshold vs. Influence. .. 25
4.3.4 Target-Non-target Distribution vs. Influence. 26
4.3.5 Additive Loss. .. 28
4.3.6 Runtime. ... 30

CHAPTER 5. SUMMARY AND FUTURE WORK 31
5.1 Summary ... 31
5.2 Future Work ... 31

REFERENCES ... 32
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 4.1</th>
<th>Datasets</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.2</td>
<td>Target-Non-target Distribution vs. Influence for $k = 20$, $\theta = 10$. Natural /Multi</td>
<td>26</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Varying θ vs Additive Loss</td>
<td>28</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Additive Loss for varying budget</td>
<td>28</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Time taken(seconds) for Phase 1</td>
<td>29</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>$t = 0$</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>$t = 1$</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>$t = 2$</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>$t = 3$</td>
<td>6</td>
</tr>
<tr>
<td>2.5</td>
<td>Illustration of diffusion in the IC model</td>
<td>6</td>
</tr>
<tr>
<td>2.6</td>
<td>Submodularity under the IC model</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>A sample graph for CIM problem</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Budget vs. Influence for $\theta = 10$</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>Budget vs Influence with $\theta = 10$ on the LT Model</td>
<td>24</td>
</tr>
<tr>
<td>4.3</td>
<td>Budget vs. Influence for $\theta = 10$, clustered labeling.</td>
<td>25</td>
</tr>
<tr>
<td>4.4</td>
<td>Budget vs Influence with $\theta = 10$ in the IC model with $p = 0.1$</td>
<td>26</td>
</tr>
<tr>
<td>4.5</td>
<td>Threshold vs. Influence for Budget = 20.</td>
<td>27</td>
</tr>
<tr>
<td>4.6</td>
<td>Overall Time Taken 80% Targets, $\theta = 10$ under the IC Model with $p = 1/inDeg$</td>
<td>30</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

I am deeply indebted to my advisors Dr. Pavan Aduri and Dr. Samik Basu for their constant guidance, support, and encouragement that made this work possible. I also wish to thank Dr. Jia (Kevin) Liu for his supervision and insightful discussions.

I would like to recognize the support provided by the Department of Computer Science at Iowa State University. My graduate study and research was funded in part through Teaching Assistantships.

I am grateful to the National Science Foundation (NSF) for supporting this work in part through grants CCF 1421163 and CCF 1555780.
ABSTRACT

In the modern day, social networks have become an integral part of how people communicate information and ideas. Consequently, leveraging the network to maximize information spread is a science that is applied in viral marketing, political propaganda. In social networks, an idea/information starts from a small group of users (known as seed users) and is propagated through the network via connections of the seed users. There are limitations on the number of seed users that can be convinced to adopt a certain idea. Therefore, the problem exists in finding a small set of users who can maximally spread an idea/information. This is known as the influence maximization problem. While this problem has been studied extensively, the presence of potential adversarial users and their impact on the information spread has not been considered in existing solutions.

In this thesis, we study the problem of spreading information to Target users while limiting the spread from reaching adversarial (Non Target) users. To this end, we consider a hard constraint - the objective is to maximize the information spread among the Target users while the number of Non-Target users to whom the information reaches is limited by a hard constraint. We design two algorithms - Natural Greedy and Multi Greedy with efficient RIS based implementations. We run our solutions on real-world social networks to study the information spread. Finally, we evaluate the quality of our solutions on different models of diffusion and network settings.
CHAPTER 1. OVERVIEW

Social networks have developed into an essential mode of communication in modern day to day life. By providing a platform, whose use can range from sharing funny memes to coordinating relief efforts in times of crisis, social networks have demonstrated to be a highly effective tool for communicating information. Naturally, it would be beneficial to leverage the network to control and spread information of our choice. Diffusion is the process via which information spreads across users in the network. Each user is capable of "influencing" others connected to him/her. If a user is successful in influencing his/her immediate connections, then each of the newly influenced users can pass along the information to their connections. Given the scale of these networks and the seemingly uncertain way in which information spreads, controlling the spread of information poses interesting challenges. The presence of users who are adversarial to the information that is being spread adds further challenges to the problem.

1.1 Introduction

In trying to spread information, a natural problem arises: How to find an initial set of users (seed) of a specific number (determined by budget k) that can maximally spread the information in the network. This is called the Influence Maximization (IM) problem. Kempe et al. [14] posed this as a discrete optimization problem under the Independent Cascade and Linear Threshold models of diffusion. Under these models, they proved that the IM problem is NP-hard and designed a greedy algorithm that provided a $1 - 1/e$-approximation guarantee on the quality of the solution. For a set of users S, $\sigma(S)$ is the expected number of users influenced in the network. The greedy algorithm builds a solution that iteratively adds a user that can maximally increase the influence function $\sigma(S)$. However, given a user (or a set of users), computation of that user’s expected influence is a #P-hard problem. Therefore, the greedy algorithm is practically infeasible. This has led to the
development of various heuristics and probabilistic algorithms that scale to real world networks [24, 5, 30, 29].

Li et al. [19] consider a variant of the IM problem where the goal is to maximize the information spread to a subset of targeted users in the network. In our work, in addition to Target users, we consider the presence of Non-Target users and place a hard constraint on the number of Non-Target users that can be influenced.

1.2 Driving problem

In social networks, in addition to users that we would like to influence, there are users present that would negatively impact our objective. We observe that this problem appears in several scenarios in marketing, political propaganda, etc. During political campaigns, we would like to run ads that maximally reach users sympathetic to our cause. If the ads were to reach users with opposing viewpoints, it may inadvertently mobilize those users causing a negative reaction to our campaign. In another scenario, consider an online marketing campaign that advertises an alcoholic beverage. Not only would it be unethical to have the advertisement reach under-age users, but it may be a potential violation of terms of service and/or the law.

Considering these scenarios, we study the problem of Influence Maximization in the presence of adversarial users. Consider a social network modeled as $G = (V, E)$. Suppose we classify the users into two categories - Targets and Non-Targets. Given a threshold θ, the objective is to find a seed set S of size k such that the influence among the Target users is maximized, while at the same time the number of Non-Target users influenced is kept below θ. We call this the Constrained Influence Maximization Problem.

1.3 Contributions

We study the Constrained Influence Maximization problem [27, 25]. We review the Natural Greedy and Multi Greedy algorithms for CIM problem. We apply RIS based sketching to the Natural Greedy and Multi Greedy Algorithms. We evaluate the algorithms on real-
world social networks with various Target, Non Target labelling strategies. We present extensive experiments of RIS based sketching under the Linear Threshold, Independent Cascade models of diffusion. Finally, we experimentally evaluate the Additive Loss - the additive approximation error of the Natural Greedy algorithm.

