Method of threshing grain

Wesley F. Buchele

Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/patents

Part of the Bioresource and Agricultural Engineering Commons

Recommended Citation


http://lib.dr.iastate.edu/patents/14
Method of threshing grain

Abstract
This invention relates generally to grain threshing apparatus and in particular to an improved method of an apparatus for threshing grain wherein an impeller is rotatable within a concave or tubular screen. An object of this invention is to provide an improved method and apparatus for threshing grain.

Disciplines
Bioresource and Agricultural Engineering
METHOD OF THRESHING GRAIN

INVENTOR.

WESLEY F. BUCHELE

BY

ATTORNEY.
This invention relates generally to a grain threshing apparatus and in particular to an improved method of and apparatus for threshing grain wherein an impeller is rotatable within a concave or tubular screen.

An object of this invention is to provide an improved method and apparatus for threshing grain.

A further object of this invention is to provide a grain threshing apparatus wherein rotatable flexible threshing or impeller members are progressively flexed during rotation within and against the inner peripheral surface of a screen to concurrently effect a threshing of the grain and a separation of the grain from the straw.

Another object of this invention is to provide threshing apparatus wherein material to be threshed is continuously drawn into one end of a cone shaped screen for travel along a generally spiral path toward the opposite end of the screen, with the material being continuously threshed during such travel.

Still another object of this invention is to provide a threshing apparatus wherein the grain is threshed by a rubbing or rolling action so as to substantially eliminate any cracking or breaking of the grain being threshed.

A further object of this invention is to provide a threshing apparatus which is of a compact and simple construction and capable of handling various materials with a high degree of threshing efficiency.

Still another object of this invention is to provide a threshing apparatus of impeller type wherein the material to be threshed is drawn into the apparatus, threshed and separated by the action of the impeller.

Further objects, features and advantages of this invention will become apparent from the following description when taken in connection with the accompanying drawings in which:

Fig. 1 is a horizontal longitudinal sectional view of the threshing apparatus of this invention;

Fig. 2 is a perspective view of the screen for the threshing apparatus shown in Fig. 1;

Figs. 3, 4 and 5 are sectional views as seen along the lines 3-3, 4-4, and 5-5 respectively, in Fig. 1;

Fig. 6 is a sectional view of a modified form of the threshing apparatus of this invention, illustrated substantially similarly to Fig. 1, and wherein the screen is rotatable relative to the impeller;

Fig. 7 is a sectional view taken along the line 7-7 in Fig. 6.

With reference to the drawing the threshing apparatus of this invention is illustrated in Fig. 1 as including a perforated screen 15 of a generally hollow cone shape supported in a fixed position within a housing unit 16. As best appears in Figs. 2 and 3, the small or inlet end portion 17 of the screen 15 is of a generally involute shape in transverse cross section, and the larger portion 19 of the screen 15 is circular in transverse cross section (Fig. 5). The inlet portion 17 of the screen 15 is contoured or shaped at its junction 18 with the adjacent end 21 of the larger section 19 to provide a single continuous screen 15.

As illustrated in Figs. 2 and 3 the screen 15 is formed with an inlet opening 22, for the material to be threshed, so that such material is introduced into the screen 15 in a direction normal to the surface of the screen 15.

Rotatable within the screen 15 is an impeller unit 23 (Figs. 1 and 3) which includes a shaft 24 rotatably supported in bearings 26 carried on the housing 16. Secured to and extended radially from the shaft 24, and arranged within the cone section 17 are supporting arms 27 illustrated as being four in number and spaced apart a distance of about ninety degrees. Corresponding, but longer supporting arms 28 are secured to the shaft 24 at the large end of the screen 15 (Fig. 1). Cross bars 29 connected between the free ends of corresponding arms 27 and 28 travel in a plane substantially parallel with the surface of the screen 15. Each cross arm 29 supports a pair of impeller members 31 and 32, with the impeller members 31 being located within the screen section 17, and the impeller members 32 within the screen section 19.

