Multifunctional avionic display

Michael C. Dorneich
Iowa State University, dorneich@iastate.edu

Patricia Ververs
Jeffrey M. Rye
Stephen G. McCauley

Follow this and additional works at: http://lib.dr.iastate.edu/imse_patents

Part of the Navigation, Guidance, Control and Dynamics Commons, and the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation
Dorneich, Michael C.; Ververs, Patricia; Rye, Jeffrey M.; and McCauley, Stephen G., "Multifunctional avionic display" (2014).
Industrial and Manufacturing Systems Engineering Patents. 22.
http://lib.dr.iastate.edu/imse_patents/22

This Patent is brought to you for free and open access by the Industrial and Manufacturing Systems Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Industrial and Manufacturing Systems Engineering Patents by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Multifunctional avionic display

Abstract
The present invention provides a screen as defined in claim 1. The screen may include the features of any one or more of dependent claims 2 to 4.

The present invention also provides a method as defined in claim 5. The method may include the features of claim 6.

The above-mentioned problems of current systems are addressed by embodiments of the present invention and will be understood by reading and studying the following specification.

In one embodiment, a display screen for displaying multiple sets of information is provided. The display screen includes at least one region of a select color designated to convey a first set of information and a plurality of adjustable areas designated to convey a second set of information. The plurality of adjustable areas overlay at least a portion of the at least one region of select color of the first set of information. Moreover, each adjustable area is defined by an outline and a color encased in the outline.

In another embodiment, an aviation display screen is provided. The display screen includes an area location fill, terrain region alerts and a plurality of adjustably patterned weather areas. The area location fill is adapted to indicate non-threatening terrain at a location. The terrain region alerts are adapted to indicate threatening terrain. The plurality of adjustably patterned weather areas overlay at least a portion of the area location fill and the terrain region alerts. Moreover, each patterned weather area has a visibly distinct defining border or outline. The size of each adjustable patterned area is adjustable to allow a desired visibility level of the area location fill and the terrain region alerts.

In still another embodiment, a method of displaying different sets of information on the same display screen at the same time is provided. The method comprises, displaying a first set of information with at least one color region that covers a portion of a display and displaying a second set of information with a plurality of adjustably sized areas of select colors. Each adjustably sized area is defined by a visually distinct border such that second set of information is easily discernable from the first set of information even if the first set of information and the second set of information are conveyed with the use of the same color palettes.

In still further another embodiment, a method of displaying terrain and weather information on the same display screen simultaneously is provided. The method includes displaying one or more terrain region alerts with one or more colors. Each color represents a level of hazard with an associated terrain. Overlaying the one or more terrain region alerts with a plurality of adjustable patterned weather areas. Each weather area has a color indicative of the intensity of the weather it is associated with and a visibly distinct border.

In yet another embodiment; a computer-readable medium having computer-executable instructions for performing a method is provided. The method includes displaying one or more terrain region alerts over a given location with one or more regions of colors on a display screen, wherein different colors indicate different levels of concern of the terrain regions. Displaying a plurality of patterned weather areas overlaying at least a portion of the terrain region alerts, wherein each patterned weather area includes a color indicative of the intensity of the weather at a location it represents and a border that is visibly distinct.
In finally another embodiment, a display to display multiple sets of information simultaneously is provided. The display includes a means for displaying a first set of information in regions of select colors, a means for displaying a second set of data in the form of a plurality of patterned areas of select colors overlaying at least a portion of the first set of information and a means for adjusting the size of the plurality of patterned areas to provide a desired viewable amount of the first set of information. Each color of the regions of select colors represents a category of the first set of information. Each patterned area is defined by a visibly distinct outline and each color of the patterned area represents a category of the second set of information.

Disciplines

Aerospace Engineering | Navigation, Guidance, Control and Dynamics | Operations Research, Systems Engineering and Industrial Engineering
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Technical Field

[0001] The present invention relates generally to the display of information and in particular to the display of two or more sets of information on a display screen simultaneously.

