8-1975

A Note On Lags And The Assignment Problem

Harvey Lapan
Iowa State University

Walter Enders
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/econ_las_staffpapers

Part of the Business Administration, Management, and Operations Commons, Economic Policy Commons, Economic Theory Commons, and the Policy Design, Analysis, and Evaluation Commons

Recommended Citation
http://lib.dr.iastate.edu/econ_las_staffpapers/164

This Report is brought to you for free and open access by the Economics at Iowa State University Digital Repository. It has been accepted for inclusion in Economic Staff Paper Series by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
A Note On Lags And The Assignment Problem

Abstract
Mundell (1962) demonstrated that monetary policy should be paired with external balance and fiscal policy with internal balance. This seminal article led to a voluminous literature which attempted to rectify many of the problems inherent in Mundell’s flow equilibrium model. Harry Johnson (1972) has characterized this extension of Mundell’s work as having lent itself to almost infinite mathematical product differentiation, with little significant improvement in quality of economic product...” Although we do not fully agree with Harry Johnson--for there are many deficiencies in Mundell’s model--we do believe that more can be said concerning the “Assignment Problem” in the context of Mundell’s model.

Disciplines
A NOTE ON LAGS AND THE ASSIGNMENT PROBLEM

Harvey Lapan and Walter Enders

No. 19

August 1975
Mundell (1962) demonstrated that monetary policy should be paired with external balance and fiscal policy with internal balance. This seminal article led to a voluminous literature which attempted to rectify many of the problems inherent in Mundell's flow equilibrium model. Harry Johnson (1972) has characterized this extension of Mundell's work as having "... lent itself to almost infinite mathematical product differentiation, with little significant improvement in quality of economic product..." Although we do not fully agree with Harry Johnson--for there are many deficiencies in Mundell's model--we do believe that more can be said concerning the "Assignment Problem" in the context of Mundell's model. Specifically, we examine the effects of introducing discrete lags into the Mundell model. Part A of this note presents a generalized discrete time version of Mundell's model and shows that the "Principle of Effective Market Classification" cannot guarantee stability. Part B then examines how the presence of an outside lag affects the results of Part A.

A) The Basic Model

The linearized version of the Mundell model can be represented by:

1) \[Y_T = \alpha S_T + \beta r_T \]
 where: \(Y \) = income
 \(r \) = interest rate

2) \[B_T = \delta Y_T + \lambda r_T \]
 \(S \) = government surplus
 \(B \) = balance of payments
 and \(\alpha < 0; \beta < 0; \delta < 0; \lambda > 0 \).

The problem posed is how to use monetary policy (represented by the interest rate) and fiscal policy (represented by the government surplus) to guarantee the attainment of full employment and balance of payments equilibrium. If
Policy makers knew the underlying structure of the economy they could directly set the values of the instruments at the levels which would produce the desired values of the targets. However, the underlying structure is assumed to be unknown so that policy makers must use a groping process to arrive at the desired values of the targets. In particular, two policy choices are available:

1) The government surplus can be altered in response to desired changes in income and the interest rate can be altered in response to desired changes in the balance of payments.

or

2) The government surplus can be altered in response to desired changes in the balance of payments and the interest rate can be altered in response to desired changes in income.

Thus:

Policy I \[\Delta S_T = a_1 [Y_T - Y^*] \]
where: \(a_1 \) and \(b_1 \) are positive adjustment parameters

or

Policy II \[\Delta r_T = a_2 [B^* - B_T] \]
\[\Delta S_T = b_1 [Y_T - Y^*] \]

Mundell's graphical analysis implies specific values for the adjustment coefficients; i.e. \(a_1 = \frac{1}{\alpha}; a_2 = \frac{1}{\lambda + \delta}; b_1 = \frac{1}{\beta}; b_2 = \frac{1}{\gamma} \).

With these specific values, Mundell finds that Policy I guarantees stability while Policy II renders the system unstable.

This particular choice of the adjustment parameters assures that the magnitude of change of any one instrument alone is such that the desired magnitude of its corresponding target is achieved. These adjustment coefficients, then, imply that both the monetary and fiscal authorities know the underlying structure of the economy and that the informational problem is one of policy coordination between the different branches of
government. Since policy makers are faced with situations in which they know neither the behavior of other branches of government nor the underlying structure of the economic system, it is of interest to determine whether Policy I guarantees stability and Policy II instability, regardless of the choice of adjustment coefficients.