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 provides a review of current work in Influence Maximization and terminology. Chapter 3 describes the CIM problem and the Natural Greedy, Multi Greedy algorithms. Chapter 4 presents the experimental design and results. Finally, Chapter 5 presents our conclusion and future extensions.
CHAPTER 2. REVIEW OF LITERATURE

The Influence Maximization problem seeks to find a set of highly influential users in a social network. The idea is to use these highly influential users as a seed to propagate information that reaches the maximum possible users in the network. The immediate question that arises is - How can this spread of information be characterized? On the outset, this appears to be a probabilistic process. Given a user(s), how can we determine who this user(s) will probably influence? This question is addressed by various Diffusion models.

2.1 Diffusion Models

Suppose a set of users (seed) have initially adopted some information. The information is adopted by users that are influenced by the seed users, and propagates through the network. This eventually reaches its completion, resulting in a final set of active/influenced users. This process is termed as diffusion. Diffusion models attempt to characterize the mechanism via which information spreads from one node to the neighbors. Each diffusion model comprises of the following: 1) A seed set of users who have initially adopted the information, 2) A well-defined criterion under which each user can influence another, and 3) The diffusion terminates after a finite number of steps resulting in a final set of influenced users.

2.1.1 The Triggering Model

First proposed by Kempe et al. [14], the Triggering Model defines the notion of Triggering sets of a user v. The idea is that each user has a subset of neighbors, who can trigger the user into adopting an idea. For a diffusion process, each user v randomly selects a subset T_v from its neighbors (based on some distribution). The diffusion starts with seed users S who are initially
activated. At time step t, v is activated if T_v is active at time step $t-1$. This goes on until there can be no more newly activated users.

There are two instances of the Triggering Model that are widely used - the Independent Cascade (IC) and Linear Threshold (LT) model.

2.1.1.1 Independent cascade model

Let’s consider the social network as a graph $G = (V,E)$. V represents the set of users and a directed edge is placed between two users if one user can influence the other. In the Independent Cascade model, each edge is assigned a propagation probability - $p(u,v)$. This value represents the probability with which node u can influence v. At time step 0, $S \subseteq V$ is the seed set that is activated. At the next time step, each newly activated node u can activate its immediate inactive neighbors with probability $p(u,v)$. If u fails to activate v, then v can no longer be activated by edge (u,v). Every newly activated node tries to activate its inactive neighbors in the next time step. This process continues until there are no longer any nodes that can be activated.

Figure 2.5 illustrates this process. The graph consists of 7 nodes, numbered 1 to 7. At time step 0, the diffusion starts with the seed set $\{1\}$. 1 succeeds in activating 3 as the propagation probability is 1.0. Suppose 1 fails to activate 2 as $p(1,2) = 0.01$. Then, at time step 1, the active nodes are $\{1,3\}$. This continues until time step 3, resulting in the active node set $\{1,3,4,5,6,7\}$.

Propagation probability In the IC model, for an incoming edge to v, a common choice for the propagation probability is $1/inDeg(v)$ where $inDeg(v)$ is the number of nodes that have a directed edge to v. The resulting model is termed as Weighted Cascade model [14]. Other choices for p include constant values($p = 0.01$ or $p = 0.1$) [5, 9]. Another variation is the Trivalency model in which each edge is assigned a probability randomly from $\{0.1, 0.01, 0.001\}$ [4].

2.1.2 Linear Threshold model

Let $N^{in}(v)$ be the set of vertices such that $u \in N^{in}(v)$ iff there exists an edge $(u,v) \in E$. Let $N^{ac}(v)$ be the set of vertices such that $u \in N^{ac}(v)$ iff there exists an edge $(u,v) \in E$ and
Figure 2.1: $t = 0$

Figure 2.2: $t = 1$

Figure 2.3: $t = 2$

Figure 2.4: $t = 3$

Figure 2.5: Illustration of diffusion in the IC model

u is activated. In the linear threshold model, every edge is assigned a weight $w(u, v)$ such that $\forall v, \sum_{u \in N^m(v)} w(u, v) \leq 1$. Each node v randomly selects a threshold θ_v in the interval $[0, 1]$. Like the IC model, this model operates in discrete time steps with the seed set S initially activated at time step 0. At each time step t, a node v is activated if $\sum_{u \in N_{\text{in}}^t(v)} w(u, v) \geq \theta_v$. The process completes in a finite number of time steps.

Choice of $w(u, v)$: A popular choice for assigning the weights for incoming edges to v is to randomly select a value $\in [0, 1]$ and normalize it so that $\sum_{u \in N^m(v)} w(u, v) = 1$ [6, 30]. Another choice for $w(u, v)$ is $1/\text{inDeg}(v)$.
2.2 Influence Maximization (IM) Problem

The Influence Maximization problem is a discrete optimization problem first proposed by Kempe et al. [14]. Let the social network be represented as a graph $G = (V, E)$. Let \mathcal{M} represent a diffusion model. For any $S \subseteq V$, let $\sigma(S)$ be the expected number of nodes influenced by S under \mathcal{M}. The Influence maximization problem is defined as follows:

Problem 1. Given a network $G = (V, E)$, k and a diffusion model \mathcal{M}, compute $S \subseteq V$ where $|S| \leq k$ such that $\sigma(S)$ is maximized.

Kempe et al. [14] proved that Problem 1 is a monotone non-decreasing submodular function under the Triggering model and by extension, the IC and LT models. Below, we present a review of these concepts.

2.3 Submodular functions

A function $f : 2^V \to \mathbb{R}$ is called submodular if and only if $\forall A, B \subseteq V, f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$ [22]. Equivalently, a function is submodular if and only if $\forall A \subseteq B \subseteq V$ and $e \notin B$, $f(A \cup \{e\}) - f(A) \geq f(B \cup \{e\}) - f(B)$. The second definition provides an intuition on the diminishing returns property of submodular functions. The element $\{e\}$ provides a higher gain on the smaller set A than on the bigger set B. We refer to the value $f(A \cup \{e\}) - f(A)$ as the marginal gain denoted by $f(e | A)$.

Monotone non-decreasing submodular functions A submodular function $f : 2^V \to \mathbb{R}$ is monotone non-decreasing if $\forall A \subseteq V, f(A) \leq f(A \cup \{e\})$.

![Figure 2.6: Submodularity under the IC model](image)
Let’s interpret this in the context of the IM problem using figure 2.6. In this graph, there are three nodes and the diffusion occurs as per the IC model. $\sigma(\{1\}) = 2$ as the activated set will be $\{1, 3\}$. Similarly, $\sigma(\{2\}) = 2$ as the activated set will be $\{2, 3\}$. Observe that $\sigma(\{2\}|\{1\}) = 1 \leq \sigma(\{2\}|\phi)$. In this case, $\{2\}$ can influence only one additional node (itself) since 1 will have already influenced $\{1, 3\}$.

