Modeling Gas Holdup in Gas–Liquid–Fiber Semibatch Bubble Columns

Xuefeng Su
Iowa State University

Theodore J. Heindel
Iowa State University, theindel@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/me_pubs

Part of the Complex Fluids Commons, Mechanical Engineering Commons, and the Thermodynamics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/me_pubs/12. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Modeling Gas Holdup in Gas–Liquid–Fiber Semibatch Bubble Columns

Abstract
Three gas holdup models are developed that correspond to different flow regimes in a 15.24-cm-diameter semibatch bubble column filled with various fiber suspensions. Three different perforated plate aerators are used and have open area ratios \(A\) of 0.57%, 0.99%, and 2.14%. Rayon fiber suspensions with lengths \(L\) of 3, 6, and 12 mm and cellulose fibers are used to form the fiber suspensions over a range of fiber mass fractions up to 1.8%. The models reproduce most of the data within ±15%. A limitation of the current models, due to limited experimental data, is that the model coefficients and exponents vary with aeration plate open area ratio and column diameter.

Disciplines
Complex Fluids | Mechanical Engineering | Thermodynamics

Comments
Modeling Gas Holdup in Gas–Liquid–Fiber Semibatch Bubble Columns

Xuefeng Su and Theodore J. Heindel*

Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011-2161

Three gas holdup models are developed that correspond to different flow regimes in a 15.24-cm-diameter semibatch bubble column filled with various fiber suspensions. Three different perforated plate aerators are used and have open area ratios (A) of 0.57%, 0.99%, and 2.14%. Rayon fiber suspensions with lengths (L) of 3, 6, and 12 mm and cellulose fibers are used to form the fiber suspensions over a range of fiber mass fractions up to 1.8%. The models reproduce most of the data within ±15%. A limitation of the current models, due to limited experimental data, is that the model coefficients and exponents vary with aeration plate open area ratio and column diameter.

Introduction

One area of gas–liquid–solid bubble column research that has gained recent attention is gas–liquid–fiber (GLF) bubble columns, where the solid phase is a flexible fiber. GLF systems are found in the pulp and paper industry in many unit operations including paper recycling (i.e., flotation deinking), fiber bleaching, direct-contact steam heating, and deaeration.

Fiber suspensions can be described as complex fluids because unique flow characteristics result when the fibers are flexible, have a large aspect ratio, and have a density close to that of water. Fiber–fiber interactions result in fiber flocculation. Fiber mass (volume) fraction, aspect ratio (ratio of fiber length to diameter), and type influence fiber floc formation, size, and strength. The combination of these factors can be represented by the crowding number (N_f).1 When $N_f \leq 1$, fiber–fiber contact occurs only occasionally, and fibers are free to move; when $1 < N_f < 150$, flocs can appear in the suspension, and fiber mobility decreases.

Yield stress is an important characteristic in fiber suspension rheology. Fiber concentration, aspect ratio, length distribution, and type have an impact on the suspension yield stress.2,3 The yield stress is also affected by gas holdup when gas flows through a fiber suspension.4 Suspension yield stress can also produce a significant effect on gas flow behavior in a fiber suspension, assist fiber flocs in trapping bubbles, and produce channeling phenomenon at high fiber mass fractions. Fiber–fiber interactions are also important to the effective fiber suspension viscosity. Sundararajakumar and Koch5 showed that the effective fiber suspension viscosity increases nonlinearly with $N_f L^3$, where N_f is the number of fibers per unit volume. Other factors such as fiber flexibility, shape, and friction coefficient also affect fiber flocculation, yield stress, and suspension viscosity.6

The resulting fiber suspension characteristics lead to a very complex suspension rheology, which has a significant effect on bubble behavior. Thus, factors that affect fiber suspension characteristics also influence gas holdup in fiber suspensions.

