Evolving Concepts on Human SMN Pre-mRNA Splicing

Ravindra N. Singh
Iowa State University, singhr@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/bms_pubs

Part of the Genetics and Genomics Commons, and the Medical Genetics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/bms_pubs/8. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Evolving Concepts on Human SMN Pre-mRNA Splicing

Abstract
SMN1 and SMN2 represent two nearly identical copies of the Survival Motor Neuron gene in humans. Deletion of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 leads to Spinal Muscular Atrophy (SMA), a leading genetic cause of infant mortality. SMN2 holds the promise for cure of SMA if skipping of exon 7 during pre-mRNA splicing of SMN2 could be prevented. Previous reports have shown that a C to T mutation at the 6th position of exon 7 (C6U substitution in the transcript) is the primary cause of SMN2 exon 7 skipping. Cumulative evidence suggests that C6U abrogates an enhancer associated with SF2/ASF, as well as, creates a silencer associated with hnRNP A1. There is also evidence to suggest that C6U creates an extended inhibitory context (Exinct). Recently, an intronic hnRNP A1 motif, which is not conserved between two human SMN genes, have been implicated in skipping of SMN2 exon 7. However, mechanism by which two SMN2-specific hnRNP A1 motifs interact is not known. Systematic approaches including site-specific mutations, in vivo selections, RNA structure probing and antisense oligonucleotide microwalks have revealed additional cis-elements in exon 7 as well as in flanking intronic sequences. A unique intronic splicing silencer (ISS-N1) has emerged as an effective target for correction of SMN2 exon 7 splicing by short antisense oligonucleotides (ASOs). Low nanomolar concentrations of ASOs against ISS-N1 fully restored SMN2 exon 7 inclusion and increased levels of SMN in SMA patient cells. Such a robust antisense response could be due to accessibility of the target as well as the complete nullification of a strong inhibitory impact rendered by ISS-N1. Bifunctional oligonucleotides with capability to recruit stimulatory splicing factors in the vicinity of weak splice sites of exon 7 have also shown promise for correction of SMN2 exon 7 splicing. Considering an antisense-based strategy confers a unique advantage of sequence specificity, availability of many target worthy cis-elements holds strong potential for antisense-mediated therapy of SMA.

Keywords
SMN, SMA, Alternative splicing, Antisense Oligonucleotide, RNA structure, enhancer, silencer, ISS-N1

Disciplines
Genetics and Genomics | Medical Genetics

Comments
This is an article from RNA Biology 4 (2007): 7, doi:10.4161/rna.4.1.4535. Posted with permission.

Rights
This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/bms_pubs/8
Evolving Concepts on Human SMN Pre-mRNA Splicing

Ravindra N. Singh

To cite this article: Ravindra N. Singh (2007) Evolving Concepts on Human SMN Pre-mRNA Splicing, RNA Biology, 4:1, 7-10, DOI: 10.4161/rna.4.1.4535

To link to this article: http://dx.doi.org/10.4161/rna.4.1.4535

Copyright © 2007 Landes Bioscience

Published online: 04 Jul 2007.

Article views: 88

View related articles

Citing articles: 26 View citing articles
Point of View

Evolving Concepts on Human SMN Pre-mRNA Splicing

Ravindra N. Singh

Correspondence to: Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011 USA; Tel.: 515.294.8505; Fax: 515.294.2315; Email: singhr@iastate.edu

Original manuscript submitted: 05/02/07
Manuscript accepted: 06/04/07
Previously published online as a RNA Biology E-publication:
http://www.landesbioscience.com/journals/rnabiology/abstract.php?id=4535

KEY WORDS
SMN, SMA, Alternative splicing, Antisense Oligonucleotide, RNA structure, enhancer, silencer, ISS-N1

ABBREVIATIONS
ASO antisense oligonucleotide
C6U a cytosine to uridine mutation at the 6th position of SMN2 exon 7
Exinct extended inhibitory context
ISS-N1 intronic splicing silencer N1
SMA spinal muscular atrophy
SMN survival motor neuron gene
TSL terminal stem loop

ACKNOWLEDGEMENTS
This work was supported by grants from Families of SMA, Muscular Dystrophy Association (MDA3969) and National Institutes of Health (R21NS055149 and R01NS05925), USA.