2.4 Algorithms for estimating IM

The primary challenge in solving the IM problem lies in the computation of the influence function $\sigma(S)$. The exact computation of $\sigma(S)$ is known to be a \#P-hard problem. Therefore, we resort to estimations of $\sigma(S)$. Kempe et al. [14] used a simulations based approach to estimate $\sigma(S)$. In each iteration of the Greedy Algorithm, a large number of simulations (typically ~ 10000) is performed to find the node that maximally increases σ. More precisely, if S_i is the seed set built at the ith iteration, $\forall v \in V \setminus S, \sigma(S \cup \{v\})$ is estimated by performing simulations. Naturally, this is computationally expensive even in small graphs. Leskovec et al. [18] developed the Cost Effective Lazy Forwarding (CELF) algorithm that exploited the submodularity of the objective function to significantly reduce the number of candidate nodes considered in each iteration. The underlying idea of CELF is that for two nodes u,v: if $\sigma(u|S_i) \geq \sigma(v|S_i)$ and $\sigma(u|S_{i+1}) \geq \sigma(v|S_i)$, then there is no need for computing $\sigma(v|S_{i+1})$. Based on this observation, they construct a Max Heap that has the node with the maximum marginal gain at the top. If this node’s gain is outdated w.r.t. the current seed, an update is made and the heap is reconstructed. In practice, this greatly reduces the number of vertices that are considered in the Greedy algorithm.

Ohsaka et al. [24] introduced a Pruned Monte Carlo Simulations-based algorithm under the IC model that further scales the Greedy algorithm without compromising the quality of the solution. Their algorithm works by constructing a large number of live edge graphs (10000) by retaining each edge with probability $p(e)$. For each of these graphs, their algorithm constructs Directed Acyclic Graph (DAG). Each node in the DAG is a strongly connected component in the live edge graph and the node with the maximum degree is used as a hub. They track descendants and ancestors of
the hub in each of the DAGs. The algorithm performs a pruned BFS to calculate the influence of an ancestor node of the hub by not visiting the descendants of the hub. This technique significantly speeds up the simulation.

Several heuristic algorithms have also been developed that are designed for practical efficiency but lack theoretical guarantees. Chen et al. [5] designed the DegreeDiscountIC algorithm for the IC model with small propagation probability. DegreeDiscountIC initially adds the vertex that has the highest outdegree seed. The degrees of its immediate neighbors are discounted based on p, following which the next best vertex is selected. Jung et al. [13] developed the Influence Ranking Influence Estimation (IRIE) algorithm. They develop a system of linear equations, whose solution is used as an estimation of the influence of each vertex. At each iteration of the algorithm, they modify the linear equations and get an update the estimates based on the seed set.

Borgs et al. [2] developed the idea of Reverse Influence Sampling (RIS), which is to generate random reverse reachable (RR) sets. Using these sets to estimate the influence, they develop a $(1 - \frac{1}{e} - \epsilon)$-approximate algorithm. Tang et al. [30, 29] extended this idea and developed TIM, TIM+, and IMM algorithms. Their algorithms reduce the runtime by attempting to generate a minimal number of RR Sets without losing the approximation guarantee. Nguyen et al. [23] developed SSA, D-SSA algorithms that attempt to further improve on IMM by further reducing the number of RR sets. However, Huang et al. have pointed out that D-SSA may not retain the theoretical approximation guarantee. An extensive study of these algorithms can be found in Li et al.’s [31] survey paper.

2.5 Estimating influence using Reverse Influence Sampling (RIS)

In recent years, there have been several proposed methods to estimate $\sigma(S)$ [9, 24, 5]. In this thesis, we use the Reverse Influence Sampling (RIS) method that generates random reverse reachable sets, first introduced by Borgs et al. [2]. To generate a random reverse reachable set under the IC model, first randomly select a vertex v. Then retain each edge in the graph according to its propagation probability $p(e)$. The random RR set is the set of vertices that are reachable on
this graph by doing a reverse BFS starting at v. Let R be a random RR set and n be the number of vertices in the graph. For any $S \subseteq V$, Borgs et al. proved that $\sigma(S) = n \times Pr[S \cap R]$. Tang et al. [30] extended the notion of random RR sets to the LT model. In our experiments, we have used Tang et al.'s [30] method to generate RR sets in the IC and LT model.

2.6 Variations of the IM problem and Related problems

Since its introduction, significant work has been done on the Influence Maximization problem while also considering additional contexts. The works of [1, 3] address topic-aware influence maximization. In this variation, a user's probability of influencing a connected user is also dependent on the topic that is being propagated. The problem is then to find k influential users that can convince the maximum number of people to adopt a certain topic. Another related approach to this problem is to model the likelihood with which a user will adopt a certain topic irrespective of from whom it comes from [20]. Fu et al. [7, 8] study how strongly (or weakly) a user is influenced, and term it as Attitude of the user. They study the Attitude Maximization Problem, where the objective is to maximize the overall attitude of the network.

A variant that has been well studied is that of targeted influence maximization [19, 17]. Here a subset of nodes of the network are labeled as target nodes. The goal is to find a seed set of size k that influences the maximum number of target nodes. Li et al. [20] similarly have considered targeted influence maximization, where the targets are identified using keywords. On the other hand, Song et al. [28] considered targeted influence maximization within specific time steps. When the target set is a singleton, it is referred to as personalized influence maximization [10]. None of these works consider non-target nodes and the constraint that the number of non-target nodes that are influenced is below a pre-determined threshold. In these works, any node that is not a target does not negatively impact the influence maximization question—rather non-target nodes may be used to propagate the influence to more target nodes. In contrast, we introduce the concept of non-targets that must not be influenced—more specifically, the expected number of non-targets influenced must remain within a threshold. Intuitively, this brings in the new challenge of balancing
diffusion between non-targets and targets to maximize the targeted influence while satisfying the hard constraint of keeping the non-target influence below the threshold. The theoretical implication of such a challenge is that the diffusion function no longer remains submodular and monotonic, thus making the standard approximation guarantee of the greedy algorithm invalid. This is in contrast with the targeted influence maximization where the objective function is submodular and monotone.

Parallel to maximizing the spread of information, significant advances have been made in disrupting information spread in social networks [15, 16]. In these problems, nodes or edges are deleted in social networks in order to limit the spread of information. In the Constrained Influence Maximization problem, we limit the spread of information to adversarial users rather than disrupt information cascades originating from such users.

Iyer and Bilmes [12] introduced the Submodular Cost Submodular Knapsack (SCSK) problem. Given monotone, non-decreasing submodular functions f, g and a budget b - the objective is to find a set X that maximizes $f(X)$ such that $g(X) \leq b$. They leverage surrogate functions for f, g and develop iterative algorithms with approximation guarantees for SCSK. Although SCSK is similar to our Constrained Influence Maximization problem, SCSK differs by not imposing a size constraint on X.