Background

[0002] Current avionic displays are typically designed to display different sets of information either on separate displays or only one set of information at a time. This is required because the displays typically display different information in a similar way. For example, typically area fill is used to denote location and spatial extent of phenomena, such as terrain information and weather information. However, it is common for terrain and weather information to be displayed using similar color palettes. For example, both terrain and weather radar may be displayed using the same colors green, yellow and red to represent increasing degrees of threat, safety criticality, or need for flight crew awareness or response. The green color is typically designated as indicating the lowest precipitation rate or least critical of the terrain that currently threatens the aircraft given the current position. Red is typically designed as indicating either the most severe weather or the heaviest precipitation on weather radar or the most critical terrain relating to the position of the aircraft. Moreover, the yellow color is typically designated as indicating weather that has a severity level somewhere between the severity level designated by the red and green colors and a terrain that is in between the terrain indicated by the red and green colors in relation to the position of the plane.

[0003] To avoid confusion in displaying weather and terrain information, separate displays are used or the information is toggled between screens of the same display. However, there are limitations to this implementation. For example, with separate screens, the pilot must be able to integrate the weather and terrain information mentally in order to avoid conflicts. This takes time and can be confusing especially when the screen may provide the information in different size grids (scale) or orientation. Moreover, in critical situations, the use of different screens or toggling between screens is detrimental in conveying the needed information in a fast an effective manner.

[0005] For the reasons stated above and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for a method of conveying different information simultaneously in an efficient and effective manner on a single display screen.

Summary of Invention

[0006] The present invention provides a screen as defined in claim 1. The screen may include the features of any one or more of dependent claims 2 to 4.

[0007] The present invention also provides a method as defined in claim 5. The method may include the features of claim 6.

[0008] The above-mentioned problems of current systems are addressed by embodiments of the present invention and will be understood by reading and studying the following specification.

[0009] In one embodiment, a display screen for displaying multiple sets of information is provided. The display screen includes at least one region of a select color designated to convey a first set of information and a plurality of adjustable areas designated to convey a second set of information. The plurality of adjustable areas overlay at least a portion of the at least one region of select color of the first set of information. Moreover, each adjustable area is defined by an outline and a color encased in the outline.

[0010] In another embodiment, an aviation display screen is provided. The display screen includes an area location fill, terrain region alerts and a plurality of adjustably patterned weather areas. The area location fill is adapted to indicate non-threatening terrain at a location. The terrain region alerts are adapted to indicate threatening terrain. The plurality of adjustably patterned weather areas overlay at least a portion of the area location fill and the terrain region alerts. Moreover, each patterned weather area has a visibly distinct defining border or outline. The size of each adjustable patterned area is adjustable to allow a desired visibility level of the area location fill and the terrain region alerts.

[0011] In still another embodiment, a method of displaying different sets of information on the same display screen at the same time is provided. The method comprises, displaying a first set of information with at least one color region that covers a portion of a display and displaying a second set of information with a plurality of adjustably sized areas of select colors. Each adjustably sized area is defined by a visually distinct border such that second set of information is easily discernable from the first set of information when they both occupy the same region of the display even if the first set of information and the second set of information are conveyed with the use of the same color palettes.

[0012] In still further another embodiment, a method of displaying terrain and weather information on the same display screen simultaneously is provided. The method includes displaying one or more terrain region alerts with one or more colors. Each color represents a level of hazard with an associated terrain. Overlaying the one or more terrain region alerts with a plurality of adjustable patterned weather areas. Each weather area has a color indicative of the intensity of the weather it is associated with and a visibly distinct border.
[0013] In yet another embodiment, a computer-readable medium having computer-executable instructions for performing a method is provided. The method includes displaying one or more terrain region alerts over a given location with one or more regions of colors on a display screen, wherein different colors indicate different levels of concern of the terrain regions. Displaying a plurality of patterned weather areas overlaying at least a portion of the terrain region alerts, wherein each patterned weather area includes a color indicative of the intensity of the weather at a location it represents and a border that is visibly distinct.

