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I. INTRODUCTION 

The subjective evaluation, made by the driver, of the response of 

the driver/vehicle system is called handling. Handling is extremely 

difficult to describe quantitatively. When the driver describes handling, 

he speaks in qualitative terms, not in quantitative terms. Another 

difficulty is that the driver's evaluation is based on his preferences. 

In fact, the handling of one automobile may be rated good by one driver 

and poor by another. However, there is one handling quality that is 

demanded by all drivers; that is the quality of lateral stability. 

The classical analytical vehicle handling result is for the lateral 

stability of a car with fixed control of steering (the direction of the 

front wheels is fixed with respect to the rest of the vehicle) and no 

roll freedom traveling in a straight line at constant forward speed. The 

classical result is used extensively in the automobile industry and by 

government, industrial and university researchers. However, the classical 

model is too simple. It does not provide a completely adequate 

description of vehicle dynamic behavior. The classical model does not 

include important features such as roll freedom, driver control, 

nonlinearities and time-delays. 

More complete vehicle models have been developed and are being used 

for computer simulation. But it is very difficult to establish the 

validity of such simulations and it is practically impossible to reach 

general conclusions from simulation results. As Bidwell [1] has said, 

"Although the development of elaborate computer simulation has permitted 

computation of vehicle directional behavior over a wide range of 
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circumstances, most of the physical understanding of the relation of 

design parameters to performance is obtained by studies of much simpler 

systems." 

Design improvements have, historically, been evolutionary in nature. 

Design changes were small and developed over long periods of time. This 

is no longer true. Radical design changes must now be made rapidly if 

the American automobile industry is to survive. Vehicles must become 

smaller, lighter and more efficient. Design procedures must be improved. 

Currently they are costly and time consuming. One way to improve 

vehicle design procedures is to extend the analytical foundation for 

vehicle design. The objective of this dissertation is to present 

analytical results for the stability of the driver/vehicle system. These 

new results will help to fill the gap between the classical analytical 

result and complex computer simulation results. 

In this dissertation a system will be called stable if all the roots 

of the characteristic equation have negative real parts, with the 

exception of the statement of the Lyapunov theorem where the words 

asymptotically stable are used. 
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II. LITERATURE REVIEW 

Literature concerning the handling of the automobile is volumous. 

Therefore, the following review is not exhaustive, but rather is 

intended to be illustrative, dealing with those papers considered to be 

representative and significant in the field of automobile handling. 

The following review is divided into two sections. The first section 

is devoted to the vehicle. The second section is devoted to the driver. 

A. Vehicle Literature 

The initial portion of this section dealing with the vehicle will be 

concerned with tires. In order to describe the motion of a vehicle, 

the forces acting on the vehicle must be known. The most significant 

forces acting on the automobile arise from the tire/road interaction. 

The lateral force acting on a rolling tire is a function of the 

slip angle. The slip angle is the angle between the velocity vector of 

the wheel center and the vertical plane of the tire. The slip angle is 

illustrated in Figure 1. 

The force-slip angle concept has been attributed to Brouhleit [2]. 

Among the first to experimentally measure the force-slip angle 

relationship were Bradley and Allen [3], They also measured the braking 

force-slip angle relationship. The effect of rim width, section width 

and number of plies on tire properties was investigated by Joy and 

Hartley [4]. Nordeen and Cortese [5] have described both force and 

moment characteristics of rolling tires. The interrelationship of 

longitudinal and lateral tire forces has been discussed by 
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Slip Angle 

•>" Velocity 

Figure 1. Top view of tire, illustrating the slip angle 

Dugoff et [6]. 

The early work with tires concerned itself primarily with steady 

state properties. More recent work concerns itself with transient 

behavior. Bergman and Beauregard [7] and Weber and Persch [8] have 

presented data on the transient behavior of the force-slip angle 

relationship. An empirical model has been developed by Lippmann and 

Oblizajek [9] from transient tire test data. Lippmann and Oblizajek 

concluded from their model that transient effects are small and 

therefore have insignificant effect on vehicle behavior. But even 

though small, transient effects may contain important sensory information 

for the driver. 

Calspan Corporation has been involved in tire testing for many 

years [10]. They have compiled a large amount of tire performance data. 

In particular, Roland et al. [11] and Schuring et al. [12] have reported 

work concerning vehicle handling as influenced by tire properties. 
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Having reviewed briefly some important tire work, now consider the 

vehicle as a whole. Most steady state behavior of the automobile was 

understood by 1950. Lind Walker [13] discussed the understanding of 

vehicle behavior at that time. 

Differential equations of motion for the automobile were not developed 

until 1953. Schilling [14] is credited with being among the first to 

develop and solve dynamic equations of motion describing the lateral 

motion of the automobile. Schilling solved his equations for "typical" 

vehicle parameter values. This work was followed by research at Cornell 

Aeronautical Laboratory (CAL). An introduction to research at CAL and an 

excellent historical overview of early automotive development are given 

by Milliken and Whltcomb [15]. One of the contributions of the research 

at CAL was the development and experimental substantiation of the linear 

equations of motion associated with a three degree of freedom model [16]. 

The classical anaxytlcal result for the lateral stability of an 

automobile for the case of constant speed straight line motion is based 

on the linear three degree of freedom model. The classical result gives 

the speed at which an oversteer vehicle will become unstable and shows 

that an understeer vehicle is stable for all forward speeds [17]. 

During the early 1960s, several advances were made. One was the 

incorporation of tire nonlinearities into vehicle models. Analog computer 

simulations were developed to make use of these new models. 

Beauvais ê  al. [18] and Nordeen [19] have reported results of their 

analog simulations. Another advancement came in the consideration of 

the effect of aerodynamic forces on handling response. 
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Bundorf al. [20] reported experimental results involving aerodynamic 

forces and compared their results with analytical results. Segel [21] 

showed that the dynamics of the steering system can influence the 

lateral stability of the automobile. 

In the late 1960s and early 1970s, digital and hybrid simulation 

were developed [22-29]. These simulations range from the nonlinear 

seven degree of freedom simulation of Chiesa and Rinonapoli [22] to the 

thirty-two degree of freedom simulation of Bohn and Keenan [28]. These 

simulations can include nonlinear effects of tires, suspension components 

and trailers. They have been used to examine the effect of braking and 

cornering, spinout, wheel lift and roll over behavior, as well as steady 

turning, sloams and J-turns. 

These complex models of the vehicle do provide a more complete model 

of the vehicle than did the models used in earlier studies. But it is 

very difficult to establish the validity of such simulations and it is 

practically impossible to reach general conclusions from the simulation 

results. 