CHAPTER 3. CONSTRAINED INFLUENCE MAXIMIZATION

We study the problem of Influence Maximization in the presence of adversarial users. Consider a social network modelled as \(G = (V, E) \). Let each user be labelled \textit{Target} or \textit{Non Target} leading to subsets \(T \subseteq V \) and \(N = V \setminus T \). Let \(\sigma_T(S) \) and \(\sigma_N(S) \) be the expected number of \textit{Target} and \textit{Non Target} users influenced by \(S \). Let \(\sigma^\theta_T(S) = \sigma_T(S) \) if \(\sigma_N(S) \leq \theta \). If \(\sigma_N(S) > \theta \), \(\sigma^\theta_T(S) = 0 \). The \textit{Constrained Influence Maximization (CIM)} problem, first formalized in [27], is defined as follows:

\textbf{Problem 2.} Given a network \(G = (V, E, T, N) \) and \(k, \theta \), compute \(S \subseteq V \) where \(|S| \leq k \) such that \(\sigma^\theta_T(S) \) is maximized.

Figure 3.1 provides an illustration of this problem. \(v_1 \) to \(v_8 \) are labelled either \(T \) or \(N \). For \(k = 2, \theta = 2 \), the optimal solution \(S^* = \{v_3, v_5\} \) leading to \(\sigma^\theta_T(S^*) = 7 \). If we label all the nodes as \textit{Targets}, the problem becomes an instance of the standard \textit{Influence Maximization} problem. Due to this reduction, we conclude that \textit{CIM} is \textit{NP}-Hard. We can also generalize the problem formulation to include \textit{Neutral} nodes i.e. nodes that are either \textit{Target} or \textit{Non Target}. It is immediate that these \textit{Neutral} nodes neither contribute to \(\sigma_T(S) \) nor \(\sigma_N(S) \). Thus, these \textit{Neutral} nodes do not affect our objective function \(\sigma^\theta_T(S) \).

3.1 Theoretical analysis of \textit{CIM}

The greedy algorithm for the standard \textit{Influence Maximization} problem provides a \((1 - 1/e)\)-approximate solution. However, this approximation guarantee relies on the fact that the objective function \(\sigma(S) \) is non-negative, monotone non-decreasing, and submodular [14, 22]. We find that our objective function is neither monotone nor submodular.

\textbf{Lemma 3.1.1.} The objective function of \textit{CIM} , \(\sigma^\theta_T(S) \), is non-monotone and non-submodular.

\textbf{Proof.} Suppose we have \(G = (V, E) \) and \(S \subseteq V \) such that \(\sigma_T(S) = a > 0 \) and \(\sigma_N(S) \leq \theta \). Thus \(\sigma^\theta_T(S) = a \). If there exists a node \(u \) such that \(\sigma_N(S \cup \{u\}) > \theta \), then \(\sigma^\theta_T(S \cup \{u\}) = 0 \). Therefore,
\[\sigma_T^\theta(S) \] is non-monotone. In the same example, we observe that \(\sigma_T^\theta(\{u\}|S) = -a \). Let there be another node \(v \) such that \(\sigma_N(S \cup \{v\}) > \theta \) leading to \(\sigma_T^\theta(S \cup \{v\}) = 0 \). Now, \(\sigma_T^\theta(\{u\}|S \cup \{v\}) = 0 \). This violates submodularity as the marginal gain of \(u \) on the smaller set \(S \) is less than the marginal gain on the bigger set \(S \cup \{v\} \).

We showed that CIM problem is NP-hard. In fact, obtaining a constant-factor approximation algorithm for CIM is quasi NP-hard.

Theorem 3.1.2. [25] For every \(0 \leq c \leq 1 \), if there is a polynomial-time, \(c \)-approximation algorithm for the CIM problem in the IC model, then every problem in NP can be solved in \(O(n^{\log^k n}) \) time for some \(k \geq 1 \).

The proof of Theorem 3.1.2 can be found in [25].

3.2 Algorithms for CIM

Despite the above property of the objective function, we find that the greedy algorithm still provides an additive approximation guarantee within a multiplicative factor of \((1 - 1/e)\) and an additive error. We present the following three algorithms [27, 25]:

1. **Natural Greedy Algorithm**
2. Multi Greedy Algorithm

3. An efficient Multi Greedy Heuristic algorithm

3.2.1 Natural Greedy Algorithm

Algorithm 1 Natural Greedy Algorithm [27, 25]

1: procedure Natural Greedy \((G = (V,E,L), k, \theta)\)
2: \(\ S = \phi\)
3: while \(|S| \leq k\) do
4: \(\ S = S \cup \{\arg \max_v \sigma_T^\theta(S \cup \{v\})\}\)
5: end while
6: return \(S\)
7: end procedure

The Natural Greedy algorithm iteratively builds a seed set \(S\) by adding a vertex \(v\) that maximally increases \(\sigma_T\) while ensuring that by adding \(v\) \(\sigma_N\) does not exceed \(\theta\). We establish two approximation guarantees provided by the Natural Greedy algorithm. To characterize the guarantees, we establish the following notations:

- \(OPT_{k,\theta}\) - Optimal solution to CIM for budget \(k\), threshold \(\theta\).
- \(BestGain_\theta = \max \{\sigma_T^{2\theta}(v) \mid v \in V\}\)
- Given \(S, R \subseteq V\), \(gain_S(R, \theta) = \sigma_T^\theta(S \cup R) - \sigma_T^\theta(S)\) if \(\sigma_N(S \cup R) \leq \theta\). Otherwise, \(gain_S(R, \theta) = 0\).
- \(LeastGain_\theta\) - the minimum value of \(gain_S(\{v\}, \theta)\) over all \(S\) of size at most \(k\) and \(v\).
- \(Diff_\theta = BestGain_\theta - LeastGain_\theta\)

\(Diff_\theta\) captures the difference between the maximum increase in targets influenced that is caused by a single node \(v\) and the minimum increase in targets influenced that is caused by a single node.

Based on \(Diff_\theta\), we claim the first approximation guarantee.

Theorem 3.2.1. [25]

\[\sigma_T(S_k) \geq (1 - 1/e)[OPT_{k,\theta}] - k \times Diff_\theta.\]
The proof of Theorem 3.2.1 can be found in [25].

Our second approximation guarantee refines the additive approximation factor \(-k \times Diff\). Consider the set \(S_{i-1}\) that is built after \(i-1\) iterations. Let \(u' = \arg\max_{u \in V \setminus S_{i-1}} \{\sigma^\theta_T(S_{i-1} \cup \{u\})\}\). \(u'\) is the best node that can be added to \(S_{i-1}\) which would influence at most \(2\theta\) non targets. Let \(S'_i = S_{i-1} \cup u'\). Note that Natural Greedy builds \(S_i\) by adding the best node to \(S_{i-1}\) such that \(S_i\) influences at most \(\theta\) non targets. In contrast, \(S'_i\) influences at most \(2\theta\) non targets. We refer to the following lemma from Equation 2 in [25].

