10-6-2003

Superhard self-lubricating AlMgB14 films for microelectromechanical devices

Y. Tian
Iowa State University

Ashraf F. Bastawros
Iowa State University, bastaw@iastate.edu

Chester C.H. Lo
Iowa State University, clo@iastate.edu

Alan P. Constant
Iowa State University, alcon@iastate.edu

Alan Mark Russell
Iowa State University, russell@iastate.edu

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/mse_pubs

Part of the Metallurgy Commons, and the Structures and Materials Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/mse_pubs/3. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Superhard self-lubricating AlMgB14 films for microelectromechanical devices

Abstract
Performance and reliability of microelectromechanical system (MEMS) components can be enhanced dramatically through the incorporation of protective thin-film coatings. Current-generation MEMS devices prepared by the lithographie-galvanoformung-abformung (LIGA) technique employ transition metals such as Ni, Cu, Fe, or alloys thereof, and hence lack stability in oxidizing, corrosive, and/or high-temperature environments. Fabrication of a superhard self-lubricating coating based on a ternary boride compound AlMgB14 described in this letter has great potential in protective coating technology for LIGA microdevices. Nanoindentation tests show that the hardness of AlMgB14 films prepared by pulsed laser deposition ranges from 45 GPa to 51 GPa, when deposited at room temperature and 573 K, respectively. Extremely low friction coefficients of 0.04–0.05, which are thought to result from a self-lubricating effect, have also been confirmed by nanoscratch tests on the AlMgB14 films. Transmission electron microscopy studies show that the as-deposited films are amorphous, regardless of substrate temperature; however, analysis of Fourier transform infrared spectra suggests that the higher substrate temperature facilitates the formation of the B12 icosahedral framework, therefore leading to the higher hardness.

Keywords
Aerospace Engineering, Ames Laboratory

Disciplines
Materials Science and Engineering | Metallurgy | Structures and Materials

Comments

Rights
Copyright 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Authors
Y. Tian, Ashraf F. Bastawros, Chester C.H. Lo, Alan P. Constant, Alan Mark Russell, and Bruce A. Cook

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/mse_pubs/3
Superhard self-lubricating AlMgB 14 films for microelectromechanical devices

Citation: Applied Physics Letters 83, 2781 (2003); doi: 10.1063/1.1615677

View online: http://dx.doi.org/10.1063/1.1615677

View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/83/14?ver=pdfcov

Published by the AIP Publishing
Superhard self-lubricating AlMgB$_{14}$ films for microelectromechanical devices

Y. Tian$^{a)}$

Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011

A. F. Bastawros

Department of Aerospace Engineering and Engineering Mechanics, Iowa State University, Ames, Iowa 50011

C. C. H. Lo

Ames Laboratory, United States Department of Energy, Ames, Iowa 50011

A. P. Constant and A. M. Russell

Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011

B. A. Cook

Ames Laboratory, United States Department of Energy, Ames, Iowa 50011

(Received 29 May 2003; accepted 4 August 2003)

Performance and reliability of microelectromechanical system (MEMS) components can be enhanced dramatically through the incorporation of protective thin-film coatings. Current-generation MEMS devices prepared by the lithographie-galvanoformung-abformung (LIGA) technique employ transition metals such as Ni, Cu, Fe, or alloys thereof, and hence lack stability in oxidizing, corrosive, and/or high-temperature environments. Fabrication of a superhard self-lubricating coating based on a ternary boride compound AlMgB$_{14}$ described in this letter has great potential in protective coating technology for LIGA microdevices. Nanoindentation tests show that the hardness of AlMgB$_{14}$ films prepared by pulsed laser deposition ranges from 45 GPa to 51 GPa, when deposited at room temperature and 573 K, respectively. Extremely low friction coefficients of 0.04–0.05, which are thought to result from a self-lubricating effect, have also been confirmed by nanoscratch tests on the AlMgB$_{14}$ films. Transmission electron microscopy studies show that the as-deposited films are amorphous, regardless of substrate temperature; however, analysis of Fourier transform infrared spectra suggests that the higher substrate temperature facilitates the formation of the B$_{12}$ icosahedral framework, therefore leading to the higher hardness.

Microelectromechanical systems (MEMS) are among the most significant technological advances of the last two decades. To meet the critical need for high-aspect-ratio microdevices, the lithographie-galvanoformung-abformung (LIGA) technique, based on deep x-ray lithography and electroplating, has been developed and studied. The LIGA process allows use of conventional materials, such as metals, for the MEMS architectures.