Experimental Procedures

The bubble column experimental facility used in this study is schematically represented in Figure 1. The bubble column consists of four 1-m sections of 15.24-cm-i.d. cast acrylic, yielding a total column height of 4 m. Gas is injected at the base of the column through one of three stainless steel perforated plates with open areas (A) of 0.57%, 0.99%, and 2.14%. Details of these plates can be found in Su and Heindel.14 A gas plenum...
is located below the perforated plate and is filled with glass beads to promote a uniform gas distribution into the test facility. Three mass flowmeters are used to measure the gas flow rate to encompass a low, medium, and high gas flow rate ranges. Three pressure transducers are installed along the column, one located at the column base, one at a column height from the perforated plate \(H\) of 1 m, and one at a height of 2 m. The mass flowmeters and pressure transducers are interfaced to a data acquisition system. Average gas flow rates and pressures are recorded from 4000 individual readings sampled at a frequency of 200 Hz.

The gas holdup is determined from the column pressure drop. In a semibatch system, the frictional pressure drop is negligible, so the total pressure drop corresponds to the hydrostatic head; in this case, \(\epsilon = 1 - \frac{\Delta P}{\Delta P_0}\) (1)

where \(\Delta P\) is the difference between the average local pressure at any two pressure transducers with superficial gas velocities \(U_g > 0\), and \(\Delta P_0\) is the corresponding average value with \(U_g = 0\). For gas–liquid (GL) systems, \(\Delta P_0\) equals the liquid hydrostatic head; for GLF systems, \(\Delta P_0\) corresponds to the fiber slurry hydrostatic head.

The fibers studied in this paper include rayon fiber with lengths \(L\) of 3, 6, and 12 mm and fiber diameters \(d_f\) of 20.6 \(\mu\)m, which are used with all three aeration plate open area ratios, and cellulose fibers [i.e., softwood, hardwood, bleached chemithermomechanical pulp (BCTMP)], which are used only with the open area ratio of 0.57%. The characteristics of the cellulose fibers are provided in Table 1. Various fiber mass fractions \((0 \leq C \leq 1.8%)\) and superficial gas velocities \((U_g \leq 18\) cm/s) are investigated. The superficial liquid velocity in this study is held constant at 0. The gas used in all experiments is filtered compressed air. The percent uncertainty in the superficial gas velocity measurements is estimated to be \(\pm 2\%\), and the absolute uncertainty in the gas holdup is estimated to be \(\Delta \epsilon = \pm 0.006 - 0.008\). More details of the experimental procedures can be found in Su and Heindel\(^{14}\) and Su.\(^{15}\)

Experimental Results

Typical trends of the effect of the fiber mass fraction on the gas holdup using three different gas aeration plates \((A = 0.57\%, 0.99\%, \text{and } 2.14\%)\) are shown in Figure 2 for 3-mm-long rayon fiber suspensions.\(^{14}\) \(A = (a) 0.57\%, (b) 0.99\%, \text{and } (c) 2.14\%\).

![Figure 2](image-url)
For $A = 2.14\%$ (Figure 2c), the gas holdup increases monotonically with increasing superficial gas velocity for all fiber mass fractions. At low fiber mass fractions ($C \leq 0.25\%$), a homogeneous flow regime exists at low superficial gas velocities, and when $C > 0.25\%$, pure heterogeneous flow appears over the range of superficial gas velocities. Similar trends are obtained for rayon fiber with $L = 6$ and 12 mm for all three aeration plates. More details can be found in Su and Heindel.14

Factors Influencing Gas Holdup. Fiber type, mass fraction, length, flexibility, shape, and friction coefficient influence fiber flocculation, yield stress, and effective suspension viscosity,1,2,6,17,18 and these factors can also affect gas holdup in fiber suspensions. However, fiber stiffness, friction coefficient, and shape are difficult to measure and control, and they depend, to some extent, on fiber origin (e.g., type) and processing conditions.19

Only fiber type, mass fraction, and length are considered in this gas holdup model development. Note that, in the models below, superficial gas velocity, fiber length, and fiber mass fraction are in units of meters per second, meters, and percent, respectively.