For example, a hybrid simulation program called the Hybrid Computer 

Vehicle Handling Program (HVHP) [28] has been developed at the Johns 

Hopkins University Applied Physics Laboratory. The HVHP requires the 

use of both analog and digital computers and has a nonlinear seventeen 

degree of freedom model of a four wheeled vehicle. The HVHP was 

validated by comparing simulation results with full-scale test data for 

passenger cars performing specific test procedures, such as straight line 

braking and sinusoidal steer. To use the HVHP, it is necessary to provide 
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a very large number of vehicle parameters and to carry out the simulation 

at the Applied Physics Laboratory. 

Another example is a digital computer program for simulating the 

directional response of commercial trucks and tractor-trailers developed 

at the University of Michigan's Highway Safety Research Institute [29]. 

The simulated vehicle can have up to thirty-two degrees of freedom. 

Nonlinear effects such as the relation between cornering force, side slip 

angle and longitudinal slip are included in the simulation. Full-scale 

tests were conducted as part of the Highway Safety Research Institute 

study and the results compared with simulation results. In general, the 

simulation results and full-scale test results compared favorably. 

However, in some cases, there were considerable unexplained differences. 

For instance, the lateral acceleration and yaw rate values from the 

simulation of a loaded tractor-trailer in a steady turn were from 28% to 

62% higher than the associated full-scale test values. 

The compliance concept is based on the observation that the forces 

acting on many parts of a vehicle during typical maneuvers do not deviate 

significantly from static-equilibrium values. Thus, approximate analyses 

of the deflections of such components can be made on a quasi-static basis. 

Nedley and Wilson [30] have provided useful definitions for lateral-force 

compliance steer, lateral-force compliance camber, aligning-torque 

compliance steer due to slip, aligning-torque compliance steer due to 

camber, body aligning-torque steer, and brake steer. The cornering 

compliance concept has been developed by Bundorf and Leffert [31] as an 

extension of the compliance concept. Cornering compliance for rolling 
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vehicles has been considered by Winsor [32]. 

B. Driver Literature 

Without question the most difficult part of the driver/vehicle 

system to model is the driver. Humans have tremendous ability to gather 

information, analyze situations and generally respond in an effective way. 

These qualities make the human a good driver, but a complex one. The 

human driver operates both as an open loop controller and as a closed loop 

controller. Examples of open loop control are lane changes, avoidance 

maneuvers, and turning from one street onto another. Closed loop control 

is used to maintain position within a lane. Most driver models deal 

with either open loop control or closed loop control, but not both. 

Several driver models have been developed and are briefly discussed 

below. 

Based on man-machine theory, McRuer and Krendel [33] developed the 

crossover model. The crossover model views the driver as a feedback 

controller with many possible loop closures. The underlying idea of the 

crossover model is that the driver desires a certain performance from the 

driver/vehicle system and he will adapt his performance to achieve the 

overall desired performance. Weir and McRuer [34] have presented results 

of simulator studies to validate the crossover model. They concluded 

that an outer loop dealing with lateral position was necessary for 

lateral stability. Also necessary was a loop closure of at least one of 

the following: path angle, path rate, heading angle or heading rate, 

with two or more giving more realistic results. 
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Another type of driver model is the predictive model. Kondo and 

Ajimine [35] developed the sight point model. In the sight point model, 

the driver looks down the road some prescribed distance and steers as a 

function of the difference between the point he is headed toward and the 

desired path. A similar model was proposed by Yoshimoto [36] in which 

the driver predicts the future position of the vehicle system using the 

systems present position, yaw angle and yaw velocity. Again, the driver 

steers as a function of the difference between the predicted position 

and the desired position. 

Some work has been done in trying to fit driver models to actual 

driver responses. Weir and Wojcik [37] and McRuer and Klein [38] have 

reported the results of simulator studies involving the crossover model. 

In these studies, the crossover model was fitted to actual driver 

responses. Carson and Weirwille [39] developed a driver model that 

considers the driver to be a proportional controller with thresholds 

below which he does not respond. The proportional control operates on 

the yaw angle and lateral displacement. This model also incorporates a 

time delay to simulate a real driver's reaction time. This model was 

fitted to responses of people driving a simulator. 

The literature reviewed above indicated that there exists a classical 

analytical result, a few analog simulations concerned primarily with 

nonlinear tire properties, a large number of complex computer simulations 

and several driver models. What is needed is further analytical work to 

help bridge the gap between the classical analytical result and the 

complex simulation results. New analytical handling results would provide 
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the much needed foundation for Improved automotive design procedures. 

This dissertation will present new analytical results. These results 

will deal specifically with the lateral stability of the driver/vehicle 

system. 
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III. CLASSICAL RESULT 

The classical result arises from the problem of determining the 

lateral stability of an automobile in straight line, constant speed 

motion. The model used for the automobile is shown in Figure 2. It is 

called the bicycle model. In the bicycle model, the automobile is modeled 

as a zero-width vehicle, with two wheels per axle assumed. The wheels 

are located on the center line of the vehicle with the front axle located 

a distance L̂  in front of the center of mass and the rear axle located a 

distance behind the center of mass. The front axle is steered at an 

angle 6. The resultant lateral force exerted on the tire by the road is 

assumed to act perpendicularly to the plane of the wheel, directly below 

the wheel center. The coordinate system is fixed in the vehicle at its 

mass center. The equations of motion are written by summing forces in 

the X and y directions and by summing moments about a vertical axis 

through the mass center. These equations can be written as: 

ly 
sin 6 + F 

2x 
(1) 

m(Vy + sin 6 + F̂  ̂cos 6 + F̂  ̂ (2) 

(3) 

where F̂ ,̂ F̂  ̂= forces resulting from braking or tractive 

efforts and/or rolling resistance, acting 

parallel to the front and rear wheels, respectively; 

F̂ y, Fgy = lateral forces acting perpendicularly to the 

plane of the wheel and directly below the wheel 



Figure 2. The bicycle model 
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center, front and rear forces, respectively; 

= moment of inertia of the vehicle about the 

vertical axis; 

L̂ , Lg ~ lengths from the mass center to the front and 

rear axles, respectively; 

m = mass of the vehicle; 

= speed of the vehicle in the x direction; 

Vy = speed of the vehicle in the y direction; 

6 = steer angle of the front axle; and 

= angular speed of the vehicle about the vertical 

axis. 

The lateral force on a tire can be expressed as the negative of the 

product of the tire's cornering stiffness and its slip angle. The total 

lateral force acting on an axle is the sum of the lateral forces of the 

tires on the axle. Therefore, for two wheels per axle, the lateral 

force on the front and rear axles, respectively, can be written 

and 

Fly = - 2 (4) 

FJY - - 2 CJOJ (5) 

where Og = front and rear slip angles, respectively; and 

Ĉ , Cg = front and rear cornering stiffnesses, respectively. 