Lemma 3.2.2. [25]

\[
OPT_{k,\theta} - \sigma^\theta_T(S'_{i+1}) \leq \frac{k-1}{k} (OPT_{k,\theta} - \sigma^\theta_T(S_i))
\] (3.1)

Proceeding further, for any \(S\) such that \(\sigma_N(S) \leq \theta\) and \(\eta \geq \theta\), define:

\[
BestG(S, \eta) = \max\{\sigma^\eta_T(S \cup \{u\}) - \sigma^\theta_T(S) | u \in V\}
\]

\(BestG(S, \eta)\) represents the best possible increase to the number of targets influenced by adding a single node \(u\) subject to the constraint that the number of non targets influenced is at most \(\eta\). Let \(OPT_{k,\theta}\) be the optimal solution to CIM for budget \(k\), threshold \(\theta\). The Natural Greedy algorithm provides a solution that has an additive error in relation to \(BestG(S, \eta)\).

Theorem 3.2.3. [25]

\[
\sigma^\theta_T(S_k) \geq (1 - 1/e)[OPT_{k,\theta}] - \left(\frac{k-1}{k} \sum_{i=0}^{k-1} BestG(S_i, 2\theta) - \sigma^\theta_T(S_k) \right)
\]

Proof. Note that, from the definition of \(S'_{i+1}\) (best possible extension to \(S_i\) with the threshold \(2\theta\)), we have

\[
\sigma^\theta_T(S'_{i+1}) = \sigma^\theta_T(S_i) + BestG(S_i, 2\theta)
\] (3.2)

Since \(S_{i+1}\) is obtained from \(S_i\) in greedy manner,

\[
\sigma^\theta_T(S_{i+1}) = \sigma^\theta_T(S_i) + BestG(S_i, \theta)
\] (3.3)

From above two equalities, we obtain

\[
\sigma^\theta_T(S'_{i+1}) - \sigma^\theta_T(S_{i+1}) = BestG(S_i, 2\theta) - BestG(S_i, \theta)
\] (3.4)
Combining this with Lemma 3.2.2, we obtain:

\[
\text{OPT}_{k, \theta} - \sigma_T^\theta(S_{i+1}) \leq (1 - 1/k)[\text{OPT}_{k, \theta} - \sigma_T^\theta(S_i)] + \text{BestG}(S_i, 2\theta) - \text{BestG}(S_i, \theta)
\]

Solving the above recurrence yields our theorem.

Henceforth, we will refer to \(\sum_{i=0}^{k-1} \text{BestG}(S_i, 2\theta) - \sigma_T^\theta(S_k)\) as the **Additive Loss**. Consider the following: if at each iteration in the Natural Greedy algorithm, we are allowed to add a node that can influence at most \(2\theta\) non targets, the total gain that we can obtain with these nodes compared to the nodes that we actually select is the **Additive Loss**. The Natural Greedy algorithm can be implemented in \(O(k \times |V| \times \text{Inf})\), where \(\text{Inf}\) indicates the runtime complexity of influence computation.

3.2.2 Multi Greedy Algorithm

Algorithm 2 Multi Greedy Algorithm \([27, 25]\)

1: procedure Multi Greedy \((G = (V, E, L), k, \theta)\)
2: \(MG_0 = \{\phi\}, i=0\)
3: while \(i < k\) do
4: for all \(S \in MG_i\) do
5: \(NT = \sigma_N(S)\)
6: for \(j = NT\) to \(\theta\) do
7: \(u_{\max} = \arg\max_u \sigma_T^j(S \cup \{v\})\)
8: \(S' = S \cup u_{\max}\)
9: Add \(S'\) to \(MG_{i+1}\)
10: end for
11: end for
12: \(i = i + 1\)
13: end while
14: return \(\arg\max_{S \in MG_k} \sigma_T^\theta(S)\)
15: end procedure

The Multi Greedy algorithm tracks multiple seed sets at each iteration. Let \(r\) be the number of sets tracked at the \(i\)th iteration: \(S_1^i, S_2^i, \ldots, S_r^i\). For \(l = 1 \to r\), let \(\sigma_N(S_l^i) = NT_l\). For each of these sets, extend the set by at most \(\theta\) many ways: For each \(j = NT_l\) to \(\theta\), find a vertex \(u_{\max}\) such that
\(\sigma_T(S_i^1 \cup \{u\})\) is maximized while \(\sigma_N(S_i^1 \cup \{u\}) = j\). At the \((i + 1)\)th iteration, these newly formed sets are extended the same way until we reach sets of size \(k\). Finally, the algorithm returns the set that hits the maximum number of targets as the solution.

Observe that the Multi Greedy algorithm will track the seed set built by the Natural Greedy algorithm. Therefore, \(\sigma^\theta_T(MG) \geq \sigma^\theta_T(NG)\). In general, we cannot show that Multi Greedy outperforms Natural Greedy in all instances. Consider the following example: Suppose for a graph \(G = (V, E)\) and \(\theta\), there does not exist any vertex \(u\) whose \(\sigma_N(u) < \theta\). In this case, the output of Multi Greedy will be the same as the output of Natural Greedy.

We run into a practical hurdle with Multi Greedy. The algorithm keeps track of \(O(\theta^k)\) seed sets. Therefore, this is computationally infeasible.

3.2.3 An efficient Multi Greedy Heuristic

Due to the impractical nature of Multi Greedy Algorithm, we design a heuristic that will reduce the number of seed sets tracked from \(O(\theta^k)\) to \(O(\theta)\). The Multi Greedy heuristic \([27, 25]\) works in two phases:

3.2.3.1 Phase 1

For every vertex \(v \in V\), compute \(\sigma_N(v)\) and store it in a set \(A_i\) if \(\sigma_N(v) = i\). This results in the construction of \((\theta + 1)\) sets: \(A_i\), for \(i = 0\) to \(\theta\).

3.2.3.2 Phase 2

In this phase, we construct a tree that we shall refer to as IMTree. At the root of the tree, we have a dummy node \(r\) and \(\sigma_T(r) = \sigma_N(r) = 0\). For a node \(n\) in the tree, we will use \(IMSeed(n)\) to refer to the set composed of the vertices in a path from \(n\) to the root \(r\) (not including \(r\)). Let \(mod_N(S) = \sum_{u \in S} \sigma_N(u)\). Starting from the root, perform the following operation:
1. For every leaf node \(u \) in the IMTREE: For each \(i \) from \(\text{mod}_N(IMSeed(u)) \) to \(\theta \), find \(v \) that maximally increases \(\sigma_T(IMSeed(u) \cup \{v\}) \) such that \(\text{mod}_N(IMSeed(u) \cup \{v\}) = i \) and add \(v \) as a child node to \(u \).