[0014] In finally another embodiment, a display to display multiple sets of information simultaneously is provided. The display includes a means for displaying a first set of information in regions of select colors, a means for displaying a second set of data in the form of a plurality of patterned areas of select colors overlaying at least a portion of the first set of information and a means for adjusting the size of the plurality of patterned areas to provide a desired viewable amount of the first set of information. Each color of the regions of select colors represents a category of the first set of information. Each patterned area is defined by a visibly distinct outline and each color of the patterned area represents a category of the second set of information.

Brief Description of the Drawings

[0015] The present invention can be more easily understood and further advantages and uses thereof more readily apparent, when considered in view of the description of the preferred embodiments and the following figures in which:

Figure 1 is a display screen of one embodiment of the present invention;

Figure 2 is a display screen of another embodiment of the present invention; and

Figure 3, is a flow diagram of one embodiment of the present invention.

[0016] In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize specific features relevant to the present invention. Reference characters denote like elements throughout Figures and text.

Detailed Description

[0017] In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the inventions may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the claims and equivalents thereof.

[0018] Embodiments of the present invention provide a display that effectively conveys different sets of information even if the sets of information are provided by colors having similar color palettes. In particular, in one embodiment, an avionic display screen displaying terrain and weather simultaneously is provided. Further in one embodiment, weather is displayed using a plurality of adjustable areas that overlay the terrain information. Each adjustable weather area is defined by a visibly distinct border.

[0019] Referring to Figure 1, a display screen 100 of one embodiment of the present invention is illustrated. As illustrated, the display screen 100 includes area location fill 102, terrain region alerts which are generally designated as 104, and a plurality of weather areas which are generally designated as 106. The area location fill 102 is used to convey the general non-threatening terrain areas. The area location fill is typically illustrated with the use of neutral colors or no color at all. The area location fill 102 can also be referred to as situation awareness terrain 102. The terrain region alerts 104 are used to convey terrain having a more threatening level of alert than the area location fill. The terrain region alerts 104 may be categorized by the levels of alert. For example, the terrain regions of different levels of concern or hazard may be differentiated from each other by different color palettes. For example, in one embodiment, terrain region alert 104-1 has the highest level of hazard and is displayed in red, terrain region alert 104-2 has a lower hazard level and is displayed in yellow and terrain region alert 104-3 has yet still a lower hazard level and is displayed in green.

It will be understood that other colors and other levels of alert can be used and the present invention is not limited to the colors and levels of alerts provided in the example above.

[0020] As further illustrated in Figure 1, the plurality of weather areas 106 are overlaid on the terrain region alerts 104 and the area location fill 102. Each weather area 106 is defined by a visibly distinct outline or border. In the embodiment of Figure 1, the weather areas 106 are illustrated as a plurality of circles or dots. However, in other embodiments the weather areas 106 are patterned in different shapes such as triangle, squares, etc. and the invention is not limited to just circles. In one embodiment the outline (or halo) of each weather area is black. In other embodiments, other visibly distinct colors are used for the borders or outlines. As with the terrain region alerts 104-1 through 104-3, the weather areas are adapted to convey levels of hazard. This is done by selectively coloring each weather area 106. For example,
referring to Figure 1, the weather areas 106-1 are designated as being green which indicates a low level of hazard. Weather areas 106-2 are designated as being yellow which indicates a medium level of hazard and weather areas 106-3 are designated as being red which indicates a high level of hazard.

[0021] In embodiments of the present invention, the size of each weather area is adjustable. In particular, the plurality of weather areas 106 can be adjusted in size to show more or less of the underlying terrain region alerts 104 and area location fill 102. Referring to Figure 2, an example of another display screen 200 of one embodiment of the present invention is illustrated. In this example, the weather areas 206 have been increased in size to virtually block the view to the underlying terrain region alerts 204 and the area location fill 202 where the weather is of concern with relation to the location displayed in the screen display 200. This is useful when the weather is of a major concern. In another embodiment, the space between weather areas 206 are adjusted to show more or less of the terrain region alerts 204 and the area location fill 202. Similar to the display screen of Figure 1, the weather areas 106 include weather areas 106-1, 106-2 and 106-3 each of which are colored to indicate the level of intensity of the weather in the particular location. Moreover, terrain region alerts 204-1, 204-2 and 204-3 are similarly colored to indicate the level of hazard in a particular location displayed on the display screen 200. Although, the weather areas and the terrain regions are illustrated as only having three different colors associated with three different levels of hazard or intensity in Figures 1 and 2, it will be understood in the art that more or less levels of hazard or intensities can be used and that this invention is not limited to just three.