The slip angle is the angle between the velocity vector of the wheel 

center and the vertical plane of the tire. The velocities of the wheel 
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centers at the front and rear are, respectively, 

hi - \ "k + "y «) 

and 

St2 • \ + «y - W "y • (7) 

Relationships between the slip angles and «g, the steer angle 6, and 

the quantities V̂ , and can be found by taking the ratio of the 

speed of the wheel center in the y direction to the speed of the wheel 

center in the x direction. For small angles 

«2 + 6 = tan + 6) = (8) 

V - ̂ 2% 
ag = tan —n . (9) 

X 

For the classical problem of constant speed, straight line motion, 

four assumptions are made: 1) the steer angle 6 is zero; 2) there are 

no braking, tractive or rolling resistance forces (F̂ 's =0); 3) the 

speed in the x direction is constant; and 4) all second or higher order 

terms of the variables are small compared to first order terms and can 

be neglected (cos 0=1 sin 0=6). If Equations (4), (5), (8) and 

(9) are combined with Equations (1), (2) and (3), Equation (1) vanishes 

and Equations (2) and (3) can be written as 

21̂ 0, - 2L„C„ 2Ĉ  + 2C„ 
mVy + (mV̂  + - y —>0̂  + 4Vy = 2Ĉ Ô (10) 
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2L̂ C. + 2L̂ C„ 2LtCT - 2L„C-
+ ( V X + ( V )Vy = 2L,C,6 

X X  ̂

(11) 

Writing Equations (10) and (11), with 6=0, in matrix form gives 

r. ̂  
m 0 [ V 1 

y I 
< . ( + 

0 I ÇI 
z L zj 

®11 ®12 

®21 ®22 

0 

(12) 

where 
2Ĉ  + ZCg 

11 
(13) 

®12 = + 
2LiCi - 21,02 

(14) 

% - 21,02 

21 
X 

(15) 

and 
2L2ci + 

22 
(16) 

Preraultiplying Equation (12) by the inverse of the mass-inertia matrix 

of Equation (12) and substituting the following assumed solution 

Q 

Xt 
e , (17) 

results in the following equation: 
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X + 
11 
m 

21 

B 
12 
m 

X + 
>22 

f y 

9l 0 

i . ê t = 4 

^2 0 

(18) 

Equation (18) yields a nontrival solution only if the determinant of the 

matrix is zero. Setting the determinant equal to zero gives 

+ (̂  + ̂ ) X + °12°21̂  = 0 . 
m 1 mi z z 

(19) 

This is the characteristic equation of the system and its roots are the 

eigenvalues. They are 

'''• ST ) 

and 

X2 = 

-<¥ - > 
z 

(20) 

(21) 

The eigenvectors associated with these eigenvalues are, respectively, 

Qi = 

-B 12 
m 

(22) 

and 
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-B 
12 
m 

(23) 

S 

The transient solution of the equation of motion can be written in terms 

of the eigenvalues and eigenvectors. The transient solution is 

where and Ag are constants which depend on the initial conditions. 

For the system to be stable, the roots, and of the 

characteristic equation (Equation 19) must have negative real parts. 

The roots of a quadratic equation will have negative real parts if all 

the coefficients are positive. The coefficient of the second order 

term is one, so it is clearly positive. The coefficient of the first 

order term is also positive as can be shown by recalling Equations (13) 

and (16) and noting that all the parameters describing the physical 

system are positive. Thus, if the zeroth order term is positive, the 

system is stable. 

An expression that the zeroth order term be positive can be written 

in terms of the vehicle parameters as 

(24) 

(2Ci + ZCg)(21̂ 0̂  + 2L2C2) 

- (mV̂  + 2L̂ Ĉ  - 2L2C2)(2L̂ Ĉ  - 2L2C2) > 0 . (25) 
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Performing the indicated products yields; 

UL^cl -f + 4L:c: - mv2(24Ĉ  - ZL̂ C,) 

- (4L̂ CJ - + ALgCg) > 0 . (26) 

Simplifying gives 

AĈ CgCLi + Lg)̂  + mV̂ XZLgCg - 2Lĵ Cĵ ) > 0 . (27) 

If the difference, is positive, the condition is 

satisfied and the system is stable. However, if the difference, 

^̂ 2̂ 2 ~ ̂ 1̂̂ 1' negative, the condition that the zeroth order term 

be positive will be satisfied only if 

;-4c,c,a, + L,)' 

X \y «(ZLgCg - 2L̂ Cj) • 

Dividing both numerator and denominator by + Lg)̂  gives 

(29) 

mgLg mgL̂  
Now Yl—+~L~ L—+ L the normal loads, and Ŵ , on the front 

and rear axles, respectively. The condition may then be written as 

(30) 
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or 

/-(L + L-ig 

V-T-

w w 
where K = (-̂  oTT") and is called the understeer coefficient. 

US 2 

If the understeer coefficient, is positive, Equation (27) is 

satisfied and the vehicle will be stable for all speeds, V̂ . But if 

the understeer coefficient is negative, the vehicle will be stable only 

at speeds less than a critical speed. The critical speed is 

f-(Li + L„)g 

ĈRIT \/ K * (32) 
us 

This is the classical result for lateral stability of an automobile in 

constant speed, straight line motion. 

The classical results give conditions under which the vehicle will 

be stable. But what does stability mean? For the classical result, 

stability means that if the system is disturbed the lateral velocity and 

yaw velocity will return to zero. Physically this means the vehicle 

will return to straight line motion. But this resulting straight line 

motion is not the original straight line motion. The classical approach 

to the problem uses coordinates fixed in the vehicle. The equations of 

motion resulting from this approach are in terms of velocities. No 

displacement terms appear in the equations of motion. Thus, the 

classical approach yields only a subset of the complete set of equations 

of motion and stability of this subset does not imply stability of the 
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complete set of equations of motion. Displacements are very important 

because the physical system, the automobile, travels on a road of 

limited width. If the position of the vehicle exceeds the boundaries 

of the road, the vehicle is off the road. Thus, it is necessary to use 

an absolute coordinate system (i.e. a system fixed in the road) so 

that displacement and orientation will be included in the analysis. 

A coordinate system fixed in the road is illustrated in Figure 3. 

The equations of motion for the vehicle in the absolute reference frame 

can be obtained from the previous equations of motions (those in the 

moving reference frame) by adding two additional equations. These two 

equations relate the velocities of the vehicle in the moving reference 

frame to the absolute coordinates or their time derivatives. The two 

additional equations are 

* = Og (33) 

and 

Y = V + V i|» (34) 
y x̂  

where ip = the yaw angle with respect to the X axis of the absolute 

reference frame, and 

Y = the lateral displacement of the vehicle's mass center 

in the absolute reference frame. 