2. Let \(M_j \) denote a set of newly added nodes such that \(\forall v_{\text{new}} \in M_j, \text{mod}_N(IMSeed(v_{\text{new}})) = j \).
 For each \(i \) from 0 to \(\theta \) perform the following operation: Retain \(\arg \max_{m \in M_i} \sigma_T(IMSeed(m)) \) and prune every other node in \(M_i \) from the IMTREE. This leaves at most \((\theta + 1) \) new nodes added to the IMTREE. If no new nodes are added, terminate.

3. If the height of the IMTREE is \(k \), terminate. Otherwise, go to Step 1.

For all nodes at level \(k \), find the node \(n_{\max} \) that maximizes the expected targets influenced i.e. \(n_{\max} = \arg \max \sigma_T(IMSeed(n)) \). Output \(IMSeed(n_{\max}) \) as the solution. Observe that we use \(\text{mod}_N(S) = \sum_{u \in S} \sigma_N(u) \) as an approximation of \(\sigma_N(S) \). If \(\text{mod}_N(S) \leq \theta \) then \(\sigma_N(S) \leq \theta \) due to \(\sigma_N \) being a submodular function. Additionally, we use the values calculated in phase 1 to compute \(\text{mod}_N \). Henceforth, MULTI GREEDY will refer to the MULTI GREEDY heuristic algorithm.

3.2.4 Efficient implementation with RIS

Borgs et al. [2] introduced Reverse Influence Sampling (RIS), an efficient way to estimate \(\sigma(S) \) and solve the Influence Maximization problem under the IC model. RIS defines the notion of reverse reachable (RR) sets, using which \(\sigma(S) \) can be estimated. Tang et al. [30] extended the notion of RR sets to the LT model. The following lemma is first proved by Borgs et al. [2].

Lemma 3.2.4. ([2], Observation 3.2) Let \(n \) be the number of nodes in Graph \(G = (V, E) \). Let \(g \sim G \) be a random graph that is drawn by keeping each edge with probability \(p_e \). Let \(u \sim V \) be a random vertex chosen from \(V \). Let \(R_{g^T}(u) \) represent the set of nodes that can be reached by \(u \) in \(g^T \). We term \(R_{g^T}(u) \) as a Reverse Reachable set. For any \(S \subseteq V \), \(\sigma(S) = \sum_{u \sim V} P_{g \sim G}[R_{g^T}(u) \cap S \neq \emptyset] \).
Note that \(p_e \) varies based on the influence model. For our problem, we need to estimate \(\sigma_T(S) \), \(\sigma_N(S) \). Let’s modify the proof of Lemma 3.2.4 slightly to allow us to estimate \(\sigma_T(S) \) (or \(\sigma_N(S) \)). Let \(T \subseteq V \) be the targets.

\[
\sigma_T(S) = \sum_{u \in T} P_{g \sim G} [\exists v \text{ s.t } v \in S \text{ and } v \in R_{g^T}(u)]
\]

\[
= |T| \times \sum_{u \in T} \frac{1}{|T|} \cdot P_{g \sim G} [\exists v \text{ s.t } v \in S \text{ and } v \in R_{g^T}(u)] \quad (3.5)
\]

\[
= |T| \times P_{u \sim T, g \sim G} [\exists v \text{ s.t } v \in S \text{ and } v \in R_{g^T}(u)]
\]

A similar observation can be made for \(\sigma_N(S) \). Using Chernoff Bounds [2], for any \(v \), with high probability, we can estimate \(\sigma_T(v) \) (or \(\sigma_N(v) \)) within an error \(\epsilon \), by generating \(O(\log n/\epsilon^2) \) number of RR sets.

3.2.4.1 Natural Greedy and Multi Greedy using random RR sets

Natural Greedy : For the greedy implementation, we generate \(O(\log n/\epsilon^2) \) number of RR sets for Targets and Non Targets respectively. To find the best seed set, find \(S \) that covers the maximum number of RR sets.

Multi Greedy : For Phase 1, generate \(O(n \log n/\epsilon^2) \) number of RR sets for Non Targets. In Phase 2, we keep track of \((\theta + 1)\) seed sets. A naive implementation of Multi Greedy would keep track of \(O(\theta \log n/\epsilon^2) \) RR sets for Targets, each of which corresponds to a branch in the IMTree. We resolve this by doing the following: Generate \(O(\log n/\epsilon^2) \) Target RR sets. For \(i = 0 \) to \(\theta \), use \(Coverage_i \), each of which corresponds to a branch in the IMTree. \(Coverage_i \) records the number of new RR sets that can be covered for every vertex (after considering the RR sets covered by the seed set in that branch). As we build the seed set along a branch in the IMTree, just update the corresponding \(Coverage \) variable. Thus, the number of RR sets will be reduced by a factor of \(\theta \).
CHAPTER 4. EXPERIMENTS

The primary objective of the experiments is to evaluate the quality of the results for both Natural Greedy and Multi Greedy methods. The evaluation spans over several dimensions. In particular, we study the following:

1. How do the proposed algorithms perform compared to a few baseline algorithms?

2. For a fixed non-target threshold, how does the number of influenced target nodes vary as budget changes?

3. For a fixed budget, how does the number of influenced target nodes vary as the threshold changes?

4. For a fixed budget and threshold, what is the effect of the number of non-target nodes?

5. How much better is Multi Greedy compared to the Natural Greedy and what role Additive Loss plays?

6. What is the efficiency of the algorithms?

Table 4.1: Datasets

<table>
<thead>
<tr>
<th>Network-name</th>
<th># Nodes</th>
<th># Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetHept</td>
<td>15229</td>
<td>62752</td>
</tr>
<tr>
<td>Epinions</td>
<td>75879</td>
<td>508837</td>
</tr>
<tr>
<td>Amazon</td>
<td>334863</td>
<td>925872</td>
</tr>
<tr>
<td>DBLP</td>
<td>613586</td>
<td>1990159</td>
</tr>
<tr>
<td>Youtube</td>
<td>1134890</td>
<td>2987624</td>
</tr>
<tr>
<td>Pokec</td>
<td>1632803</td>
<td>30622564</td>
</tr>
</tbody>
</table>
Our dataset is presented in Table 4.1. The first two networks are from https://microsoft.com/en-us/research/people/weic/, rest are from http://snap.stanford.edu/data/. For experiments related to IC model, we use two configurations: 1) \(p(⟨u,v⟩) = 1/d_{in}(v) \), where \(d_{in}(v) \) is the in degree of \(v \). 2) \(p(⟨u,v⟩) = 0.1 \). In the Linear Threshold model, each node \(v \in V \) is assigned a threshold randomly from \([0,1]\). Let \(N^{in}(v) \) be the set of nodes such that each node in \(N^{in}(v) \) has an edge going to \(v \). For each incoming edge \(⟨u,v⟩ \), a weight is assigned such that \(\Sigma_{u \in N^{in}(v)} w(u,v) \leq 1 \). If \(N^{in}_{act}(v) \) is the activated (already influenced) neighbors of \(v \), then \(v \) becomes active when \(\Sigma_{u \in N^{in}_{act}(v)} w(u,v) \) is greater than or equal to the randomly selected threshold (for \(v \)). In our experiments, we have chosen the weight of an edge \(w(u,v) = 1/inDeg(v) \). To generate RR sets under the LT Model, we have used the technique as presented in [30].