According to the definition of the crowding number (N^1)

$$N = \frac{5CL^2}{\omega} \quad (2)$$

where C is the fiber mass fraction (in percent), L is the fiber length (in mm), and ω is the fiber coarseness (in kg/m). The crowding number accounts for the effect of fiber mass fraction and length on fiber flocculation; hence, it will be used to replace fiber mass fraction and length in the models.

The crowding number, however, is not able to uniquely describe the effect of fiber mass fraction and length on gas holdup. Su and Heindel12 showed that the same crowding number for different fiber suspensions does not produce the same gas holdup, and this phenomenon is attributed to the fact that the crowding number exaggerates the effect of fiber length on gas holdup, especially when the fibers are long. Su15 argued that it might be more appropriate to combine the crowding factor with another (other) quantity (quantities) to describe the fiber effect on gas holdup.

Fiber number density (N_f), with units of number of fibers per unit volume, has been used by some researchers to account for the effect of fiber concentration on yield stress and suspension viscosity.5,6 N_f is expressed as

$$N_f = \frac{F}{\pi d^2 L \rho_f} \quad (3)$$

for rayon fiber and

$$N_f = n_f \frac{C}{100} \rho_{eff} \quad (4)$$

for cellulose fiber, where n_f is the number of fibers per gram of oven-dry material, C is the fiber mass fraction in percent, and ρ_{eff} is the effective fiber suspension density. The values of n_f for the cellulose fibers in this study are provided in Table 1.

For fibers with a uniform diameter such as rayon, N_f is proportional to CL^2/ω (eq 3). Thus, the combination of N_f with N reduces the effect of the fiber length and enhances the effect of the fiber mass fraction.

Model Development. Three models are developed to encompass all hydrodynamic conditions of this study. According to Figure 2, gas holdup as a function of superficial gas velocity follows three general flow regime trends, depending on the fiber mass fraction and aeration plate open area. Figure 3 summarizes the three types of gas holdup patterns as a function of superficial gas velocity over the entire range of fiber mass fractions.

Two of the flow patterns exhibit three-regime flow (homogeneous, transitional, and heterogeneous flow), one with and one without a local maximum gas holdup, whereas the third flow pattern follows pure heterogeneous flow. The three-regime flow and pure heterogeneous regime are considered separately.

For the three-regime flow, it is shown in Figure 2 that, for $A = 0.57\%$ and 0.99%, there is a local maximum gas holdup with increasing superficial gas velocity, and this local maximum divides the transitional flow regime into two parts: The first part is characterized by increasing gas holdup with increasing superficial gas velocity, and the second part is characterized by decreasing gas holdup with increasing superficial gas velocity; for $A = 2.14\%$, no local maximum gas holdup appears. Therefore, for $A = 0.57\%$ and 0.99%, two different methods are used to deal with these two gas holdup behaviors (as shown in Figure 3): Model I describes the homogeneous flow and the first part of the transitional flow regime, and model II describes the second part of the transitional flow and heterogeneous flow regime. Model I is also used for the entire three-regime flow for $A = 2.14\%$ (i.e., it is applicable when homogeneous flow is initially observed at low gas flow rates and as long as gas holdup increases with increasing superficial gas velocity). Model III is developed for pure heterogeneous flow for all three open area ratios. The individual models do not account for the effect of the open area ratio. Su and Heindel14 showed that the gas holdup is not a monotonic function of the open area ratio and that there is a critical open area ratio that generates a maximum gas holdup. However, there are only three open area ratios in the current study, and they do not provide enough information to determine an exact mathematical description of the open area ratio effect. Hence, models I, II, and III have different coefficients and exponents for different open area ratios.
Three-Regime Flow. Three-regime flow exists when the fiber mass fraction is low. The critical fiber mass fraction at which the flow pattern changes from three-regime flow to pure heterogeneous flow differs for different open area ratios and fiber lengths. The fiber mass fraction ranges within which three-regime flow is observed are summarized in Table 2; these ranges become narrower with increasing fiber length and weakly depend on the open area ratio.