ABSTRACT

SMN1 and SMN2 represent two nearly identical copies of the survival motor neuron gene in humans. Deletion of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 leads to spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMN2 holds the promise for cure of SMA if skipping of exon 7 during pre-mRNA splicing of SMN2 could be prevented. Previous reports have shown that a C to T mutation at the 6th position of exon 7 (C6U substitution in the transcript) is the primary cause of SMN2 exon 7 skipping. Cumulative evidence suggests that C6U abrogates an enhancer associated with SF2/ASF, as well as, creates a silencer associated with hnRNP A1. There is also evidence to suggest that C6U creates an extended inhibitory context (Exinct). Recently, an intronic hnRNP A1 motif, which is not conserved between two human SMN genes, has been implicated in skipping of SMN2 exon 7. However, mechanism by which two SMN2-specific hnRNP A1 motifs interact is not known. Systematic approaches including site-specific mutations, in vivo selections, RNA structure probing and antisense oligonucleotide microwalks have revealed additional cis-elements in exon 7 as well as in flanking intronic sequences. A unique intronic splicing silencer (ISS-N1) has emerged as an effective target for correction of SMN2 exon 7 splicing by short antisense oligonucleotides (ASOs). Low nanomolar concentrations of ASOs against ISS-N1 fully restored SMN2 exon 7 inclusion and increased levels of SMN in SMA patient cells. Such a robust antisense response could be due to accessibility of the target as well as the complete nullification of a strong inhibitory impact rendered by ISS-N1. Bisfunctional oligonucleotides with capability to recruit stimulatory splicing factors in the vicinity of weak splice sites of exon 7 have also shown promise for correction of SMN2 exon 7 splicing. Considering an antisense-based strategy confers a unique advantage of sequence specificity, availability of many target worthy cis-elements holds strong potential for antisense-mediated therapy of SMA.

SMN1 and SMN2 represent two nearly identical copies of the survival motor neuron gene in humans.1 SMN1 predominantly produces full-length transcripts, whereas SMN2 mostly produces transcripts lacking exon 7. Full-length SMN protein (the product of full-length transcript) is absolutely necessary for the survival of all eukaryotes.2 Deletion of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 leads to spinal muscular atrophy (SMA), the second most common autosomal recessive genetic disorder in humans.3,4 It is generally believed that correction of SMN2 exon 7 splicing holds the promise for cure of SMA. However, this requires a full understanding of SMN2 exon 7 splicing. Comparison between SMN1 and SMN2 revealed a critical C to T mutation at the 6th position (C6U transition in transcript) of exon 7 of SMN2. C6U is sufficient to cause SMN exon 7 skipping.4,5 SMN2 exon 7 seems to have a weak 3' splice site (3'ss). Consistently, an improved polypyrimidine tract (PPT), which defines the 3'ss, restored inclusion of SMN2 exon 7.6 However, an improved PPT is not sufficient to compensate for the loss of a purine-rich exonic splicing enhancer (ESE) in the middle of exon 7.6 This ESE was identified as the binding site for splicing factor Tra2-β1.7 Over expression of Tra2-β1 or associated factors hnRNP G and SRp30c restores inclusion of SMN2 exon 7.8,9 Also, STAR (Signal Transduction and Activation of RNA) family of proteins have been implicated in tissue-specific regulation of SMN exon 7 splicing.10 Recent reports reveal new and rather unique cis-elements and provide an advanced understanding of SMN exon 7 splicing.
COMPETING MODELS FOR SINGLE MUTATION CAUSING EXON 7 SKIPPING

Mechanism by which C6U promotes SMN2 exon 7 skipping remains a complex issue. Theoretically, C6U could create one or a combination of situations including but not limited to abrogation of an enhancer, creation of a silencer, disruption of a stimulatory RNA structure, and strengthening of an inhibitory RNA structure. C6U may strengthen an inhibitory RNA structure, TSL1 (terminal stem loop 1), whereas sequences highlighted in green indicate positive cis-elements. Capital letters represent exonic and small-case letters represent intronic nucleotides. *promotes 5th exonic position that is C in SMN1 and U in SMN2. U1 snRNA binding site is indicated along with positive (+) and negative (-) cis-elements, which promote and inhibit exon 7 inclusion, respectively. Exinct, Conserved tract and 3'-Cluster were discovered by in vivo selection of the entire exon 7.7 Binding sites for splicing factors SF2/ASF, hnRNP A1 and Tra2-β1 have been described by others.7,11-13 ISS-N1 is a novel cis-element with strong negative effect.23 RNA structures TSL1 and TSL2 have been confirmed by enzymatic probing.20