4.1 Labelling Strategies

We considered three different ways of labeling the vertices of graphs as targets and non-targets. The first strategy uses a uniform labeling strategy—both target and non-target users are spread uniformly in the network. We randomly chose a desired number of nodes and label them as non-targets and the rest as targets. In certain scenarios, it is possible that the non-target nodes appear in several clusters. In the clustered labeling strategy, we randomly pick a node \(v \) mark it as non-target, then a randomly chosen 3/4th fraction of nodes at distance 2 from \(v \) are also marked as non-targets. This step is repeated until the desired number of nodes are marked as non-targets. The final labeling strategy, inferred labeling, is applied on the pokec network. In this network, every user who identified themselves as a non-smoker is marked as non-target, and the rest of the users are marked as targets.

4.2 Experimental setup

All experiments are conducted on a Linux server with AMD Opteron 6320 CPU (8 cores and 2.8 GHz) and 64GB main memory. All the algorithms were implemented in C++. Source code is available at https://github.com/madhavanrp/InfluenceMaximization.
4.3 Experimental Observations

In our experiments, once a seed set is obtained, we estimate the number of target nodes and non-target nodes influenced and verified that the estimated number of non-target nodes influenced is close to satisfying the desired threshold θ.

4.3.1 Comparison with Baseline Implementations.

We consider three basic heuristics: i) targets heuristic—this heuristic attempts to greedily find a seed set that influences the maximum possible number of target nodes, ii) non-targets heuristic—this heuristic (greedily) finds a seed set that influences a minimal number of non-target nodes, and iii) difference heuristic from [26]—this heuristic attempts to find a seed set that maximizes the difference between the number of target nodes and non-target nodes. We report the results on NetHept and Epinions for the uniform labeling strategy, with 80% of nodes as targets and 10 as non-target threshold, and 20 as budget. On Epinions the targets heuristic produced a seed set S_1 that influenced 1718 non-target nodes, thus $\sigma_T^{\theta=10}(S_1) = 0$. The non-targets heuristic produced a seed set S_2 that influenced less than 10 non-target nodes and 83 target nodes. Thus $\sigma_T^{\theta=10}(S_2) = 83$. Finally, the difference heuristic produced a seed set S_3 that influenced 1595 non-target nodes. Thus $\sigma_T^{\theta=10}(S_3) = 0$. However, the Natural Greedy algorithm produced a seed set S_4 that influenced 153 target nodes while keeping non-targets below 10. Thus $\sigma_T^{\theta=10}(S_4) = 153$. Clearly, Natural Greedy algorithm has produced a seed set with much higher quality. For the NetHept graph, the value of the objective functions on the seeds sets produced (by targets heuristic, non-targets heuristic, and difference heuristic are 0, 91, 0 respectively. Whereas the value of the objective function on the seed set produced by the Natural Greedy is 142. We observed similar results on the other graphs tested. These baseline heuristics, either influence too many non-target nodes or influence too little target nodes. This suggests that focusing only on target nodes, or only non-target nodes, or looking at the difference do not yield good algorithms for the CIM problem.
Now that we have experimentally established that the Natural Greedy algorithm is better than some of the baseline implementations, we turn our attention to the performance of Natural Greedy and Multi Greedy algorithms.

4.3.2 Budget vs. Influence.

In our first set of experiments, we set the number of target nodes as 80% of nodes of the graph and chose non-target threshold θ as 10 and varied budget from 2 to 40. Figure 4.1 shows plots of the results for various networks. With the exception of Pokec, all the graphs are labelled under the uniform labelling strategy.

In Figures 4.3 and 4.1, we show the relation between the number of targets influenced and the budget under clustered labeling (for Epinions and NetHept) and for inferred labeling (for Pokec). As expected, the number of targets influenced increase with the budget. It can also be seen that the quality of the Multi Greedy algorithm is better than the quality of the Natural Greedy algorithm.
algorithm. Interestingly, clustered labeling allows more targets to be influenced. For example, with clustered labeling, on Epinions, the Multi Greedy algorithm found a seed set that influenced 235 targets while this number is 183 for the uniform labeling (when the budget is 20). Intuitively, it is (relatively) easier to avoid non-targets and thus influence more target nodes, when non-targets are clustered together rather than when they are spread throughout the network.

Figure 4.4 shows the influence under the IC Model and each edge has a probability 0.1. We see that the MultiGreedy outperforms Natural Greedy under this setting as well. Note that the number of targets influenced has decreased compared to when the propagation probability is $1/inDeg(v)$. This can be explained as follows: when $p = 0.1$, the influence of a node (resulting in influencing targets and non-targets) is likely to be higher when compared to $p = 1/inDeg$. Consequently, the candidate seed nodes’ influence is small as they are selected such that the non targets influenced under $\theta = 10$. In fact, as the budget increases, the targets influenced increases only by 1 or 2 with $p = 0.1$.
Figure 4.2 shows the influence under the LT model. In this, we have 80% Targets using the uniform labeling strategy, $\theta = 10$ for all the graphs. We see that the influence is similar to the IC Model. The MultiGreedy algorithm does outperform the Natural Greedy. Interestingly, the number of nodes influenced is marginally higher while the difference between the MultiGreedy and Natural Greedy is comparable to the IC Model. In the IC model for example, for the Amazon graph, with budget=40, Natural Greedy and MultiGreedy influences 420 and 478 targets respectively. Under the LT Model, the algorithms influence 527 and 580 targets respectively. We observe that MultiGreedy performs better than the Natural Greedy in the LT model as well.

4.3.3 Threshold vs. Influence.

Next, we fixed budget as 20 and the number of target nodes as 80% and varied non-target threshold from 0 to 50. These results are presented in Figure 4.5. With the increase in threshold, the number of target nodes influenced increases. Interestingly, the difference between the quality of the solutions found by MultiGreedy and Natural Greedy increases as the non-target threshold increases. For example, for the Amazon network, when $\theta = 25$, the MultiGreedy algorithm found a seed set that influenced 98 more target nodes than the number of targets influenced by the seed
set found by the Natural Greedy algorithm. When the threshold is 50, the difference is close to 150.