As best appears in Fig. 3, the impeller members 31 are secured to a corresponding cross bar 29 by means of a combination clamping and straw breaking member 33 which is of a substantially angle shape in transverse cross section. The impeller members 31 and 32 are positioned between a cross bar 29 and a straw breaker 33 and secured thereto by clamping bolts 34. It will be noted that the laterally extended legs 36 of the straw breakers extend forwardly from a corresponding cross bar 29 relative to the direction of rotation of the impeller unit 23, with this rotation being in a clockwise direction as viewed in Fig. 5. Also, the straw breaker member 33 within the intake screen section 17 of the screen 15 is tapered inwardly in a direction toward the large end portion 19 of the screen 15, for a purpose to appear later.

In the operation of the threshing apparatus shown in Fig. 1, the material to be threshed is introduced into a chute, conveyor or the like (not shown), arranged opposite the screen inlet opening 22 and extended in a direction normal to the surface of the screen 15. This material is drawn into the screen section 17 by a suction pressure created at the inlet opening 22.

This suction pressure at the inlet opening 22 is achieved by the shape of the screen portion 17 and the action thereon of the impeller 31. The periphery of the screen portion 17, in a clockwise direction from the inlet 22, as viewed in Fig. 3, is generated about the impeller shaft 24 with progressively increasing radii over a peripheral distance indicated at A, and with progressively decreasing radii over the peripheral distance indicated at B and which terminates at the opening 22. Over the distance A the radii of the screen portion 17 are slightly greater than the radial length of an impeller member 31, with the radii over the distance B being progressively shorter than the radial length of an impeller member 31.

On rotation of an impeller member 31 in a clockwise direction as viewed in Fig. 3, a member 31 has its greatest contact with the screen portion 17 at a section 41 thereof immediately prior to travel across the opening 22. As a result, when a member 31 is released from the section 41, it creates a suction or low pressure area 42 in the screen portion 17 opposite the opening 22.

In other words, the low pressure area 42 is caused by a flexible rubber impeller member 31 being released from the screen section 41, which functions like a cam, and then being permitted to move toward a radially extended position under the action of centrifugal force. As a result the volume of air confined in the space between the impeller members, designated as 31b and 31c in Fig. 3, and positioned forwardly in the direction of rotation from the screen section 41 is much greater than the volume of air confined in the space or area 43 between the impeller members, designated as 31d and 31e in Fig. 3. As the member 31a is moved further in a direction of rotation from the screen section 41, the volume of air therein will decrease to a point where suction is generated at area 42, and then the member 31a will rotate in a counterclockwise direction as viewed in Fig. 3, and then pass into the screen section 41 and repeat the process of discharging air into the screen section 41.
(Fig. 4) of the impeller members 32 when flexed against the inner peripheral surface of the screen portion 19 by the action of centrifugal force, extend substantially between adjacent cross bars 33 to provide for a maximum rubbing and rolling action upon the material to be threshed.

The threshed grain or seed is moved outwardly from the screen 15 through the perforations 48 in the manner previously described.

The screen 15 at its large end, terminates in a straight imperforate cylindrical section 54, which in turn has an inwardly extended terminal flange or collar 56. Mounted upon the shaft 24, and within the cylindrical section 54 is a blower or fan 57 which serves a dual function.

By virtue of the fan action of the impeller members 32 there is a tendency to effect a suction action on the threshed grain preventing a free flow of such grain through the perforations 48 in the screen 15. The blower 57 forces air inwardly of the screen 15 in amounts sufficient to overcome this fan action of the impeller members 32.

The threshed grain or seed is thus blown travel through the screen 15, into the housing 16 for downward travel to an outlet opening 58 (Fig. 4) which communicates with a receiving bin or the like (not shown).