If Policy I is adopted, the characteristic equation of the system takes the form:

\[E^2 - d_0 E + d_1 = 0 \]

where:

- \(d_0 = 2 - a_2(\lambda + 2\beta) + a_1 \alpha \)
- \(d_1 = 1 + a_1 \alpha - a_2(\lambda + 2\beta) - a_1 a_2 \alpha \lambda \)

The necessary and sufficient conditions for stability are:

3) \(1 - d_0 + d_1 = -a_1 a_2 \alpha \lambda > 0 \)
4) \(1 + d_0 + d_1 = 4 + 2a_1 \alpha - 2a_2(\lambda + 2\beta) - a_1 a_2 \alpha \lambda > 0 \)
5) \(1 - d_1 = a_1 a_2 \alpha \lambda + a_2(\lambda + 2\beta) - a_1 \alpha > 0 \)

Equation 3 is always satisfied as long as \(a_1 \) and \(a_2 \) are greater than zero; Equations 4 and 5 are satisfied by the shaded areas in Figures 1 and 2.
respectively. Moreover, Equation 4 can be seen to be the only tight constraint, since it never intersects Equation 5.^

It should be noted that Mundell's choice of the adjustment coefficients (point M in Figures 1 and 2) always produces stability. However, Policy I does not always guarantee that the system will converge when the possibility of overshooting is recognized. Thus, the "Principle of Effective Market Classification" does not always hold. Further, since increases in λ, $\delta\beta$, and $-\alpha$ cause the intercepts in Figure 1 to fall twice as fast as the Mundell point, it can be concluded that the problems associated with overshooting increase as the targets become more sensitive to the instruments. Thus, acquisition of information concerning the underlying structure of the system becomes more important as targets become more sensitive to instruments.

Given the set of adjustment coefficients which insure stability, it is interesting to note that the Mundell point yields the fastest speed of adjustment. On minimizing the absolute value of the largest characteristic root, we find $a_1 = \frac{1}{\alpha}$; $a_2 = \frac{1}{\lambda + \delta\beta}$ and the characteristic roots are $\pm \left(\frac{\delta\beta}{\lambda + \delta\beta}\right)^{\frac{1}{2}}$. Notice that the speed of adjustment is independent of α, decreases as $\delta\beta$ increases and increases as λ increases.

With regard to Policy II, the system is unstable with any positive choice of adjustment coefficients. Under Policy II, the characteristic equation becomes:

$$E^2 - d_2E + d_3$$

where:

$$d_2 = 2 + b_2\beta - \alpha b_1$$

$$d_3 = 1 + b_1 b_2 \alpha + b_2 \beta - \alpha b_1$$

The necessary and sufficient conditions for stability are violated since the sum of the coefficients is negative, i.e., $1 - d_2 + d_3 = b_1 b_2 \alpha < 0$.

Part B—Outside Lags

The above treatment of the assignment problem assumes that instruments affect targets instantaneously. In order to see how lags may alter the stability properties of the system, we consider a simple lag structure in which the interest rate effect on income is lagged one period. This lag structure seems reasonable for illustrative purposes since, a priori, one can expect that the interest rate effect on income takes longer to operate than any other outside lag. Using this lag, we can represent the model as follows:

6) \(Y_T = \alpha S_T + \beta r_T - 1 \)
7) \(B_T = \delta Y_T + \lambda r_T \)
8) \(\Delta S_T = a_1 [Y_T - Y^*] \)
9) \(\Delta r_T = a_2 [B^* - B_T] \)

Under this policy, the characteristic equation takes the form:

\[E^3 + d_4 E^2 + d_5 E + d_6 \]
where:
\[d_4 = -[2 + a_1\alpha - a_2\lambda] \]
\[d_5 = (1 - a_2\lambda)(1 + a_1\alpha) + a_2 \delta \beta \]
\[d_6 = -a_2 \delta \beta \]

The necessary and sufficient conditions for stability are:

10) \(1 + d_4 + d_5 + d_6 = -a_1 a_2 \alpha \lambda > 0 \)
11) \(3 - d_4 - d_5 + 3d_6 = 4 + a_1 a_2 \alpha \lambda - 4a_2 \delta \beta > 0 \)
12) \(1 - d_4 + d_5 - d_6 = 4 + 2a_1 \alpha - 2a_2 (\lambda - \delta \beta) - a_1 a_2 \alpha \lambda > 0 \)
13) \(1 - d_6^2 + d_4 d_5 - d_5 = -a_2 \delta \beta (\lambda + \delta \beta) + a_2 (\lambda + \delta \beta)(1 + a_1 \alpha) - a_1 \alpha > 0 \)