The equations of motion in the absolute reference frame may be written 

as 



Ix 

2x 

Figure 3. Bicycle model and absolute coordinates 
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m 0 0 0 V y 

0 I 
z 

0 0 < "z 

0 0 1 0 

0 0 0 1 Y 

+ 

- f " 
' 

=11 =12 0 0 V y 0 

=21 =22 0 0 n 
z 

0 
i • = < > 

0 -1 0 0 4» 0 

-1 0 -V 0 Y 0 
X . •> < 

(35) 

where and B̂  ̂are given by Equations (13) - (16) 

The characteristic equation of the equation of motion is 

+ ̂ ) X + (̂ 11̂ 22 1̂2=21)1 ̂  Q 
i ml z z 

(36) 

The roots of this quartic equation are; 

z * \ z 
) •  

, ®11®22 " ®12®21. 
) 

(37) 

2̂ = 
z V \ z -

,̂ 11=22 ~ =12=21. 

 ̂ ml ' 
(38) 

Xg = 0 

- 0 . 

(39) 

(40) 
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The roots give rise to solutions 

Qi = i 

V 

"̂ 12̂ 1 

hi + "^1 

X '12 
Ai + mX̂  

L 
' ® , Q2 = 

"̂ 12̂ 2 

Bll + ""̂ l 

12 X 

X2 + mXg 

 ̂0 " 

Q3 = 
0 

0 

X 1 X 

The solution associated with the root X̂  = 0 has the form 

' 0 ̂  

Q/. = _ 

0 

0 

1 S y 

te® + 

4 

Substituting this assumed solution into Equation (35) yields 
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91 

0
 

2̂ 
0 

< 
93 

• = < 1 

94 1 

(43) 

The desired solution associated with = 0 is then 

0 

0 

0 

1 

Q4 = t + 

X 

(44) 

The general solution of the equations of motion is therefore 

Y 

= AiQi + A2Q2 + A3Q3 + A4Q4 (45) 

where Ag, Ag and Â  are constants dependent on initial conditions. 

The characteristic equation has two zero roots. This results in a 

solution that will grow with time. Thus, the automobile is laterally 

unstable. That is, it will not remain on a straight road. In order for 

the vehicle to remain on the road, steering control is needed. This 

control is generally provided by a driver. The driver/vehicle system 

will be considered in the next section. 
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IV. DRIVER/VEHICLE SYSTEM RESULTS 

A. Driver/Vehicle System 

In the classical approach to the problem of the lateral stability 

of an automobile, the front wheels were fixed at 6=0. Now a driver 

will be introduced. Carson and Weirwille [39] have modeled the driver 

as a proportional controller responding to lateral displacement and yaw 

angle, where thresholds on the lateral displacement and yaw angle and a 

time delay must be satisfied before the driver responds. A simpler 

model will be used here, where the driver will be modeled simply as a 

proportional controller responding to lateral displacement and yaw 

angle expressed as 

6 = - - D̂ Y (46) 

where 6 = the front wheel steer angle; 

ijj = the yaw angle of the vehicle; 

Y = the lateral displacement of the vehicle; 

D̂ , Dy = positive constants. 

If this driver model is substituted into the equations 

the absolute reference frame. Equations (10) and (11), 

2Ct + 2C, 2L C, - 2L,C, 
» V + ( \ ') V + (mV, + , 

•' X X 

and 

of motion, in 

the result is 

= 2Ĉ (-D̂ lj, - DyY) (47) 
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2L,Ct - 2L,C, 2LJCT + 2L%C, 

+ ( v.. X + < V >"z 
X 

- 2^1 ("V - V> (48) 

ij; = n 

Y = Vy + v̂ i|̂  . 

(49) 

(50) 

The driver terms can be moved to the left side of the equations since 

they are functions of ip and Y. The resulting equations of motion can be 

written in matrix form as 

- -

m 0 0 0 V y «11 «12 

0 0 0 «21 «22 
< ^ + 

0 0 1 0 4» 0 -1 

0 0 0 1 -1 0 

6 

B 

13 

23 

0 

-V 

-

«14 V y 0 

«24 
4 

«Z 
II 

0 

0 v 0 

1 
O
 '
 

.0. 

(51) 

where 

«13 = 

hi ' 'W 

hi ' 

= 2L̂ Ĉ̂ Dy; and 

(52) 

(53) 

(54) 

(55) 
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1̂1' ®12' ®21 ®22 defined by Equations (13)-(16). 

Premultiplying Equation (51) by the inverse of the mass-inertia matrix 

of Equation (51) yields 

V y 
fl2 1̂3 f

—
 

O
 V y m m m m 

V y 

f
—

 
O
 

"z 

< • + 

2̂1 
I 
z 

®22 
I 
z 

®23 

ẑ 

«24 
I 
z 

i 

n 
z 

• = 4 

0 

0 -1 0 0 'I' 0 

Y -1 0 -V 
X 

0 Y 
» J 

0 

(56) 

The characteristic equation for this system is 

X4 + (fll + + (̂ 11̂ 22 _ fl2̂  + ̂  + 
ml m I ml ml 

Z Z Z Z 

,°11°23 ®13°21 °14°22 °12°24 ®24 
'-TT ST- + -TT ÎT- + — 

Z Z Z Z Z 
(57) 

In terms of the vehicle and driver parameters, the characteristic 

equation simplifies to 
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2Ci + 2C, 2LJC, + 

+ " ̂ Vz ̂ ̂ 1̂°Y ̂  fVl5t]x2 (58) 

•^z^x h " 

4CLC,(Li + L,) 4Ĉ C_(Lt + L„)D„ 
+t — (D,., + L„D )]X + [ ^  ^  ̂ =  0  .  

ml V  ̂ ml 
Z X z 

The characteristic equation can be written as 

+ â X̂  + BgX̂  + â X̂ + Bq = 0 (59) 

where 
2Ct + 2C, 2I3Ĉ  + 2L̂ C, 

^3= mv + IV ; <60) 
X Z X 

4CiC2(4 + l/ 2LJĈ  - 2L2C2 

 ̂ ml V  ̂
Z X 

+ + (61) 
z 

4CLC_(Li + L,) 

»1 - ml V % + S°y' ; (62) 
Z X 

^̂ 1̂ 2 2̂̂ Ŷ 
'0 =;— (63) 
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Solutions for the roots of a quartic equation do exist and may be 

found in theory of equations texts and some mathematical handbooks. The 

following is one such solution [40]. 