As shown in Fig. 7 the smaller end 71 of the screen section 19a is provided with an annular V-belt track 73 for receiving a V-belt 74 which travels from the track 73 about a pulley 76 mounted on a drive shaft 77 which drives both the screen section 19a and the shaft 24. The belt 74 is also trained about an idle pulley 78, with the pulleys 76 and 78 being arranged to opposite sides of and above the screen section 19a. The belt 74 thus supports the inner end 71 of the screen section 19a for rotation.

As shown in Fig. 7 the outer or larger end of the screen section 19a terminates in an axially extended annular flange 81 which is arranged in riding engagement with a series of rollers 82 mounted on the housing 16. A blower 57 is carried within a stationary cylindrical member 83 arranged in an overlapping relation with the outer or larger end 72 of the screen section 17. In the apparatus shown in Figs. 6 and 7, the screen section 19a is rotated relative to the screen section 17a which is stationary.

The threshing apparatus shown in Figs. 6 and 7 is substantially similar to that shown in Figs. 1-5, inclusive. Accordingly, like structure in the apparatus shown in Figs. 6 and 7 is designated by like numerals.

The screen 15a for the apparatus shown in Figs. 6 and 7 has an intake section 17a of a contour and shape similar in all respects to the intake section 17 of the screen 15 of Fig. 5. The screen section 19a is of a circular shape in transverse cross section and has the inner or smaller end 71 thereof separate from and arranged in an overlapping relation with the outer larger end 72 of the screen section 17. In the apparatus shown in Figs. 6 and 7, the screen section 19a is rotated relative to the screen section 17a which is stationary.

As shown in Fig. 7 the smaller end 71 of the screen section 19a is provided with an annular V-belt track 73 for receiving a V-belt 74 which travels from the track 73 about a pulley 76 mounted on a drive shaft 77 which drives both the screen section 19a and the shaft 24. The belt 74 is also trained about an idle pulley 78, with the pulleys 76 and 78 being arranged to opposite sides of and above the screen section 19a. The belt 74 thus supports the inner end 71 of the screen section 19a for rotation.

As shown in Fig. 7 the outer or larger end of the screen section 19a terminates in an axially extended annular flange 81 which is arranged in riding engagement with a series of rollers 82 mounted on the housing 16. A blower 57 is carried within a stationary cylindrical member 83 arranged in an overlapping relation with the screen bearing section 81. In the operation of the threshing apparatus shown in Figs. 6 and 7, the screen section 19a is rotated at a somewhat slower speed than the impeller unit 23. By virtue of this relative rotation between the screen section 19a and the impeller unit 23, the impeller unit can be operated at a higher speed relative to its operation in the apparatus shown in Fig. 1, with reduced wear of the impeller members 32 and the edges of the perforations 48 in the screen portion 19a. It will be apparent that the higher the speed of rotation of the impeller unit 23, the better is the threshing action.

From the above description it is seen that this invention provides a method and apparatus for threshing grain in which material to be threshed follows a generally spiral path to provide for a continuous threshing oper-
atation of greater duration relative to a straight threshing cylinder or screen of the same length as the cone shape screen 15.

Although the invention has been described with respect to a preferred embodiment thereof, it is to be understood that it is not to be so limited, since changes can be made therein which are within the scope of the appended claim.

I claim:

The method of threshing a material which comprises the steps: introducing the material to be threshed into the small end of a spiral path; breaking said material into small lengths at said small end; moving the material toward the larger end of the path; subjecting the material to a rubbing action in said spiral path of movement; and ejecting the grain from the path before said grain reaches the larger end of the path.

References Cited in the file of this patent

UNITED STATES PATENTS

154,924 Stevens Sept. 8, 1874
483,899 Cantwell Oct. 4, 1892
739,908 Nightingale Sept. 29, 1903
1,118,673 Northrop Nov. 24, 1914
1,808,785 Paradise et al. June 9, 1931
2,108,655 Dempsey Feb. 15, 1938
2,383,911 Dray Aug. 28, 1945
2,630,123 Womack Mar. 3, 1953