Table 2. Fiber Mass Fraction (%) Ranges within Which Three-Regime Flow Occurs

<table>
<thead>
<tr>
<th>open area ratio (A) (%)</th>
<th>rayon fiber L (mm)</th>
<th>hardwood</th>
<th>softwood</th>
<th>BCTMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.57</td>
<td>C < 0.6</td>
<td>C < 0.4</td>
<td>C < 0.4</td>
<td>C < 0.6</td>
</tr>
<tr>
<td>0.99</td>
<td>C < 0.6</td>
<td>C < 0.4</td>
<td>C < 0.4</td>
<td>C < 0.6</td>
</tr>
<tr>
<td>2.14</td>
<td>C < 0.6</td>
<td>C < 0.4</td>
<td>C < 0.4</td>
<td>C < 0.25</td>
</tr>
</tbody>
</table>

On the basis of other researchers’ experimental data, Mersmann20 suggested a more exact expression obtained by the following modification of eq 9

$$
\epsilon(1 - \epsilon)^n = c\left(\frac{C_d}{d_b}\right)^{1/2} U_g \tag{10}
$$

The exponent n depends on the density ratio of the continuous phase to the dispersed phase. When the ratio is greater than 200, $n = -4$. This agrees with the results of Akita and Yoshida.21 For the present study, the continuous phase can be assumed to be a homogeneous water–fiber slurry, and the dispersed phase is air. For these conditions, the density ratio is greater than 200, so $n = -4$ for this model.

Mersmann20 also discussed in detail the fact that both C_d and d_b are functions of fluid properties, such as the surface tension, viscosity, and difference in density between the two phases. For the experimental conditions in the present study, it is assumed that, in these three quantities, only the effective viscosity varies with fiber addition. The effective viscosity depends on fiber type, mass fraction, length, shear rate, and superficial gas velocity.22–24

In addition, yield stress has an important effect on bubble diameter. The bubble diameter is required to be large enough to produce enough buoyant force to break through the fiber network.12,25,26 Thus, bubble diameter is a function of fiber type, mass fraction, and length because of their effects on yield stress.

The combination of N and N_f is employed to replace the fiber mass fraction and length and account for the effect of the fiber on the drag coefficient and bubble diameter. The influence on the bubble diameter is visually apparent; increasing the fiber mass fraction (i.e., increasing N and N_f) increases the bubble diameter.27,28 Additionally, Hebrard et al.29 observed that the bubble diameter depends on the superficial gas velocity and that the relationship is related to the gas distributor type. They determined that, for a perforated plate gas distributor (which is the case in the present study), the bubble diameter decreases with increasing U_g.

On the basis of the above analysis, the quantity C_d/d_b is a function of U_g, N_f, and N. Hence, eq 10 can be rewritten as

$$
\frac{\epsilon}{(1 - \epsilon)^4} = f(U_g N_f N)^{1/4} \tag{11}
$$

Su15 found that the combination $N^a N_f^b$ is a reliable parameter for describing the effects of fiber mass fraction and fiber length and proposed a gas holdup model in the form

$$
\frac{\epsilon}{(1 - \epsilon)^4} = a_1 U_g a_2 N_f a_4 \tag{12}
$$

The coefficient a_1 and exponents a_2–a_4 in eq 12 are
determined by nonlinear curve-fitting tools in MATLAB. The resulting gas holdup correlations are

\[\frac{\epsilon}{(1 - \epsilon)^4} = 40.5 U_g^{1.14} N^{-0.146} N_f^{-0.006} \]

(model I, A = 0.57%) (13)

and

\[\frac{\epsilon}{(1 - \epsilon)^4} = 183.7 U_g^{1.289} N^{-0.128} N_f^{-0.106} \]

(model I, A = 0.99%) (14)

Figure 4 compares the predicted results with the experimental data and reveals that 94% (214 of 225) and 98.4% (125 of 127) of the data can be reproduced within ±15% for A = 0.57% and 0.99%, respectively. Equations 13 and 14 show that the exponents of N and N_f are negative, indicating that gas holdup decreases with increasing N and N_f. This is consistent with the physical mechanism: the larger N and N_f, the larger the viscosity and yield stress, which leads to a larger bubble diameter and higher bubble rise velocity, resulting in a smaller gas holdup.