To analyze all exonic cis-elements that modulate SMN exon 7 splicing, a novel approach of in vivo selection was used.17-19 This approach applied the principle of mutability to determine the relative significance of all residues within exon 7. The highly mutable positions were considered as inhibitory, whereas the conserved positions were considered as stimulatory for exon 7 inclusion. Based on mutability plot, three major regulatory elements were determined (Fig. 1). Among them are Exinct and 3'-Cluster, the negative elements located towards the 5' and 3' ends of exon 7, respectively. “Conserved tract” is the third element, which plays a stimulatory role, and is located in the middle of exon 7. Here again, independent validation of cis-elements determined by in vivo selection came from the recently reported ASO-based approach.16 For example, ASOs that blocked inhibitory regions covering Exinct or 3'-Cluster promoted exon 7 inclusion, whereas ASOs that blocked stimulatory regions covering Conserved tract promoted exon 7 exclusion.

One of the surprising outcomes of in vivo selection of entire exon 7 was the revelation that the 5'ss of exon 7 is extremely weak.17 This was apparent from the overwhelming selection of a nonwild type G residue at the last position (54G) of exon 7. The impact of 54G was so profound that it promoted SMN2 exon 7 inclusion even in the absence of Tra2-β1-ESE.17 Preference for a nonwild type G over wild type A at the last position of exon 7 could be due to increase in size of the duplex formed between the 5'ss and U1 snRNA (abbreviated as 5'ss:U1 duplex). Stimulatory impact of a long 5'ss:U1 duplex at the 5'ss of exon 7 has been recently confirmed.20 In addition to a small size of 5'ss:U1 duplex, other factors contribute towards a weak 5'ss of exon 7. Significant among them is an inhibitory RNA structure, TSL2 (terminal stem loop 2), formed by the last 1 residues of exon 7 and adjacent intronic sequences. Sequences highlighted in red indicate negative cis-elements, whereas sequences highlighted in green indicate positive cis-elements. Capital letters represent exonic and small-case letters represent intronic nucleotides. *promotes 6th exonic position that is C in SMN1 and U in SMN2. U1 snRNA binding site is indicated along with positive (+) and negative (-) cis-elements, which promote and inhibit exon 7 inclusion, respectively. Exinct, Conserved tract and 3'-Cluster were discovered by in vivo selection of the entire exon 7.7 Binding sites for splicing factors SF2/ASF, hnRNP A1 and Tra2-β1 have been described by others.7,11-13 ISS-N1 is a novel cis-element with strong negative effect.23 RNA structures TSL1 and TSL2 have been confirmed by enzymatic probing.20

Figure 1. Diagrammatic representation of SMN exon 7 and adjacent intronic sequences. Sequences highlighted in red indicate negative cis-elements, whereas sequences highlighted in green indicate positive cis-elements. Capital letters represent exonic and small-case letters represent intronic nucleotides. *promotes 6th exonic position that is C in SMN1 and U in SMN2. U1 snRNA binding site is indicated along with positive (+) and negative (-) cis-elements, which promote and inhibit exon 7 inclusion, respectively. Exinct, Conserved tract and 3'-Cluster were discovered by in vivo selection of the entire exon 7.7 Binding sites for splicing factors SF2/ASF, hnRNP A1 and Tra2-β1 have been described by others.7,11-13 ISS-N1 is a novel cis-element with strong negative effect.23 RNA structures TSL1 and TSL2 have been confirmed by enzymatic probing.20
ROLE OF INTRONIC REGULATORY ELEMENTS IN SMN2 EXON7 SKIPPING

The 54-nucleotide long human SMN exon 7 is flanked by a large upstream intron 6 (~6kb) and a relatively short downstream intron 7 (~0.5kb). Exon trapping assay revealed a negative element (element 1) in intron 6 and a positive element (element 2) in intron 7 (Fig. 2).\(^\text{21,22}\) Recently, a strong intronic splicing silencer, ISS-N1, has been identified in intron 7 (Figs. 1 and 2).\(^\text{23}\) Inhibitory nature of ISS-N1 was confirmed by three independent approaches i.e., deletion, mutation and ASO-mediated blocking. In case of SMN1, deletion of ISS-N1 compensates for the loss of element 2 and Tra2-B1-ESE.\(^\text{23}\)

