1987

Acp4 Is the Most Distal Marker on Chromosome IL

Paul H. Sisco
United States Department of Agriculture

Jonathan F. Wendel
Iowa State University, jfw@iastate.edu

Charles W. Stuber
United States Department of Agriculture

Follow this and additional works at: http://lib.dr.iastate.edu/bot_pubs

Part of the Agronomy and Crop Sciences Commons, Genetics Commons, and the Plant Breeding and Genetics Commons

Recommended Citation
http://lib.dr.iastate.edu/bot_pubs/16

This Article is brought to you for free and open access by the Botany at Iowa State University Digital Repository. It has been accepted for inclusion in Botany Publication and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Acp4 Is the Most Distal Marker on Chromosome 1L

Abstract
Table 1 shows data from 200 testcross progeny segregating for two morphological and two isozyme markers on chromosome 1L. We conclude that Acp4 is clearly distal to bm2, thus becoming the most distal marker mapped on 1L. Previous data on recombination between Dia2 and Acp4 (J.F Wendel et al., MNL 60: 109-110) also suggest that Dia2 may be distal to bm2.

Keywords
morphological markers, isozyme markers, chromosome 1L, Acp4

Disciplines
Agronomy and Crop Sciences | Genetics | Plant Breeding and Genetics

Comments
This article is from Maize Genetics Cooperation News Letter 61 (1987): 86.

Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Acp4 is the most distal marker on chromosome 1L

Table 1 shows data from 200 testcross progeny segregating for two morphological and two isozyme markers on chromosome 1L. We conclude that Acp4 is clearly distal to bm2, thus becoming the most distal marker mapped on 1L. Previous data on recombination between Dia2 and Acp4 (J.F Wendel et al., MNL 60:109-110) also suggest that Dia2 may be distal to bm2.

Estimated map distances:

gs - 14.0 - Phi1 - 10.5 - bm2 - 15.5 - Acp4

Table 1.

P.H. Sisco, J.F. Wendel and C.W. Stuber

Please Note: Notes submitted to the Maize Genetics Cooperation Newsletter may be cited only with consent of the authors.

Return to the MNL 61 On-Line Index
Return to the Maize Newsletter Index
Return to the MaizeGDB Homepage
Table 1. Testcross data.

Cross: gs, Phil-4, bm2, Acp4-2
 x gs, Phil-4, bm2, Acp4-2
 +, Phil-5, +, Acp4-5

<table>
<thead>
<tr>
<th>Parental Types</th>
<th>SC0 region *</th>
<th>DCO regions *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>n = 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>59</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>TOTALS</td>
<td>25</td>
<td>18</td>
</tr>
</tbody>
</table>

Recombination %
(SE)

14.0 (2.5)
10.5 (2.2)
15.5 (2.6)

*Regions 1, 2, and 3 correspond to the segments gs, Phil, Phil, bm2, and bm2, Acp4 respectively. No triple crossovers were observed.