Table 4.2: Target-Non-target Distribution vs. Influence for $k = 20$, $\theta = 10$. Natural /Multi

<table>
<thead>
<tr>
<th>Percentage Targets</th>
<th>DBLP</th>
<th>Amazon</th>
<th>NetHept</th>
<th>Epinions</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>218/242</td>
<td>196/230</td>
<td>108/122</td>
<td>110/136</td>
</tr>
<tr>
<td>80</td>
<td>267/312</td>
<td>265/299</td>
<td>142/165</td>
<td>143/183</td>
</tr>
<tr>
<td>90</td>
<td>417/513</td>
<td>374/496</td>
<td>205/231</td>
<td>240/303</td>
</tr>
<tr>
<td>95</td>
<td>650/790</td>
<td>667/862</td>
<td>308/342</td>
<td>357/489</td>
</tr>
</tbody>
</table>

4.3.4 Target-Non-target Distribution vs. Influence.

In our third set of experiments, we fixed budget to 20, non-target threshold to 10 and varied the number nodes that are labeled as target nodes from 70% of the nodes to 95% of the nodes. Here we report the results for the networks netHept, dblp, amazon, and epinions (Table 4.2).
The increase in the number of target nodes increases the possibility to influence more target nodes. We also observe that the Multi Greedy algorithm finds a seed set of higher quality. For example, consider the dblp network. When 70% of the nodes are labeled as target nodes, the Multi Greedy algorithm produces a seed set that influenced 12% more nodes than the seed produced by the Natural Greedy algorithm. When 95% of the nodes are labeled as targets, Multi Greedy’s solution is 22% better than the solution produced by the Natural Greedy algorithm. The improvements are more drastic for the opinions network—with 70% of nodes labeled as targets, the solution of Multi Greedy is 23% better than the solution of Natural Greedy; when 95% nodes are labeled as targets, Multi Greedy is nearly 51% better. On the other hand, for the netHept network the percentage improvement (of Multi Greedy) slightly goes down as the number of targets increases.
4.3.5 Additive Loss.

Recall that the term $\sum_{i=0}^{k-1} BestG(S_i, 2\theta) - \sigma_T(S_k)$ is the Additive Loss of the Natural Greedy algorithm. We calculated Additive Loss for various networks for a fixed θ and varying budget (Table 4.4). We now relate this quantity to the performance difference between Natural Greedy and Multi Greedy algorithms. We would like to know how far the Multi Greedy algorithm mitigates the additive loss. Suppose x is the Additive Loss of the Natural Greedy. If x equals the difference between the number of nodes influenced by the Multi Greedy and Natural Greedy algorithms, then it indicates that the Multi Greedy algorithm has no additive approximation errors. Of course, we cannot hope that the Additive Loss of Multi Greedy is 0 for every graph (due to Theorem 3.1.2). The experimental data enables us to test this on some real-world graphs. For example, for netHept with budget 20 and non-target threshold 10, the Additive Loss is 30, and in this case the Multi Greedy algorithm influenced 23 more nodes than the Natural Greedy
algorithm. That is, the Multi Greedy algorithm has a very small additive approximation loss. On the other hand, consider the dblp network. The additive loss is 91, and the seed set of the Multi Greedy algorithm influences 45 more nodes than the set produced by the Natural Greedy. The important observation is that the difference between the Multi Greedy and Natural Greedy algorithms is “somewhat close” to AdditiveLoss, but not the same. Thus experimentally we can state that that the Multi Greedy algorithm has a smaller additive approximation error.

Figure 4.3 shows the relation between Additive Loss and the non-target threshold θ for various networks. Interestingly the Additive Loss initially increase with θ, reaches a peak and then decreases as θ increases. Intuitively Additive Loss captures the following: difference between the number of targets influenced with 2θ threshold and θ threshold. Since with 2θ, more non-targets can be influenced, the difference increases with θ. However, when θ reaches a large enough value, we do not gain any advantage with threshold 2θ, this is because even the best seed set may influence less than 2θ non-targets. This indicates that Natural Greedy will have low additive approximation error for very small and very large values of θ and its performance will be close to Multi Greedy. In other cases, Multi Greedy might perform better.

To further understand the difference in the performance of the two proposed algorithms, we calculated the intersection between the seed sets produced by them. We notice that in most scenarios the number of common elements between both seed sets is below 50%. This justifies keeping track of multiple seed sets in Multi Greedy.

<table>
<thead>
<tr>
<th>NetHept</th>
<th>Epinions</th>
<th>Amazon</th>
<th>DBLP</th>
<th>Youtube</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>31</td>
<td>126</td>
<td>670</td>
</tr>
</tbody>
</table>
4.3.6 Runtime.

Figure 4.6 plots the total time taken on the various graphs. On the amazon network, both algorithms take a little over one minute (with Budget 10). For dblp network, Natural Greedy takes 260 seconds whereas Multi Greedy takes 310 seconds. On youtube, both the algorithms finished in 25 minutes. On the denser graphs, epinions and pokec, the algorithms finished in 76 seconds and 34 minutes respectively. This suggests that the algorithms are likely to perform well on denser graphs as well. In general, we noticed that the time for Multi Greedy increases linearly with budget and with threshold even though theoretical analysis has θ^2 factor in run time. Whereas the impact of Budget and threshold are minimal for the Natural Greedy algorithm.

Table 4.5 shows the Phase 1 time of Multi Greedy. On larger graphs such as DBLP and Youtube, Phase 1 takes 126 and 670 seconds respectively. If we were to run the Multi Greedy for various values of k and θ, this overhead can be avoided by storing the results of Phase 1. This validates the modularized design of Multi Greedy.
CHAPTER 5. SUMMARY AND FUTURE WORK

5.1 Summary

In this thesis, we studied the Constrained Influence Maximization (CIM) problem. The objective is to influence Target users with the hard constraint on the number of adversarial Non-Target users influenced. Despite the theoretical hardness of CIM, we’ve provided efficient RIS based designs of Natural Greedy and Multi Greedy algorithms.

5.2 Future Work

In CIM, the number of adversaries or Non Targets is limited by a hard constraint. The question then arises: Are there scenarios where this hard constraint must be relaxed? The choice for threshold θ will vary based on the size of the graph, the application, etc. Consider a political ad campaign: The objective can be to spread the ad maximally, while still influencing a minimal number of non-targets. One could tolerate higher numbers of Non-Targets influenced provided more Targets are also influenced (with the motivation still being to minimize Non-Targets influenced). We can view this problem as the maximizing difference of the number of Targets and Non-Targets.

Problem 3. Given a network $G = (V,E)$ and k, compute $S \subseteq V$, $|S| = k$ such that $h(S) = \sigma_T(S) - \sigma_N(S)$ is maximized.

While the problem of maximizing the difference between two submodular functions has been studied [21, 11], there are two major unexplored areas. Firstly, unlike Problem 3, there is no cardinality constraints in the existing literature. Secondly, the existing algorithms are designed for general submodular functions and not the influence function under the IC/LT models. We plan to study Problem 3 as the next step in understanding how to maximize influence in the presence of Non-Targets.
REFERENCES

