Living Mulch Establishment in Row Crop Systems for Sustainable Biofuels Production

Cynthia Bartel
Iowa State University, cabartel@iastate.edu

Andrew W. Lenssen
Iowa State University, alenssen@iastate.edu

Kenneth J. Moore
Iowa State University, kjmoore@iastate.edu

David Laird
Iowa State University, dalaird@iastate.edu

Sotirios V. Archontoulis
Iowa State University, sarchont@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/agron_conf

Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation

This Abstract is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Conference Proceedings and Presentations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digireps@iastate.edu.
Living Mulch Establishment in Row Crop Systems for Sustainable Biofuels Production.

See more from this Division: ASA Section: Agronomic Production Systems
See more from this Session: General Bioenergy Systems Oral

Monday, November 7, 2016: 8:45 AM
Phoenix Convention Center North, Room 125 B

Cynthia Bartel1, Andrew W. Lenssen1, Kenneth J. Moore2, David A. Laird1 and Sotiris V Archontoulis3, (1)Agronomy, Iowa State University, Ames, IA
(2)1571 Agronomy Hall, Iowa State University, Ames, IA
(3)Department of Agronomy, Iowa State University, Ames, IA

Abstract:

With increasing removal of maize (Zea mays L.) stover for cellulosic biofuels or livestock bedding and feedstuffs, there exists a need to ensure natural resources-related issues such as soil erosion, nitrate leaching, and loss of organic matter content are appropriately managed. Perennial groundcover offers a tenable solution for alleviating these problems associated with maize stover removal from conventional cropping systems. We conducted a field study to ascertain the expected cost of perennial groundcover establishment on the primary crop of economic interest and groundcover success under a maize or soybean (Glycine max L.) crop. To test this concept, we established either Kentucky bluegrass (KB) (Poa pratensis L.) or creeping red fescue (CF) (Festuca rubra L.) as living mulch (LM) concurrently with either maize or soybean, documenting impacts on crop maturity, leaf area index (LAI), normalized difference vegetation index (NDVI), stand density, yield components, grain yield, and C and N. First-year maize and first- and second-year soybean in the no LM control yielded on average 13.00, 3.38, and 4.86 Mg ha-1, respectively, 30, 84, and 27% greater than LM systems. However, yield did not statistically significantly differ in the second site year between the no LM and LM maize. Moreover, perennial groundcover treatments did not affect expected ethanol yield in the second year, averaging 5,459 l ha-1 in year two over all treatments). These results indicate that further research is needed to achieve groundcover establishment and subsequent natural resources benefits in row crop production while minimizing impact on yield.