Given the quartic 

2̂̂  + â  = 0 , (64) 

the resolvent cubic is 

3 2 2 2 
z - a,z + (â â  - 43̂ ) z - â  â  + Â gâ  - â  = 0 . (65) 

Let I 2 

R =\/ - a2 + z (66) 

where z is a root of the resolvent cubic. If R 0, 

2 3 
'3ao o Aa-a. - 8a. -

D = \ l - f  - R̂  - 2a2 +  ̂̂  4R (67) 

and 
2 3 

f3a~ « 4agam - 8â  - a-
E =v/-^-R - 2a2 -  ̂ • (68) 

If R = 0, 

'3a3 
D = \l-ĵ  - 2a2 + 2 yjẑ  - 4â  (69) 

and 
f3a? 

E  =  \ l — —  2 a 2  —  2  ^ z  —  ̂ ^ 0  '  ( 7 0 )  
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The roots of the quartic are; 

(71) 

\ 
2 (72) 

X 
3 (73) 

3̂ R E 
4 = - — - 2 - 2 ' (74) 

For a quartic equation with real coefficients, the roots will be either 

four real roots or two real roots and a complex conjugate pair of roots 

or two pairs of complex conjugate roots. 

For a linear system, a necessary condition for stability is that all the 

coefficients of the characteristic equation be positive. Sufficient 

conditions for a linear system to be stable are given by the Routh-

Hurwitz criterion. If the necessary condition that all the coefficients 

of the characteristic equation be positive is met, then the Routh-Hurwitz 

criterion for stability is that all the elements of the first column of 

the Routhian array must be positive. For the quartic of the form 

Routh-Hurwitz Result 

Stability is the question at hand. The system will be stable if 

all the roots of the characteristic equation have negative real parts. 

X̂  + â X̂  + agX̂  + â X + â  = 0 (75) 

the first column of the Routhian array is 
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*2*3 - ̂ 1 

(*2*3 - ̂ 1>*1 - *0*3 

*0  '  

Consider the first term of the array, â , approaching zero. Note that 

the second and third terms will become negative before â  equals zero. 

Consider the second term, â â  - â , approaching zero. Note that the 

third term will become negative before ̂ 2̂ 3 ~ equals zero. Based 

on these considerations, the third term will become zero before either 

of the first two. Thus if the system becomes unstable, it will not be 

because either of the first two terms have become zero. 

The fourth term, â , could become zero or negative. Thus, there 

2 
are two possibilities for system instability. Either (^2^3 ~ ®1̂ 1̂ ~ *o*3 

has become negative or â  has become negative. 

As noted earlier, a quartic equation with real coefficients will 

have either four real roots or two real roots and a pair of complex 

conjugate roots or two pairs of complex conjugate roots. If the system 

becomes unstable, either a real root has become positive or the real 

part of a complex conjugate pair has become positive. 

It is easy to show that if â  becomes zero the quartic has a zero 

root. The quartic would appear as 

+ agX̂  + + â X = 0 (76) 
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which has X as a factor. Therefore, zero is a root of the equation. 

If â  becomes negative, the root will become positive. This is the 

case of a real root crossing the imaginary axis of the complex plane. 

It is more difficult to show that the crossing of a complex 

conjugate pair into the right half plane is associated with the other 

2 Routh-Hurwitz condition, namely (agâ  - â )â  - â â , becoming zero. 

Consider the root 

X = - ̂  + Y + Y (77) 

of the quartic solution. Suppose D is imaginary. Then for the real 

*3 part of X to equal zero requires R = . From the definition of R, 

2 

= \/ir - a„ + z , (78)  ̂=\/f - *2 

3̂ 
R = ̂  implies that z = ag. If z = ag is substituted into the resolvent 

cubic, the result is 

3 2 2 2 
ag - aĝ ag) + (â â  - 4aQ)a2 - â â  + Aâ â  - â  = 0 (79) 

which reduces to 

2 2 
*3*2*1 ~ *3*0 - *1 = 0 (80) 

which is the Routh-Hurwitz condition. One should check to be sure that 

*3 *•? 
D is indeed imaginary if R = y- . Substituting R = — into the 

definition of D yields 

2 2 3 
l3â  a, Aa.a. - 8a, - a-
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which simplifies to 

(82) 

In the case of the driver/vehicle system, â  and â  are always positive, 

so D must be imaginary. Thus not only has it been shown that the 

crossing of the imaginary axis by a complex conjugate pair is associated 

2 with the Routh-Hurwitz condition (â â  - a-j.̂ 1̂ ~ also that 

FT the roots have imaginary parts of magnitude 2/— when they cross. 
V *3 

Recall the coefficients of the characteristic equation for the 

driver/vehicle system 

2Ct + 2C, 2LJCT + 21̂ 0. 
*3 - + IV ; (83) 

X Z X 

4CtC,(L, + 2L̂ Ĉ  - 2L,C, 2̂ 0,0. 2C,D„ 
a \ — + ' T V + —̂  ; (84) 

AC-CgCL + L )(D̂  + D L,) 
1̂ = ml V — ; (85) 

Z X 

ACiCgCLi + L2)Dy 
0̂  ̂ • (**) 

Z 

Consider the conditions for stability. The necessary condition is that 

all the coefficients be positive. Since all the parameters describing 

the driver and vehicle are positive, â , â  and â  are positive. Only 

â  could be negative or zero. The two sufficient conditions are â  > 0 

2 
and (agag - ~ &Q&3 ̂  0- The first of these, â  > 0, is satisfied. 
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The last condition can be rearranged to isolate ag as 

+ ̂  • (") 

Since â , and are positive, this condition is more restrictive than 

the necessary condition that ag > 0. Thus the only condition that must 

be met to Insure the lateral stability of the driver/vehicle system is 

Writing â  in terms of driver and vehicle parameters yields 

"W h \ » *1 *3 ' 

0̂̂ 3 1̂ 2 Subtracting and — from both sides and multiplying by ml V gives 
 ̂ 3̂  ̂* 

z z 

1̂ 2 
- - —)ml ] V  ̂> 0 . (90) 

ai 33 z X 

2 
The first term, 4Cĵ C2(Lĵ  + L̂ ) » is positive; so if the bracketed term 

2 multiplying is positive, the condition is satisfied and the system is 

stable for all speeds. If, however, the bracketed term is negative, 

the condition will be satisfied only for speeds less than a critical 

speed, 'nat critical speed is given by 
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, . I -4C,C,(4 + ip' 

S/f \l^  |. I '"A V3 
z z 13 

This may be rewritten in terms of the understeer coefficient by 

multiplying numerator and denominator under the radical by 

+ Lg) 

and recognizing 

mg L„ mg L, 
 ̂ -̂  = K . (92) 

2Ĉ (L̂  + Lg) 2C2(L̂  + Lg) us " 

This yields 

-tt + L )g 

'CKIT = 

where 

K . _ V - oo .T A (94) 
us 

mg Lg mg 

2Ĉ (Li + Lg) + Lg)' 

mg 
y •*• y +  ̂  ̂ . (95) 
1̂ - 2Ĉ (L̂  + Lg) ̂  + Lg) • ' 

a a„mgl 

2̂ = ACiCgCL̂  + Lgiâ  ' 
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aiingl̂  

Kg and K̂  can be written in terms of only driver and vehicle parameters 

by substituting for â .â  and â  from Equations (83), (85) and (86), 

to give 

[(20̂  + ZCg)!: + (2L̂ Ĉ  + 2L2C2)m]g 

2̂ ACiCgCLi + L2)(D̂  + D̂ Lg) (*G) 

and 

- W . (M) 
^ (2Ĉ  + 202)1̂  + (ZL̂ Ĉ  + 2L2C2)m 

Equation (93) is a new analytical result concerning the lateral 

stability of the driver/vehicle system. This new result will be compared 

with the classical result for the lateral stability of an automobile and 

discussed in Section V. 