It is becoming increasingly important to fabricate LIGA microdevices capable of operating in harsh environments, such as high contact stresses (microgear sets), high temperatures (microcombustion chambers), and corrosive environments (microheat exchangers or microcatalytic converters). Nonetheless, most LIGA microdevices are manufactured out of Ni, Cu, Fe or their alloys, whose performance would be significantly degraded in these demanding situations, even to the extent of total failure. Recently, surface treatment by protective coatings has been recognized as an effective method to alleviate this serious problem and substantially prolong the lifetime of LIGA microdevices. The characteristics of an ideal protective coating for LIGA microdevices are: Low wear rate, low coefficient of friction, low thermal conductivity, strong adhesion, chemical inertness, and high-temperature stability. Protective coatings with the potential to form a lubricating film on their surfaces (self-lubricating) are particularly desirable for reducing friction and wear in LIGA microdevices.

Diamondlike carbon (DLC) films have been explored for this use, however, a high compressive residual stress of several GPa usually develops in DLC films, causing delamination of films with a thickness of greater than 100 nm. Moreover, DLC films are thermally unstable at temperatures above 723 K, which render them unsuitable for high-temperature applications. Low-surface energy hydrophobic polymeric coatings are promising for minimizing stiction and friction, but they do not improve the wear resistance of LIGA microdevices because of their comparatively low hardness, and they fail at temperatures only moderately higher than ambient.

In this letter, we report the fabrication of a superhard AlMgB$_{14}$ film, which could serve as an excellent protective coating for LIGA microdevices, or possibly Si-based MEMS components, due to its extremely high hardness, exceptionally low coefficient of friction (provided by self-lubricant),

$^{a)}$Author to whom correspondence should be addressed; electronic mail: ytian@iastate.edu

and strong adhesion to a wide range of substrate materials.9,10

AlMgB\textsubscript{14} films were prepared on Si (100) and carbon-coated copper grids using pulsed laser deposition (PLD) at room temperature and 573 K. The base pressure was maintained below 8×10^{-7} Torr. Hot-pressed Al\textsubscript{0.95}Si\textsubscript{0.05}MgB\textsubscript{14} was used as the target; synthesis of Al\textsubscript{0.95}Si\textsubscript{0.05}MgB\textsubscript{14} was described in a previous publication.11 The microstructure of AlMgB\textsubscript{14} films deposited on carbon-coated copper grids was examined directly with a Philips CM30 transmission electron microscope (TEM) operated at 300 kV. A Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer was employed to extract local bonding information. Nanoindentation with a Hysitron TriboIndenter and a diamond cube corner tip (radius<100 nm) was performed on the films to obtain the hardness and elastic moduli of the films as a function of the indentation depth, and the coefficient of friction was determined by a nanoscratch method with a conical diamond tip (radius=1 \textmu m), the sliding speed was set at 133 nm/s under a load of 10–100 \textmu N, the sliding distance was 4 \textmu m.

Figure 1 shows a plan-view bright-field TEM image of AlMgB\textsubscript{14} film deposited at 573 K. The selected area diffraction pattern (SADP) from this film is presented in the inset, in which a halo (diffuse) ring pattern is clearly evident. Furthermore, static and conical dark-field images do not show any nanocrystalline structure, indicating that the film is primarily amorphous. It is rather interesting to note that the film exhibits a maze pattern; an energy dispersive spectroscopy study showed a homogeneous film composition across the bright and dark stripes. It was therefore speculated that the observed maze pattern might be caused by a variation in film thickness, which is believed to be a consequence of nonuniform contraction of the AlMgB\textsubscript{14} film upon cooling from 573 K due to the thermal expansion mismatch between the Cu grid and amorphous AlMgB\textsubscript{14} film. The TEM image and SADP of the AlMgB\textsubscript{14} film deposited at room temperature are similar to those of 573 K-deposited AlMgB\textsubscript{14} film except that the former does not show any maze pattern, indicative of the amorphous structure in this film.

