Replacement of Petroleum-based Rubber with "Bio-rubber" from Vegetable Oils

By: Chris Isely
Mentor: Dr. Eric Cochran

Chemical and Biological Engineering
Background

• The rubber industry has been dominated by petroleum based synthetic rubbers, especially those made from styrene-butadiene rubber (SBR).

• As awareness of the environmental effects and costs of petroleum have increased so has the need to find suitable replacements.
Biopolymer

• A biopolymer
 • a polymer that is derived from a natural source, and is renewable.
 • Our research set out to find a suitable replacement to petroleum based products.

• Soybean Oil
 • We found that block copolymers of styrene-soybean oil produced similar properties as those of SBR type rubbers.
Method

- Soybean Oil
 - Triglyceride
 - About 4.6 double bonds
- Modification
 - Soybean oil was modified in order to improve reactivity and polymerization
 - Epoxidation and Acrylation
- Polymerization
 - Two methods used: ATRP and RAFT
Epoxidation and Acrylation

- Epoxidation performed through addition of formic acid, hydrogen peroxide.
- Acrylation performed through addition of acrylic acid.

\[\text{(II)} \]

\[
\begin{align*}
\text{Acrylated epoxidized Soybean Oil (AESO)}
\end{align*}
\]
ATRP

- Atom Transfer Radical Polymerization
 - Controlled polymerization

- Reagents required
 - benzyl chloride as initiator
 - Copper 1 chloride as catalyst
 - Copper 2 chloride as counter catalyst
 - N,N,N',N,N Pentamethyl-diethylenetriamine (PMDETA) as ligand

- Varied temperatures of reaction, initiator concentration, solvent ratios, catalysts, and monomer concentration.

\[
RX + M^nX + L \rightleftharpoons RX-M^nXL \quad \text{dormant species}
\]

\[
M + R^* + M^{n+1}X_2L \quad \text{active species}
\]
RAFT

- Reversible addition-fragmentation chain-transfer polymerization
- Controlled polymerization

- Reagents used
 - AESO monomer
 - AIBN as initiator
 - Solvent
 - RAFT Chain Transfer Agent
 - Varied

\[i \text{ Initiation} \]
Initiator \[\rightarrow \] I^*
\[I^* + M \rightarrow P_{n+1}^* \]

\[ii \text{ Initial equilibrium} \]
\[P_{m+1}^* + S \rightarrow P_{m+1} \rightarrow P_{n+2} + S \]

\[iii \text{ Reinitiation} \]
R^* + M \[\xrightarrow{k_{\text{init}}} \] P_i^* \[\xrightarrow{k_p} \] P_{n+1}^*

\[iv \text{ Main equilibrium} \]
\[P_{n+1}^* + S \rightarrow P_{n+2} \rightarrow P_{n+3} + P_{m+1}^* \]

\[v \text{ Termination} \]
\[P_{n+1}^* + P_i^* \xrightarrow{k_{\text{term}}} \]
\[P_{n+1}^* + P_i \]
\[P_{n+2}^* + P_{m+1}^* \]
Triblock copolymer

• Both ATRP and RAFT were used to make triblock copolomers from styrene and AESO monomers
• These polymers were SAS style in that they were Styrene-AESO-Styrene
Products

• Varied:
 • Temperature, monomer/initiator concentration, solvent ratio, catalysts
 • Found rubbery viscoelastic properties

• We characterized our products using:
 • GPC, NMR, DSC, TEM

• GPC
HNMR

Styrene peak
Results

• Molecular weight
 • Molecular weights ranged from 10kDa to 1MDa

• Polydispersity
 • Measures range of Mw within a sample of polymer
 • PDI’s were generally low, <2.0

• Viscoelastic properties
 • Similar to SBR type rubber
 • Properties suggest success in use as asphalt
Future Work

• Our results showed the effectiveness of controlled polymerization on a multifunctional monomer into a thermoplastic elastomer.

• Also showed promise as use as a rubber, and especially for use as an asphalt modifier.

• Our next goal will be scaling up of synthesis of this polymer, and involving companies in our work.
Works Cited

• http://en.wikipedia.org/wiki/File:Iowa_State_Cyclones_logo.svg
• Nacu Hernandez: ACS Presentation
• http://powerlisting.wikia.com/wiki/Rubber_Manipulation
• http://www.nature.com/nchem/journal/v2/n10/full/nchem.853.html
• http://www.eastman.com/Markets/Tackifier_Center/Pages/Block_Copolymer.aspx
• http://www.biobusinessaccelerator.com/pilot-plant/