C. Lyapunov's Second Method Results 

Another method for determining the stability of the driver/vehicle 

system is Lyapunov's second method [41]. Briefly, for a system of 

differential equations 

{x}. = [B] {x} (100) 

if a function V(x) can be found such that 1) its value is positive for 

all X f 0 and zero for x = 0 (V is positive definite) and 2) its total 
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derivative with respect to time, V(x), is negative along every trajectory 

of the system (V is negative definite), then the solution x = 0 is 

asymptotically stable. A function meeting these two conditions is called a 

Lyapunov function. Hereafter asymptotically stable will be called stable. 

Whereas the Routh-Hurwitz criterion is limited to linear problems, 

Lyapunov's second method is applicable to a very wide range of problems 

including nonlinear problems. If a Lyapunov function could be found for 

the linear driver/vehicle system, it might also be a Lyapunov function 

for a nonlinear driver/vehicle system and even if it was not, it would 

serve as a good starting place for the search for such a function. 

The major difficulty with the use of Lyapunov*s second method is 

the finding of a Lyapunov function. For a conservative, holonomic 

dynamical system the Hamiltonian is a good candidate for the Lyapunov 

function [41]. However, because of the nonconservative tire/road 

interaction forces vehicle dynamics problems are nonconservative. 

First, consider the classical lateral stability problem again. Try 

the kinetic energy associated with the variables and as a possible 

Lyapunov function. So, 

V = Y m Vy2 + Y (101) 

The requirement that V be positive definite is clearly satisfied. 

Differentiating V with respect to time yields 

V  =  m  V  V  +  i n n  .  ( 1 0 2 )  
y y z z 

• • * 

Substituting expressions for and from Equation (12), V may be 
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written as 

V = m Vy(-
®12 ®21 ®22 

z z 
(103) 

where B̂ g» and B22 are defined by Equations (13)-(16). For 

stability, V must be negative definite. Equation (103) can be 

rewritten in matrix form as 

where 

V = - {x} [B] {x} 

{x} = {Vy and 

(104) 

(105) 

[B] = 
®11 ®12 

®21 ®22 

(106) 

In order that V be negative definite, the quadratic form {x} [B]{x} 

must be positive definite. The positive definiteness of the 

quadratic form may be checked by means of Sylvester's theorem [41] 

provided the matrix [B] is symmetric. However, the matrix is not 

symmetric. A quadratic form with a symmetric matrix may be obtained, 

without altering the quadratic form, by replacing the matrix [B] with 

one-half the sum of the matrix [B] and its transpose. Thus, the 

equation for V can be written as 

V = -{Vyf!,} 

B 
11 

®12 ®21 

1̂2"*" ®21 

22 

' ' 

V 
y 

i 

n 
z 

> « 

(107) 
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According to Sylvester's theorem, the necessary and sufficient 

conditions that a quadratic form be positive definite are that all 

the principal minor determinants of the symmetric matrix of the 

quadratic form be greater than or equal to zero. The requirements 

that the successive principal minor determinants be greater than or 

equal to zero are 

> 0 , and (108) 

V22 -( o ) >0 . (109) 

If these two inequalities are satisfied stability is assured. The first 

inequality is satisfied for all forward speeds since is always 

positive (see Equation (13)). The second Inequality can be rewritten as 

2 

®11®22 " ®12®21 ̂  I ' (110) 

This inequality leads to a conservative result for the critical speed 

(h2 - ®2lf 
since the quantity I  ̂ j is positive and the condition for 

stability from the Routh-Hurwitz criterion is 

®11®22 ~ ®12®21 ̂  ° • (111) 

It is clearly desirable to find a Lyapunov function that will yield a 

less conservative result. 

For linear systems the standard approach is to seek a function 

of the form 
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V = {x}̂  [P] {x} (112) 

where the matrix [P] is symmetric. Differentiating with respect to time 

gives 

V = {x}̂  [P] {x} + {x}̂  [P] {x} . (113) 

Substituting for {x} from the differential equations describing the 

system 

{x} = [B] {x} (114) 

gives 

or 

V = {x}T [B]̂  [P] {x} + {x}T [P] [B] {x} (115) 

V = {x}T([B]T [P] + [P] [B]) {x} . (116) 

Since V is desired to be negative semidefinite, let 

[B]̂  [P] + [P] [B] = - [Q] (117) 

where Q is positive definite. Equation (117) is called the Lyapunov 

matrix equation. If the matrices in Equation (117) are n x n, then 

there are n(n+l)/2 unknown elements of the matrix [P], If the indicated 

multiplications and addition are performed on the left side of 

Equation (117), the elements of the resulting matrix can be equated to 

the corresponding elements of the matrix -[Q]. This will result in 
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n(n+l)/2 independent equations in the n(n+l)/2 unknown elements of the 

matrix [P]. MacFarlane [42] has developed a systematic method for 

writing down the elements of the matrix on the left side of Equation 

(117) which is useful for higher order problems. 

For the classical problem, the Lyapunov matrix equation, with the 

matrix [Q] set equal to the identity, is 

B 
11 
m 

B 
21 

®12 ®22 

m 

 ̂ 2̂ 

2̂ 3̂ 

1̂ 2̂ 

P2 P3 

B 
11 
m 

B 
U 
m 

®21 ®22 

z J 

" 

-1 0 

0 -1 
_ 

(118) 

Performing the indicated multiplications and addition, and equating the 

elements yields three independent equations which can be written in 

matrix form as 

B 
-2  

11 
B 

m 
-2 

21 

B 
ii 
m z 

B 
- 2  

12 
m 

-2 

21 

22 

Pr • = < 

-1 

-1 

(119) 

This matrix equation can be solved by premultiplying both sides of the 

equation by the inverse of the 3x3 matrix. The result is 
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} ®22 .*11 ®22, °̂12°21,  ̂°21 
r-' - m I I + 