Condition 10 holds for all \(a_1, a_2 \) greater than zero, while condition 11 can be shown to be redundant given conditions 12 and 13. Thus, 12 and 13 alone define the region of stability, and the shaded areas of Figures 3 and 4 depict this region, for the cases in which \(\lambda \leq \delta \beta \) and \(\lambda > \delta \beta \), respectively.
As in the unlagged case, the possibility of overshooting can produce instability. In comparing the effect of the lag on the region of stability it is apparent that Equation 2 is tight vis-a-vis Equation 12 since subtraction of 2 from 12 yields $4a_2\delta\beta$, which is always positive. Moreover, from Figures 1, 3, and 4 it is apparent that the lagged case will be stable for some values of (a_1, a_2) for which the unlagged case is unstable (e.g., $a_1 > -2/\alpha$). If Equation 2 never intersects Equation 13 in the
positive quadrant, then the lag unambiguously increases the range of stability. Solving these equations simultaneously, it can be shown that if \(\lambda > 2 \left(\sqrt{3} - 3 \right) \delta \beta \approx 1.2 \delta \beta \), then the lag unambiguously increases the region of stability. Thus, the lag tends to be stabilizing as capital becomes more mobile since a greater degree of capital mobility will reflect itself in increasing \(\lambda \) relative to \(\delta \beta \).

Note that the effect of the lag of \(r_T \) on income increases the range of \(\lambda \) for which the system converges; thus, if there is uncertainty about the values of \(\lambda, \delta \beta, \) and \(\alpha \), but it is believed that monetary policy affects income with a lag, then relatively greater weight should be attached to the speed of adjustment of the government surplus.

In summary, we have seen that the introduction of lags into the Mundell model does not alter the policy prescription of assigning \(r \) to the balance of payments and \(S \) to \(Y \). However, the presence of outside lags can narrow the range of stability, and means that some care must be exercised in choosing the speed of adjustment of the respective targets—too high a speed of adjustment can render the system unstable, whereas slow speeds of adjustment retard the convergence of the system.
* The authors would like to thank Bernie Rothman for his assistance in the preparation of this note. The authors take full responsibility for any remaining errors.

** The authors are respectively Associate and Assistant Professors of Economics, Iowa State University.

1) For example see: Levin (1972), Mathieson (1973), Tsiang (1975).

2) It is not necessary to consider intermediate cases wherein each target is adjusted in response to two instruments since intermediate cases can be considered to be simultaneous usage of both Policy I and Policy II with a weight attached to each. If any pure policy proves inferior to the other, the weight attached to that policy should be zero.

3) This policy assignment slightly differs from Mundell's in that here we assume the monetary and fiscal authorities operate simultaneously whereas Mundell assumes that the policy makers alternate.

4) See Gondolfo (1971) p. 107 for the derivation of these conditions.

5) Set equations 4 and 5 equal to zero and solve for a_2, i.e.,

$$a_2 = \frac{4a_{1} \pm \sqrt{16 a_{1}^2 + 8}}{2a_{2}(\lambda + 8)}.$$

Thus, the solution for the common intersection of 4 and 5 is imaginary.

6) Min. $d_0 + (d_0 - 4d_1)^{1/2}$

$$S_{IT_1} d_0 > 0$$

$a_1 > 0$

$a_2 > 0$

Max. $d_0 - (d_0 - 4d_1)^{1/2}$

$$S_{IT_1} d_0 \leq 0$$

$a_1 > 0$

$a_2 > 0$

In each case the Kuhn-Tucker conditions are satisfied at a unique point with $d_0 = 0$ and $-\omega a_1 = a_2(\lambda + 8) = 1$.

7) We only consider Policy I in the lagged case since Policy II is unstable even in the presence of lags.

8) See Gondolfo (1971) p. 107 for derivation of these stability conditions.
9) Assuming Equation 11 holds with equality, we have for 12 and 13:

\[12') \quad -\frac{a^2}{2} \lambda (\lambda + \delta \beta) + 4a_2(\lambda + \delta \beta) - 4 \geq 0\]

\[13') \quad -[-\frac{a^2}{2} \lambda (\lambda + \delta \beta) + 4a_2(\lambda + \delta \beta) - 4][1 - a_2 \delta \beta] \geq 0.\]

Since, when 11 holds with equality, \(1 - a_2 \delta \beta \geq 0\), it follows that 12') and 13') must be of opposite sign. Further, note that when equations 11) and 12) intersect, 13) passes through the same point. Graphing 11), using this information, it is readily seen that whenever equation 11) is violated, either 12) or 13) must also be violated.

10) The vertical intercepts of XII and XIII in Figure 4 are not important, since both lie above the region of stability for the unlagged case. If \(\lambda < 3 \delta \beta\), XII and XIII do not intersect for \(a_1 < -2/\alpha\); if \(\lambda > 3 \delta \beta\), then for small values of \(a_1\), XII becomes the tight constraint.
REFERENCES