[0022] In one embodiment of the present invention, when a terrain of a high concern is detected, the display screen 200 will automatically reduce the size of the weather areas 206 to draw attention of the pilot to the hazard. Likewise, in one embodiment, when a significant weather hazard is detected, the weather areas are increased in density to draw attention of the pilot to the hazard. In other embodiments, other methods of drawing attention of the pilots when either terrain or weather is detected that is of a concern are used such as emitting a tone or flashing on and off associated terrain regions or weather areas. In another embodiment, the changing of size of weather areas 206 occurs in a staggered fashion based on weather severity. For example, in this embodiment weather areas such as weather areas 206-1 are changed in size at a slightly different time than weather areas 206-2. This staggering in time in changing the weather areas sizes helps pilots quickly differentiate area weather with differing severities. Still further in another embodiment, the density of the plurality weather areas 206 is adjusted based on the intensity of weather it represents on the area location fill.

[0023] Figure 3 illustrated a flow diagram 300 of one embodiment of the present invention. As illustrated, the location in which the aircraft is flying is determined (302). An area location fill is then generated based on the determined location of the aircraft (304). The area location fill provides an illustration of non-threatening terrain over a location of the aircraft on the display screen (306). This can also be referred to as situational awareness terrain. In one embodiment, the situational terrain awareness terrain is obtained by comparing the aircraft position to a terrain database. The terrain region alerts are also determined (308). This is the more threatening terrain associated with hazard alerts. In one embodiment this is generated from an Enhanced Ground Proximity Warning System (EGPWS). The terrain region alerts are then displayed on the display screen (310). As with other embodiments of the present invention, the terrain region alerts are displayed in regions of colors wherein each color has a meaning. The weather is further determined (312). In one embodiment this done by a radar system. In another embodiment, this is done with a weather data uplink to the flight deck. The weather is then displayed on the display screen (314). As with other embodiments, the weather is displayed with a plurality of patterned weather areas that overlay the terrain region alerts and the area location fill. Moreover, the intensity of the weather in relation to a weather area is indicated by a distinct color. In addition a border or outline defines each of the weather areas to provide a contrast from other information displayed on the display screen. The weather areas can then be adjusted to reveal more or less of the underlying terrain region alerts and area location fill information (316). In one embodiment, the weather areas resemble dots that can change in diameter via pilot control. In one embodiment, the weather area can be shrunk down in size so that only the borders of the weather areas are visible. This embodiment is helpful to pilots because it effectively conveys the size of a weather area of concern while not blocking the view of terrain region alerts with the colors of the weather areas. Moreover, in one embodiment, since the terrain regions of high alert are critical, the system will not allow the weather areas to completely cover said high terrain region alerts.

[0024] Although, the above invention is described in view of an avionic display, it will be understood in the art that it has other applications and that the invention is not limited to avionic displays. In particular, the present invention can be applied to any display screen where two or more sets of information need to be simultaneously displayed.

[0025] Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims.
Claims

1. A display screen (100, 200) for integrating multiple sets of information, characterised by at least one region of a select color designated to convey a set of terrain information (104, 204); and a plurality of adjustable areas (106, 206) designated to convey a set of weather information overlaying at least a portion of the set of terrain information, each adjustable area (106, 206) defined by an outline and a color encased in the outline.

2. The display screen of claim 1, wherein the plurality of adjustable areas (106, 206) are a plurality of circles, each circle being defined by a visibly distinct outline.

3. The display screen of claim 1, wherein the adjustable areas (106, 206) are adjusted by a user to reveal a desired amount of the set of information (104, 204).

4. The display screen of claim 1, wherein adjusting the size of the adjustable areas of the second set of information is staggered in time based on classifications of the set of weather information (106, 206).