Model I: Homogeneous, Transitional, and Heterogeneous Flows (A = 2.14%). For this open area ratio, there is no maximum gas holdup over the range of superficial gas velocities investigated. It is convenient that all three flow regimes are considered in one model. Although model I is based on the assumption of a quasisteady state, Mersmann20 argued that the resulting expression for gas holdup is applicable to heterogeneous flow. Akita and Yoshida21 applied a correlation similar to that of Mersmann20 to a wide range of superficial gas velocities encompassing homogeneous and heterogeneous flow. In addition, the good agreement of the predictions with experimental data for this study, as shown in Figure 5, indicates that this model is also applicable to heterogeneous flow.

By fitting the data to eq 12 with the nonlinear curve fitting package in MATLAB, the gas holdup correlation for three-regime flow with A = 2.14% is found to be

\[\frac{\epsilon}{(1 - \epsilon)^4} = 26.52 U_g^{0.781} N^{-0.11} N_f^{0.11} \]

(model I, A = 2.14%) (15)

Figure 5 compares the predicted gas holdup and experimental data; 96% (155 of 162) of the data are reproduced within ±15% using eq 15. Equation 15 shows that, at a given superficial gas velocity, the gas holdup decreases with increasing N and N_f for the range of superficial gas velocities investigated. It is noted that gas holdup depends on U_g to a power less than 1 instead of greater than 1 (i.e., eqs 13 and 14), which indicates that the increase in gas holdup with increasing superficial gas velocity is less when A = 2.14% than when A = 0.57% or 0.99%. This is evident in Figure 2 and can be attributed to the fact that, for A = 2.14%, bubbles tend to coalesce near the distribution plate with increasing U_g because of the small hole spacing, resulting in an increased probability of bubble–bubble interactions with adjacent bubbles.14

Model II: Heterogeneous and the Second Part of the Transitional Flow Regime (A = 0.57% and 0.99%). After a maximum gas holdup is reached when A = 0.57% and 0.99%, a local minimum gas holdup is observed before heterogeneous flow is reached. For these conditions, U_f/(1 - \epsilon) is plotted as a function of U_g for various fiber mass fractions, a straight line results (Figure 6).

Figure 6 also shows that, for each open area ratio, the difference among slopes is negligible, but the intercepts change with different fiber lengths and mass.
fractions. Therefore, the correlation for this regime is assumed to be

\[\frac{U_g}{(1 - \epsilon)} = a_1 U_g + f(C, L) \] \hspace{1cm} (16)

As with model I, \(N \) and \(N_f \) are used to account for the effect of \(C \) and \(L \). Su15 plotted \(f(C, L) \) as a function of the parameter \(N^{a_2}N_f^{a_3} \) and determined, through trial and error, that \(f(C, L) \) is well described by \(\ln(N^{a_4}N_f^{a_5}) \). Additionally, to generalize \(U_g/(1 - \epsilon) \), \(U_g \) is assumed to vary as a power function. Hence, the correlation for the second part of the transitional flow and the heterogeneous flow regime for \(A = 0.57\% \) and \(0.99\% \) is proposed to be

\[\frac{U_g}{(1 - \epsilon)} = a_1 U_g^{a_2} + \ln(N^{a_4}N_f^{a_5}) + a_5 \] \hspace{1cm} (17)

The coefficients \(a_1 \) and \(a_5 \) and exponents \(a_2 - a_4 \) for \(A = 0.57\% \) and \(0.99\% \) are listed in Table 3.

Figure 7 shows that the model can reproduce 97% (207 of 214) of the data within ±15% for \(A = 0.57\% \) and 99% (93 of 94) data within ±15% for \(A = 0.99\% \).