Figure 2 shows the FTIR spectra of AlMgB\textsubscript{14} films deposited at the two different substrate temperatures. For the room-temperature-deposited AlMgB\textsubscript{14} film, it can be seen that there is a weak absorption in the vicinity of 1000 cm-1, which could be assigned to an overlapping of A_{2u} and E_u vibrational modes of a single B\textsubscript{12} icosahedron.12 The low absorption intensity indicates that the B\textsubscript{12} icosahedron was not fully developed at this deposition temperature. For the AlMgB\textsubscript{14} film deposited at 573 K, however, a stronger absorption is observed at \sim1100 cm-1, which can be ascribed to the F_{1u} vibrational mode of a single B\textsubscript{12} icosahedron.13 This is a breathing mode characterized by two half-icosahedra vibrating against each other. The strong absorption intensity suggests that well-formed B\textsubscript{12} icosahedra are present in the 573 K-deposited AlMgB\textsubscript{14} film.

The measured hardness and moduli of the room-temperature and 573 K-deposited AlMgB\textsubscript{14} films are plotted in Fig. 3, as a function of indentation contact depth. Both hardness and modulus decrease and approach those of the substrate (Si) with increasing indentation contact depth, exhibiting typical behavior of a hard film on a soft substrate.14 Since the influence of the substrate rises as the indentation depth increases, in order to determine the hardness of the film alone, a widely accepted rule of thumb calls for limiting the indentation depth to less than 10\% to 15\% of the film thickness. Figure 3 shows that the maximum hardness for the room-temperature and 573 K-deposited AlMgB\textsubscript{14} films are 45 GPa and 51 GPa, respectively. These values correspond to an indentation depth of less than 10\% of the film thickness (\sim300 nm to 400 nm), indicating that these hardness values may be very close to the true hardness of AlMgB\textsubscript{14} films.

Extraordinarily high hardness has been reported in superlattices and nanocomposite coatings, where interfacial phenomena govern the mechanical properties. Veprek et al.15 refer to such a microstructural contribution to hardness as extrinsic hardness. In this work, a superhardness of 45 GPa and 51 GPa was achieved for the room-temperature and 573 K-deposited AlMgB\textsubscript{14} films; however, it should be noted that such a high hardness was essentially obtained in an entirely amorphous structure, in which randomly distributed B\textsubscript{12}
This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
129.186.176.91 On: Tue, 12 Nov 2013 18:08:47

higher hardness considered as “intrinsic,” which is the case for conventional superhard materials, whose crystal structures are typically based upon highly directional covalent \(sp^3 \) bonds. In this work, however, a hardness comparable to that of \(c-BN \) has been obtained in \(AlMgB_{14} \) films. This anomaly might be associated with the incorporation of metallic dopants (i.e., Al and Mg) in \(AlMgB_{14} \) films. It has been shown by electron density mapping that a substantial number of valence electrons can transfer from metal atoms to the boron framework in the \(AlMgB_{14} \)-type orthorhombic borides,\(^{18} \) leading to a full occupancy of valence band of \(B_{12} \) icosahedra\(^{19} \) and, thus, much stronger B—B bonds. This effect could be further enhanced in amorphous structures.

The friction coefficients of the room-temperature and 573 K-deposited \(AlMgB_{14} \) films were found to be extremely low, ranging between 0.04 and 0.05. Such low friction behavior can be attributed to the \textit{in situ} formation of a very lubricious surface layer of boric acid (\(H_3BO_3 \)), which acts as a self-lubricant for \(AlMgB_{14} \) films. Such compound has also been found on the surfaces of \(B_4C \) and boron suboxide (\(B_xO_x \), \(x > 1 \)) has been studied for possible hard coating applications, this work examined the use of \(AlMgB_{14} \) films for this purpose.

One of the authors (A.F.B.) would like to acknowledge the support by U.S. National Science Foundation through Grant No. CMS-0134111.

\(^{8} \) M. P. de Boer and T. M. Mayer, MRS Bull. 26, 302 (2001).
\(^{19} \) J. E. Lowther, Physica B 322, 173 (2002).

![Figure 3](image-url)

FIG. 3. (a) Hardness vs indentation contact depth for \(AlMgB_{14} \) films on Si substrates. The hardness data of substrates were collected from a region of the substrates masked during deposition which consequently lacked any \(AlMgB_{14} \) film. (b) Reduced moduli (\(E_r \)) vs indentation contact depth for \(AlMgB_{14} \) films on Si substrates. The moduli data of substrates for 300 K deposition (○) and 573 K deposition (□) were collected from a region of the substrates masked during deposition which consequently lacked any \(AlMgB_{14} \) film.