° ! Al , *22' *11:22 - *12*21, ' ' 
4(-E- + !--)( ÏT ) 

z z 

 ̂°12̂ 22 ̂  ̂ ̂ 11̂ 21 
ml ml 

" ,,*11 , *22 *11*22 -'*12*21, ' 4 C — +  — ) (  ^  )  
z z 

^ *12 } *11 ,*11 *22, ^*12*21 , 
—r + <-•'—>- ml ' 

p 2 5 5 ( 1 2 2 )  
,,*11 *22,,*11*22 " *12*21, 

ST ) 
Z Z 

If the matrix [P] whose elements were just found is positive definite, 

then 

V = {VyÔ } [P] |A (123) 

is a Lyapunov function. The positive definiteness of the matrix [P] can 

be checked using Sylvester's theorem. The conditions for the matrix [P] 

to be positive definite are 

P̂  > 0 (124) 

and 

P1P3 - Pĝ  > 0 . (125) 
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By rearranging the expression for given as Equation (120), the first 

condition can be written as 

/ *11*22 " ̂ *12*21 , ^ *22 . ^ *21 , 

, . ®22. ®11®22 • ®12®21. 
+ Ï—)( E"! ) 

z z 

> 0 . (126) 

This condition is satisfied if 

®11®22 " ®12®21 ̂  ° • (127) 

The second condition after some manipulation of the expressions given as 

Equations (120)-(122) can be written as 

,,*11*22 " *12*21, / *11*22 " ^ *12*21 *11 *12 *21 *22 , 

2 

(128) 

This condition is also satisfied if the Inequality(127)is satisfied. In 

fact, the Inequality(127)is the Routh-Hurwitz condition for stability 

in this problem. Thus, a Lyapunov function has been found for the 

classical lateral stability problem which yields the same result as the 

Routh-Hurwitz criterion. 

Now suppose a driver who responds proportionally to yaw angle is 

added to the system. The equations of motion can be expressed as 
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^ « 

V _fll _îi2 
y m m 

®21 ®22 

"^z •^z 

0 1 

B 
1 

13 

m 

23 
(129) 

where and Bgg are defined in Equations (52) and (54). If this 

system is stable, the driver will cause the disturbed system to achieve 

a path parallel to the original path. 

Applying the standard method with [Q] equal to the identity, the 

resulting Lyapunov matrix equation is 

®11 ®21 
m " I 

B 
12 
m 

B 
13 
m 

'22 

23 

"l "2 4̂ 

2̂ 3̂ 5̂ 

"4 5̂ 6̂ 

"l 2̂ 

P2 P3 P5 

 ̂"5 

m 

21 

B 
12 
m 

'22 

B 
13 

m 

23 

- 1 0  0  

0 - 1 0  

0  0 - 1  

(130) 
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Performing the multiplications and addition on the left side of 

Equation (130) and equating the elements of the resulting matrix to the 

elements of the matrix on the right side results in six independent 

equations which can be written as 

— m * /* « 

m z 
0 0 0 0 -1 

®12 
m 

Z 

®21 
I 
z 

1 0 0 
2̂ 0 

0 m z 
0 2 0 

•< 

"3 

> = 4 

-1 

_fl3 
m 

®23 
I 
z 

0 _!ii 

m 
®21 

•^z 
0 0 

Q _fl3 ®23 _fl2 ®22 
1 P Q 

m " I 
z 

m " I 
z 

1 

0 0 0 
z 

0 
* 4 

-1 
» . 

This matrix equation can be solved by premultiplying both sides by the 

inverse of the 6x6 matrix. Bamett and Storey [43] have shown that 

by introducing a skew-symmetric matrix that the largest matrix to be 

inverted can be reduced to one of order n(n-l)/2. Finding the inverse 

of the 6 X 6 is not difficult, but it is somewhat tedious. The 

resulting elements of the matrix [P] are 
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2 2 9 9 
®21 ®22 2B_. B-/ B-/ 

Pi . 4{.(,la, +  ̂- ̂ 3] + + -̂ D/A i 

z z z z z 

(132) 

P: - . VZL̂ , 

+ 32 [- ; (133) 

B,.2 B 2 B, 2 8,2 

3̂ 4{ao[â  + + 1] + ; (134) 
m m m m 

P4 = + ̂ ] 
" I_ m I z 

r ®13®22 " ®23®12., ®23. 
+ *2[( iTÏ )(- ï--) 

z z 

®22®23 ®13®21.,®12®21 ~ ®ll®22x,i 
+ ( ô ——)l )]}/A ; 

I : = :z 
Z 

(135) 

P, - + a,[(. 
m 

®12̂ 23 1̂3 
m 1 m (136) 

and 
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m m I I z 
z z 

f AI®22 " ®12®21. . A2®23 " ®13®22/ 
*2ll  ̂  ̂ •*•  ̂ n ) 

z z 

®11®23 ~ ®13̂ 21 
+ ]}/A (137) 

z 

where 

and 

'0 = ; (138) 

, U3„ 
z z 

+ • (140) 

A = 8 â Câ ag - â ) . (141) 

The elements of the matrix [P] for this case are considerably more 

complicated than those for the classical problem. But note that ag, â  

and ag are the coefficients from the characteristic equation. Also note 

that A is the product of the elements of the first column of the 

Routhian array. This suggests that there may be a relationship between 

the coefficients of the characteristic equation and the elements of 
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the matrix [P]. 

The positive définiteness of the matrix [P] must still be shown. 

The conditions which will assure positive definiteness of the matrix [P] 

are 

?! > 0 ; (142) 

P1P3 - Pĝ  > 0 ; and (143) 

P1P3P6 + 2 P2P4P5 - - P2̂ 6 - > 0 . (144) 

If the expressions for the elements of the matrix [P] from 

Equations (132)-(137) are substituted into these inequalities, the result 

is so complicated that there is little hope of obtaining a reasonable 

expression that will assure the positive definiteness of the matrix [P]. 

Recall the equations of motion for the driver/vehicle system with 

the driver acting as a proportional controller responding to both yaw 

angle and lateral displacement. The equations can be written as 
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For this set of equations, the Lyapunov matrix equation with [Q] equal 

to the identity is 

B,, 
11 21 
m 

°12 2̂2 
m "I 

0 1 

1 0 

!li -!23 0 V 
ml X 

®14 ®24 
0 0 
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2̂ 3̂ 5̂ 8̂ 

P4 P5 6̂ P9 

P? Pg Pg Pj_Q 

 ̂ 2̂  ̂"7 

2̂ 3̂ 5̂ 8̂ 

P4 P5 Pe P9 

7̂ 8̂ 9̂ 1̂0 

11 12 
m m 

21 22 

B 

B 

13 
m 

23 

B. 