Pure Heterogeneous Flow. Model III: Pure Heterogeneous Flow Regime (\(A = 0.57\%, 0.99\%, \) and 2.14%). Model III is used to describe the flow when pure heterogeneous flow is observed at all superficial gas velocities, and it is based on the Zuber–Findlay drift flux model.30 The drift flux model considers the mixture as a whole and reduces the difficulties associated with interface interactions. For a semibatch bubble column, the drift flux is expressed as

\[\frac{U_g}{\epsilon} = C_0 U_g + V_{0j} \] \hspace{1cm} (18)

where \(U_g/\epsilon \) represents the mean gas velocity. The distribution parameter, \(C_0 \), is constant for a specified flow pattern and reflects the nonuniformity in flow and gas holdup profiles. For uniform flow, \(C_0 = 1 \). However, in general, \(C_0 \) depends on the flow regime, pressure, channel geometry, and flow rate.31 Kataoka et al.32 pointed out that \(C_0 \) is larger in semibatch systems than in systems in which the liquid velocity is nonzero and high, and the drift velocities are almost the same for both liquid velocity conditions.

Zuber and Findlay30 argued that \(V_{0j} \) represents the terminal bubble rise velocity for heterogeneous flow and...
that the value is independent of bubble size. In this model, V_0j is called the terminal bubble rise velocity. For heterogeneous flow, the plot of the mean gas velocity (U_g/ϵ) as a function of U_g is a straight line whose slope represents C_0 and whose intercept is the terminal bubble rise velocity.

Su15 determined that C_0 can be approximated as a constant for different fiber lengths and fiber mass fractions for all values of $A = 0.57\%, 0.99\%$, and 2.14% and that the terminal bubble rise velocity is a function of fiber mass fraction and length and increases with increasing fiber mass fraction for all three fiber lengths. When the fiber mass fraction is high, terminal bubble rise velocity varies only slightly with fiber mass fraction.

On the basis of the above analysis, the gas holdup model for this flow regime can be assumed to be

$$\frac{U_g}{\epsilon} = C_0U_g + g(C,L)$$ \hspace{1cm} (19)$$

where $g(C,L)$ represents the terminal bubble rise velocity V_0j. It is assumed that $g(C,L)$ can be described by a functional relationship involving N and N_f15, i.e.

$$V_0j = g'(N,N_f)$$ \hspace{1cm} (20)$$

![Figure 8](image1)

![Figure 9](image2)

Figure 8. Terminal bubble rise velocity as a function of the product of N and N_f for $A = (a) 0.57\%$, (b) 0.99\%, and (c) 2.14\%.

Figure 9. Comparison of predicted gas holdup to experimental data for pure heterogeneous flow for $A = (a) 0.57\%$, (b) 0.99\%, and (c) 2.14\%.

Table 4. Coefficients and Exponents of Model III Eq 21 for $A = 0.57\%$, 0.99\%, and 2.14\%

<table>
<thead>
<tr>
<th></th>
<th>$A = 0.57%$</th>
<th>$A = 0.99%$</th>
<th>$A = 2.14%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_0</td>
<td>3.0</td>
<td>3.11</td>
<td>3.13</td>
</tr>
<tr>
<td>C_1</td>
<td>0.078</td>
<td>0.069</td>
<td>0.057</td>
</tr>
<tr>
<td>C_2</td>
<td>0.044</td>
<td>0.074</td>
<td>0.053</td>
</tr>
<tr>
<td>C_3</td>
<td>-0.917</td>
<td>-1.50</td>
<td>-0.958</td>
</tr>
</tbody>
</table>

Terminal bubble rise velocities for different fiber mass fractions and lengths are plotted as a function of $N^aN_f^b$ ($a = b = 1$ for all three open area ratios by trial and
error in Figure 8. The terminal bubble rise velocities for each open area ratio converge to a single line and follow a logarithmic function. Therefore, the gas holdup model for pure heterogeneous flow is proposed to be of the form

\[
\frac{U_g}{\epsilon} = C_0 U_g + \ln(N_C N_f^c) + C_3
\]

Table 4 lists the coefficients and exponents of eq 21 for all pure heterogeneous flow conditions of this study.

