6-2001

Phase transitions in mixed adsorbed layers: Effect of repulsion between “hard squares” and “point particles”

Da-Jiang Liu
Ames Laboratory, dajiang@fi.ameslab.gov

James W. Evans
Iowa State University, evans@ameslab.gov

Follow this and additional works at: http://lib.dr.iastate.edu/math_pubs

Part of the [Biological and Chemical Physics Commons](http://lib.dr.iastate.edu/math_pubs), and the [Mathematics Commons](http://lib.dr.iastate.edu/math_pubs)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/math_pubs/22. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Mathematics at Iowa State University Digital Repository. It has been accepted for inclusion in Mathematics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Phase transitions in mixed adsorbed layers: Effect of repulsion between “hard squares” and “point particles”

Abstract
It is shown that repulsive interactions between larger “hard squares” and smaller “point particles” in a mixed adlayer model modify the hard-square order–disorder transition and can produce phase separation.

Disciplines
Biological and Chemical Physics | Mathematics

Comments

Rights
Copyright 2001 American Institute of Physics. The article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Phase transitions in mixed adsorbed layers: Effect of repulsion between “hard squares” and “point particles”
Da-Jiang Liu and J. W. Evans

Citation: The Journal of Chemical Physics 114, 10977 (2001); doi: 10.1063/1.1374209
View online: http://dx.doi.org/10.1063/1.1374209
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/114/24?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Surface order-disorder phase transitions and percolation

Phase transitions in alloy clusters physically adsorbed on model surfaces

Response to “Comment on ‘Surface diffusion near the points corresponding to continuous phase transitions’” [J. Chem. Phys. 111, 11232 (1999)]

Comment on “Surface diffusion near the points corresponding to continuous phase transitions” [J. Chem. Phys. 109, 3197 (1998)]

Influence of steps on the interaction between adsorbed hydrogen atoms and a nickel surface
Phase transitions in mixed adsorbed layers: Effect of repulsion between “hard squares” and “point particles”

Da-Jiang Liu
Ames Laboratory, Iowa State University, Ames, Iowa 50011

J. W. Evans
Ames Laboratory and Department of Mathematics, Iowa State University, Ames, Iowa 50011

(Received 28 February 2001; accepted 3 April 2001)

There exist extensive studies of ordering and phase transitions in commensurately adsorbed layers involving a single adspecies. These studies were often motivated by applications to surface reactions, where it is in fact the behavior of mixed adlayers of reactants that is more relevant (but little studied). The classic example of such a surface reaction is catalytic CO oxidation, where adsorbed CO and O coexist on a surface, and react through a Langmuir–Hinshelwood mechanism. In these reaction systems, superlattice ordering of adspecies is common [e.g., due to very strong nearest-neighbor (NN) O–O repulsions], as are significant interactions between distinct reacting adspecies (e.g., NN CO–O repulsions).

During reaction, the state of the adlayer is driven out of equilibrium by adsorption and reaction processes occurring at a rate comparable to (or faster than) diffusion of some adspecies (e.g., O). However, it appears that ordering transitions in such nonequilibrium adlayers can be qualitatively similar to those in corresponding equilibrium systems. Thus, to develop the limited understanding of such systems, and to provide a benchmark for studies of reaction systems, we consider a simple canonical equilibrium model: adlayers on a square lattice consisting of a mixture of “hard squares,” representing O, and “point particles,” representing CO. There are infinite NN repulsions between the hard squares (HS), no interactions between the point-particles (PP), and HS and PP interact via NN repulsions, $E \geq 0$.

The system is parametrized by partial coverages θ_{HS} and θ_{PP}, or activities z_{HS} and z_{PP}, and by E denoting the inverse temperature. If $\beta E = 0$, distribution of hard-squares is unaffected by the presence of the point particles, and is given by that of pure hard squares with activity $z = z_{\text{HS}}/(1 + z_{\text{PP}})$. In this case, there is a transition from short range to long range order in the distribution of hard-squares as z increases above 3.796 26, or as θ_{HS} increases above 0.3677 43 (cf. Ref. 7).