5. A method of displaying different sets of information on the same display screen (100, 200) at the same time, characterised by:
 - displaying a set of terrain information (310) with at least one color region that covers a portion of a display (100, 200); and
 - displaying a set of weather information (314) with a plurality of adjustably sized areas of select colors overlaying the set of terrain information, each adjustably sized area (106, 206) being defined by a visually distinct border such that the set of weather information is easily discernible from the set of terrain information when the terrain and weather information occupy the same region of the display even if the set of terrain information and the set of weather information are conveyed with the use of the same color palettes.

6. The method of claim 5, further comprising:
 - adjusting the size (316) of each adjustably sized area (106, 206) in the plurality of adjustably sized areas (106, 206) to display a desired amount of the terrain information.

Patentansprüche

2. Anzeigeschirm nach Anspruch 1, wobei die mehren anpassbaren Flächen (106, 206) mehrere Kreise sind, wobei jeder Kreis durch eine sichtbar unterschiedene Kontur definiert ist.

3. Anzeigeschirm nach Anspruch 1, wobei die anpassbaren Flächen (106, 206) durch einen Anwender angepasst werden, um eine erwünschte Menge des Satzes von Informationen (104, 204) zu offenbaren.

5. Verfahren zum gleichzeitigen Anzeigen verschiedener Sätze von Informationen auf demselben Anzeigeschirm (100, 200), gekennzeichnet durch:
 - Anzeigen eines Satzes von Geländeinformationen (310) mit mindestens einem Farbbereich, der einen Abschnitt einer Anzeige (100, 200) abdeckt; und

6. Verfahren nach Anspruch 5, das ferner Folgendes umfasst:
 - Anpassen der Größe (316) jeder in der Größe anpassbaren Fläche (106, 206) unter den meh-
reren in der Größe anpassbaren Flächen (106, 206), um eine erwünschte Menge von Geländeinformationen anzuzeigen.

Revendications

1. Écran d’affichage (100, 200) permettant d’intégrer plusieurs ensembles d’informations, **caractérisé par** :
 - au moins une région d’une couleur de sélection désignée pour représenter un ensemble d’informations de terrain (104, 204) ; et
 - une pluralité de zones réglables (106, 206) désignées pour représenter un ensemble d’informations météorologiques superposées sur une partie au moins de l’ensemble d’informations de terrain, chaque zone réglable (106, 206) étant définie par un contour et une couleur délimitée par le contour.

2. Écran d’affichage selon la revendication 1, dans lequel la pluralité de zones réglables (106, 206) constituent une pluralité de cercles, chaque cercle étant défini par un contour visiblement distinct.

3. Écran d’affichage selon la revendication 1, dans lequel les zones réglables (106, 206) sont réglées par un utilisateur pour révéler une quantité souhaitée de l’ensemble d’informations (104, 204).

4. Écran d’affichage selon la revendication 1, dans lequel le réglage de la taille des zones réglables du deuxième ensemble d’informations est décalé dans le temps sur la base de classifications de l’ensemble d’informations météorologiques (106, 206).

5. Procédé d’affichage simultané de différents ensembles d’informations sur le même écran d’affichage (100, 200), **caractérisé par** les étapes consistant à :
 - afficher un ensemble d’informations de terrain (310) au moyen d’au moins une région colorée qui recouvre une partie d’un affichage (100, 200) ; et
 - afficher un ensemble d’informations météorologiques (314) au moyen d’une pluralité de zones de taille réglable de couleurs de sélection superposées sur l’ensemble d’informations de terrain, chaque zone de taille réglable (106, 206) étant définie par une bordure visuellement distincte pour permettre de distinguer facilement l’ensemble d’informations météorologiques de l’ensemble d’informations de terrain lorsque les informations de terrain et météorologiques occupent la même région de l’affichage, même si l’ensemble d’informations de terrain et l’ensem-
Fig. 3

300

312

DETERMINE WEATHER

314

DISPLAY WEATHER

316

ADJUST WEATHER AREAS IN DISPLAY

308

DETERMINE TERRAIN

310

DISPLAY TERRAIN

302

DETERMINE LOCATION

304

GENERATE AREA LOCATION FILL

305

DISPLAY AREA LOCATION FILL
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 5379215 A [0004]