B 

U  
m 

24 

\ 0 

- 1 0  0  0  

0 - 1 0 0  

0  0 - 1 0  

(146) 

0 0 0 -1 
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This matrix equation leads to ten independent equations for the elements 

of the matrix [P] which can be written as 

®11 ®21 
- 2 Pi - : Ï-- ̂2 + 2 P3 " -1 : (147) 

z 

®12 1̂1 2̂2 2̂1 
-ir Pi - (-ST + Ï--) ̂2 - Î-- P3 - P4 + ̂ 8 - 0 ; (148) 

z z 

®13 ®23 1̂1 2̂1 
-ï̂ l̂ - —̂ 2 - + ̂  = 0 ' (149) 

z z 

z z 
(150) 

®12 2̂2 
2 2̂ - 2 P3 + 2 P5 - -1 : 

z 
(151) 

B B, B, B„ 
;r f2 - 3̂ - -;r + '.fa ' ° = (152) 

P] - -;r 8̂ + ?, - ° ; 
z z 

(153) 

®13 ®23 
- 2 -ir P4 - 2 P5 + 2 v̂ Pg = -1 : 

z 
(154) 

-^'•7 -^^8 +Vio'O : 
Z Z 

(155) 
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and 

®14 ®24 
- 2 -Z- P? - 2 Ï-- ̂8 = -1 - (156) 

z 

Whether the elements of the matrix [P] are found by inverting the 

10 X 10 above or by following the suggestion of Barnett and Storey [43] 

which introduces a skew-symmetric matrix reducing the problem to 

inverting a 6 x 6, the resulting elements of the matrix [P] will be 

extremely complicated expressions. These expressions must then be used 

to determine under what conditions the matrix [P] is positive definite. 

These conditions would be difficult to use because of their extreme 

algebraic complexity. 
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V. DISCUSSION 

In the Classical Result Section, it was shown that the automobile 

considered in an absolute reference frame is unstable. The classical 

result deals with the system's ability to return to straight line 

motion after a disturbance, but not to the original straight line motion. 

In order for the automobile to return to the original path, a driver 

is needed. 

In the Driver/Vehicle Results Section, a driver which acts as a 

proportional controller responding to yaw angle and lateral displacement 

in the absolute reference frame was introduced. Equations of motion for 

the driver/vehicle system were written and the Routh-Hurwitz criterion 

was applied resulting in an expression for the critical speed of the 

driver/vehicle system. 

It will now be shown by example that the classical result may be a 

nonconservative estimate of the critical speed of the driver/vehicle 

system. Consider a specific driver/vehicle system with the following 

parameter values; 

= 30,000 N/rad 

Cg = 30,000 N/rad 

= 0.0016 rad/m 

= 0.060 rad/rad 

g = 9.81 m/ŝ  

Ig = 2000 kg-m̂  

= 1.4 m 

Lg = 1.3 m 
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m = 1200 kg . 

From Equation (32) the classical result for the critical speed is 

60 m/s. The critical speed of the driver/vehicle system from 

Equation (93) is 40 m/s. This illustrates that the classical result 

is nonconservative. In fact, for this oversteer vehicle, the classical 

result is 50% higher than the driver/vehicle system result. 

Consider another specific driver/vehicle system. This time the 

vehicle is understeer with the following parameter values: 

= 30,000 N/rad 

Cg = 30,000 N/rad 

= 0.0016 rad/m 

= 0.060 rad/rad 

g = 9.81 m/ŝ  

Ig = 4300 kg-m̂  

= 1.6 m 

Lg = 1.7 m 

m = 2100 kg 

In this case the classical result gives no critical speed; that is the 

vehicle is stable at all forward speeds. But the critical speed of the 

driver/vehicle system is 59 m/s. Thus, the classical result implies the 

vehicle is always stable whereas the driver/vehicle system becomes 

unstable at a finite speed. 

The classical result has proven to be a useful design tod through 

the years. The new result for the critical speed of the driver/vehicle 

system should also prove useful. The algebraic expression for the 
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critical speed can be easily evaluated on a hand-held calculator. 

Current design practice is to make automobiles understeer vehicles. 

This is based on experience. The automobile needs to be understeer to 

perform acceptably. The new result for the driver/vehicle system 

predicts that the vehicle needs to be understeer to be laterally stable. 

Also in the Driver/Vehicle Results Section, a Lyapunov function was 

found for the classical problem which yields the Routh-Hurwitz condition 

for stability. In attempting to find a Lyapunov function for the 

driver/vehicle problem, it was tremendously difficult to perform the 

algebraic manipulations to carry out the standard method because of the 

complexity of the expressions. 

In the case of only yaw control, the matrix [P] of the Lyapunov 

matrix equation was found, but it was not shown under what conditions 

the matrix was positive definite. It is suspected that if the Routh-

Hurwitz conditions are satisfied, the matrix will be positive definite. 

This was the case for the classical problem. 

The Lyapunov matrix equation for the driver/vehicle system with the 

driver responding to both yaw angle and lateral displacement was 

written. The resulting ten equations to be solved for the ten elements 

of the matrix [P] were also written, but not solved. They were not solved 

because based on experience with the third order problem where the 

elements of the matrix [P] were complicated the expressions for the 

elements of the matrix [P] for the fourth order problem promised to be 

overwhelming. Even if they were obtained, it is unlikely that the 

conditions for the matrix [P] to be positive definite could be found. 
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And If those conditions were found, the possibility of using the 

Lyapunov function is very small because of its great complexity. 
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VI. CONCLUSIONS 

In this dissertation it has been shown that the automobile considered 

in the absolute reference frame is unstable. If a driver responding 

proportionally to yaw angle and lateral displacement is added to the 

system, the system may be made stable. The critical speed of the driver/ 

vehicle system is given by Equation (93). It would be interesting to 

perform parameter studies using Equation (93). The effect on the critical 

speed of changes in mass, moment of Inertia, mass center location, 

cornering stiffness and driver gains could be studied quickly and 

inexpensively. 

Lyapunov's second method, though powerful, is difficult to use. 

Finding a suitable function may be very time consuming. Two Lyapunov 

functions were found for the second order problem (the classical problem). 

One is very simple, but results in a very conservative value for the 

critical speed. The other is more complicated but yields the same result 

as the Routh-Hurwitz criterion. 

A third order problem (yaw control only) was considered. The 

Lyapunov matrix equation was solved. The resulting function was very 

complicated and was not shown to be positive definite. However, it was 

noted that the function could be expressed more simply by looking for 

terms with factors equal to the coefficients of the characteristic 

equation and grouping terms containing those coefficients. It was also 

found that the denominator of the elements of the matrix in the quadratic 

form was equal to the product of the elements of the first column of the 

Routhlan array. If the results of general 2x2, 3x3 and 4x4 systems 
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could be found, it is suspected that a general method for writing a 

Lyapunov function in terms of the coefficients of the original system 

equations could be established. 
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