For $\beta E \gg 1$, the population of point-particles adjacent to hard squares is negligible. The model can be visualized as mixture of hard discs with radii satisfying $1 - \sqrt{2}/2 \leq r_{\text{PP}} \leq \frac{1}{2}$ and $\frac{1}{2} \leq 1 - r_{\text{PP}} \leq r_{\text{HS}} \leq \sqrt{2}/2$ in units of the lattice constant (see Fig. 1). The grand partition function has the form

$$Z = \sum_{\{n_{\text{HS}}\}} \sum_{n_{\text{PP}}} (z_{\text{HS}})^{n_{\text{HS}}}(z_{\text{PP}})^{n_{\text{PP}}} \left(\frac{N'}{n_{\text{PP}}} \right)$$

$$= \sum_{\{n_{\text{HS}}\}} (z_{\text{HS}})^{n_{\text{HS}}}(1 + z_{\text{PP}})^{N'}.$$ (1)

The first sum is over all allowed configurations of various numbers, n_{HS}, of hard squares. The second is over the number, n_{PP}, of point particles, which are randomly distributed on N' allowed sites (not occupied by or adjacent to a HS particle). If n_{HS}^j is the HS occupancy of site j, and j_a for $a = 1, \ldots, 4$ denote the four neighbors of j, then site j is allowed if $f_j = (1 - n_{\text{HS}}^j)\prod_a (1 - n_{\text{HS}}^{j_a}) = 1(0)$, so $N' = \sum_j f_j$. Expanding f_j as a sum of products of occupation numbers in this expression for N' allows Z to be mapped onto the form of the partition function for a single-species hard-square model with attractive second NN, third NN, and quartet interactions, and repulsive triple interactions. Denoting these by E_2, E_3, E_q, and E_t, respectively, one finds that $\beta' E_2 = -2 \ln(1 + z_{\text{PP}})$, and $E_3 = E_q = - E_t = E_j/2$, with β' the inverse temperature.

Thus, our basic observation is that the site-exclusion effect between the hard squares and the coadsorbed point particles should be similar to that of introducing longer-range attractive interactions between hard-squares (assuming that these dominate the triplet repulsions). In particular, this interspecies repulsion may induce phase separation or demixing of the distribution of hard-squares into coexisting “condensed” and “dilute” phases. There are many other examples of this so-called entropy-driven phase separation (and of mapping dual species or decorated lattice-gas models to interacting single species models).
To confirm the above speculation, we apply the transfer matrix method, combined with finite-size scaling, which does reveal and allow precise determination of the tricritical point for phase separation (as well as other aspects of the phase diagram).9,10 Results are presented in Fig. 2, where we show the phase diagram in the \(\theta_{\text{HS}}-u_{pp} \) plane, where \(u_{pp} = z_{pp}/(1+z_{pp}) \) is the reduced activity for point particles. There is a tricritical point where the second-order \(c(2 \times 2) \) ordering transition becomes a first-order demixing transition. Using the method proposed by Bartelt \textit{et al.}10 we estimate the tricritical point at \(u_{pp}=0.780(2), \theta_{\text{HS}}=0.9427(3), \theta_{pp} =0.38(1), \text{and } \theta_{\text{HS}} =0.20(1) \), using strip widths up to 14. For \(u_{pp}<u_{pp}^{t} \), a line of order–disorder transitions in the hard-square distribution extends from the tricritical point down to the classic hard-square critical coverage of \(\theta_{\text{HS}} =0.3677 \) (see above), as \(u_{pp} \rightarrow 0 \).

It is natural to compare behavior in our mixed adlayer model (viewed as a single-species interacting hard-square model) against that of Baxter’s generalized hard-square model,12 which has just second NN attractions, \(E_2 \) (beyond NN exclusion). For the latter, various aspects of the phase diagram are known exactly, including the tricritical coverage of \(\theta^{t}_{\text{HS}} = (5-\sqrt{5})/10 = 0.2763 \). The “height” of the tricritical point satisfies \(\beta E_2 = 1.656 \) vs 3.03 for our model. Thus, the combined effect of the third NN, triplet, and quartet interactions in our model is to weaken phase separation (relative to pure attractive second NN interactions).

A similar binary hard core (““hard hexagons””) model on a triangular lattice has been studied recently.13,14 There, the main issue is the existence of a dense disordered (liquid) phase. As it can be seen from Fig. 2, the second-order transition (dotted) line connects to the tricritical point, supporting the claim of Ref. 14 that there is no gas–liquid phase transition. Numerical calculations show that the transition belongs to the Ising universality class, despite the many-particle interactions in the equivalent single-species model.

In summary, we have shown that repulsive interspecies interactions produce phase separation in a mixed adlayer model. This is consistent with experimental observations of island formation4 and theoretical determinations of CO–O repulsions.5 This behavior would also strongly influence chemical diffusion of the adspecies.15

This work is supported by Chemical Sciences, USDOE (BES), at Ames Laboratory which is operated by ISU under Contract No. W-7405-Eng-82.

\begin{thebibliography}{99}
\end{thebibliography}