From Table 4, the values of the distribution parameter \(C_0 \) for all three open area ratios are very similar, indicating that, when the fiber mass fraction is high, the influence of the open area ratio on the gas holdup distribution is negligible. This implies that, for suspensions with high fiber mass fractions, bubble behavior is weakly dependent on the aeration plate and mainly depends on slurry mixing.

Figure 9 shows a comparison of the predicted gas holdup values with experimental data for \(A = 0.57\% \), \(0.99\% \), and \(2.14\% \). The models reproduced most of the data within \(\pm 15\% \) for the bubble column in this study \((D = 15.2 \text{ cm})\). A significant limitation of the models, due to limited experimental data, is that the model coefficients and exponents vary with different bubble column diameters and open area ratios; thus, the current models cannot be used for scale-up. However, they are a good first step in developing comprehensive gas holdup models for fiber suspensions.

A parameter in the gas holdup models, \(N^0 N_f^p \), reliably accounted for the complex effect of fiber type, fiber mass fraction, and fiber length. The exponents \(a \) and \(b \) were functions of the bubble column flow regime, open area ratio, and column diameter.

Conclusions

Three basic gas holdup models were developed for gas–liquid–fiber semibatch bubble columns operating in (i) the homogeneous flow regime and the first part of the transitional flow regime \((A = 0.57\% \text{ and } 0.99\%)\) and the entire range of three-regime flow \((A = 2.14\%)\), (ii) the second part of the transitional flow regime and the heterogeneous flow regime \((A = 0.57\% \text{ and } 0.99\%)\), and (iii) the pure heterogeneous flow regime \((A = 0.57\%, 0.99\%, \text{ and } 2.14\%)\). The models reproduced most of the data within \(\pm 15\% \) for the bubble column in this study \((D = 15.2 \text{ cm})\). A significant limitation of the models, due to limited experimental data, is that the model coefficients and exponents vary with different bubble column diameters and open area ratios; thus, the current models cannot be used for scale-up. However, they are a good first step in developing comprehensive gas holdup models for fiber suspensions.

A parameter in the gas holdup models, \(N^0 N_f^p \), reliably accounted for the complex effect of fiber type, fiber mass fraction, and fiber length. The exponents \(a \) and \(b \) were functions of the bubble column flow regime, open area ratio, and column diameter.

Acknowledgment

Financial support of this work by the National Science Foundation under Grant CTS-0209928 is greatly appreciated. The cellulose fiber was supplied and characterized by Kimberly–Clark Corporation; their support is appreciated.

Nomenclature

\(a_i \) = coefficients in eqs 11 and 16
\(A \) = open area ratio, \%
\(c \) = constant in eq 9
\(C \) = fiber mass fraction, \%
\(C_d \) = bubble drag coefficient in a swarm
\(C_0 \) = drift flux model constant
\(d_b \) = bubble diameter, mm
\(d_f \) = fiber diameter, \(\mu \)m
\(L \) = fiber length, mm or \(\text{m} \) in models
\(n_f \) = number of fibers per unit volume, number/\(\text{m}^3 \)
\(N \) = crowding number
\(P \) = average pressure of the air–water–fiber suspension, \(\text{Pa} \)
\(P_0 \) = average pressure of the water–fiber suspension, \(\text{Pa} \)
\(U_g \) = superficial gas velocity, \(\text{cm/s or m/s} \) in models
\(V_0 \) = average drift velocity or terminal bubble rise velocity, \(\text{cm/s} \)
\(v_r \) = relative bubble rise velocity

Greek Letters

\(\epsilon \) = gas holdup
\(\rho_{df} \) = effective density of the fiber-water mixture, \(\text{kg/m}^3 \)
\(\rho_e \) = gas density, \(\text{kg/m}^3 \)
\(\rho_f \) = dry fiber density, \(\text{kg/m}^3 \)
\(\rho_w \) = water density, \(\text{kg/m}^3 \)
\(\rho_c \) = density of the continuous phase
\(\omega \) = fiber coarseness, \(\text{kg/m} \)
\(\Delta \) = difference

Literature Cited

Received for review July 12, 2005
Revised manuscript received September 8, 2005
Accepted September 29, 2005

IE050816E