These results demonstrate that large intronic cis-elements, which are often impossible to predict, could have profound impact on exon definition. Also, these results suggest that unique intronic cis-elements such as ISS-N1 may have evolved to balance the stimulatory effects of positive cis-elements or vice versa. Similar to 3'-Cluster and TSL2, ISS-N1 is absent in mice. All three elements (3'-Cluster, TSL2 and ISS-N1) are in close proximity to the 5'ss (Fig. 2). One of the possible mechanisms by which ISS-N1 exerts its role could be the sequestration of the 5'ss through active collaborations with 3'-Cluster and TSL2. Presence of Exinct, which includes a putative binding site for hnRNP A1, may act as a facilitator of this process.

The finding that an additional hnRNP A1 motif is created in SMN2 due to a single mutation in intron 7 suggests for the first time that a difference between SMN1 and SMN2 in the noncoding region also contributes towards SMN2 exon 7 skipping.\(^\text{14}\) This new hnRNP A1-ISS is located one hundred nucleotides downstream of SMN2 exon 7. Degree of negative impact of this hnRNP A1-ISS in the context of endogenous SMN2 has not been examined. In fact, an ASO-based approach would be the next logical experiment to evaluate and validate the negative impact of hnRNP A1-1SS. Mechanism by which two SMN2-specific hnRNP A1-binding sites are brought together may demand looping out of intervening sequences.\(^\text{14}\) A similar situation could be envisioned for element 1, which is located ~100 nucleotides upstream of exon 7.\(^\text{21}\)

Looping out mechanisms, which are yet to be proved, may in fact involve complex interactions that bring distantly located negative elements in close proximity (Fig. 2). As an alternative to the looping out mechanisms, it is possible that each negative element acts independently at different stage of a rather dynamic process of exon definition.

The fact that blocking of ISS-N1 by an ASO improved inclusion of SMN2 exon 7 suggests that inhibitory impact of C6U is subversive to other negative cis-elements that participate in making the 5'ss of exon 7 very weak. In addition, negative impact of C6U could be overcome by a variety of tailed ASOs that anneal to exon 7 in the vicinity of splice sites.\(^\text{24-27}\) Mechanisms by which these bifunctional ASOs promote SMN2 exon 7 inclusion involve recruitment of SF2/ASF and/or other splicing factors.\(^\text{24-27}\) Antisense microwalks reported recently will provide ideal annealing positions for the development of future bifunctional ASOs.\(^\text{16}\)

Since SMN exon 7 is the last coding exon, removal of the downstream intron 7 is not essential for making full-length SMN. Consistently, an ASO that prevented intron 7 removal by blocking the 3'ss of exon 8 produced more SMN from SMN2.\(^\text{28}\) This finding confirms that inhibitory effect of C6U, which weakens the 3'ss of exon 7, is realized only in the context of a strong 3'ss of the downstream exon (exon 8). To a broader significance, it has become clear that none of the negative cis-elements have irreversible impact on SMN2 exon 7 skipping. To a direct therapeutic significance, most of the reported negative cis-elements could be targeted by ASOs. For example, low doses (in low nanomolar range) of ASOs against ISS-N1 fully restored SMN2 exon 7 inclusion and increased levels of SMN in SMA patient cells. Such a robust antisense response could be due to accessibility of the target as well as the complete nullification of a strong inhibitory impact rendered by ISS-N1. Published reports reveal a wide variety of small compounds with potential to restore SMN2 exon 7 inclusion in SMA.\(^\text{3}\) But, an ASO-based strategy, which confers a unique advantage of sequence specificity, holds a strong promise for SMA therapy.

CONCLUDING REMARKS

In recent years SMN exon 7 splicing has become a model system to understand alternative splicing in a human disease. Initial studies began with the quest for simple mechanisms by which C6U mutation promotes SMN2 exon 7 exclusion. Subsequent studies led to the discoveries of multiple cis-elements as potential therapeutic targets. Significantly, most of these cis-elements are context specific and are not predictable by available computational programs. Unique functional approaches and analysis tools, which helped reveal these elements, will have future implications for studies of other human diseases associated with aberrant splicing.

References

