Farm Energy: Managing swine ventilation controller settings to save energy

Jay D. Harmon
Iowa State University, jharmon@iastate.edu

Michael C. Brumm
Brumm Swine Consultancy, Inc.

Dana Petersen
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/extension_ag_pubs

Part of the Agricultural Education Commons, Bioresource and Agricultural Engineering Commons, and the Oil, Gas, and Energy Commons

Recommended Citation
Harmon, Jay D.; Brumm, Michael C.; and Petersen, Dana, "Farm Energy: Managing swine ventilation controller settings to save energy" (2012). Agriculture and Environment Extension Publications. 34.
http://lib.dr.iastate.edu/extension_ag_pubs/34

Iowa State University Extension and Outreach publications in the Iowa State University Digital Repository are made available for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current publications and information from Iowa State University Extension and Outreach, please visit http://www.extension.iastate.edu.
Managing swine ventilation controller settings to save energy

Ventilation is by far the largest source of heating energy loss in swine facilities. To maintain air quality, it is essential to provide proper minimum ventilation, but it is also important to avoid expelling excessive energy from the building. Most buildings use electronic controllers that activate fans, heaters, and cooling systems and are designed to interlock the equipment operation to avoid conflicts that waste energy. For instance, if fans and heaters are controlled separately, there can be occurrences when heaters are cycling at the same time the ventilation rate has increased, thereby wasting a great deal of heating fuel. Modern controllers prevent heater operation and ventilation above the minimum rate from occurring at the same time, but improper settings can still contribute significantly to excessive energy consumption.

Terminology

Before addressing how controllers work, it is important to define common terminology. Actual terminology varies among companies that manufacture controllers.

Setpoint (SP) is a basic temperature setting within the controller that is adjusted as animals grow and their thermal needs change. SP is sometimes called desired room temperature (DRT). When the room temperature is above the SP, ventilation increases to facilitate cooling. Likewise, for room temperatures below the SP, the heater may begin to cycle. Setpoint is not the average temperature, but establishes the line between heating and cooling. During periods of heating, such as during winter when pigs are small, the room temperature will remain a little below the SP. During periods of cooling, room temperature will be above the SP.

Heaters normally have two parameters, both set in the controller. Many controllers use a heater “on” and “off” temperature, while others use a **differential**, the number of degrees between when the heater comes on and when it goes off, and an **offset**, the number of degrees below the SP at which point the heater turns off. For example, if the SP was set to 68°F, the differential set to 1°F and the offset set to 1.5°F, the heater would start when the room temperature drops to 65.5°F (SP minus the sum of the differential and offset). The heater would then run until the room temperature reaches 66.5°F as shown in Figure 1.

Variable speed fans are used for most swine ventilation systems to provide minimum ventilation. Two settings are required for basic fan control. **Minimum speed** is a setting in the controller that represents the minimum ventilation rate. The value displayed by the controller may or may not correspond to the percentage of full speed air flow or motor RPM. Most variable speed fans move 50% of their rated airflow at approximately 65% of their full speed rpm. The minimum ventilation fans operate at the minimum speed any time the temperature is below the SP. Above the SP, the minimum ventilation fans gradually increase speed as the temperature rises. The number of degrees it takes the fan to reach 100% is called the **bandwidth** or **range**.

![Figure 1. Differential and offset.](image)
Potential problems

High energy consumption can be associated with improper heater settings. When the building temperature drops to the heater “on” temperature, the heater ignites and provides heat until the controller senses the heater “off” temperature. Because air is a fluid, it takes some time for the heat to circulate throughout the building, especially if heaters are oversized. This causes the temperature to continue to rise even after the heater has shut down. This is why the heater “off” temperature is set 1.5 to 2°F below the SP. When the heater shuts off at a temperature too near the SP, the room temperature may exceed the SP, which will cause the minimum ventilation fans to increase their speed. This effectively means that the heater has used fuel to heat the room and then the fans are exhausting that heated air to cool the room, because the temperature has crossed into the range of cooling temperatures. This can cause a tremendous waste of energy.

If the furnace size is relatively large compared to room or facility size, as observed by the furnace not running for long even in extreme cold conditions, the off temperature must be set lower relative to the SP to avoid the problem of exhausting heated air when the room temperature continues to rise as the rapidly heated air disperses throughout the building.

Impact of furnace offset on furnace run time

Offset changed at noon (blue vertical line)

Outside conditions – steady temperature (34°F) with fog/drizzle

Controller set point

Temperature 84°F

Furnace run time

Temperature

Furnace ON – 2.0
Furnace OFF – 1.0
Variable speed pit fan ramped up after every on-cycle of the furnace.

Room temperature dropped 0.5°F with lower offset. No ramping of variable speed pit fans.

Furnace ON – 2.0
Furnace OFF – 1.5

Figure 2. Impact of furnace offset on furnace run time. Courtesy of Brumm Swine Consultancy.

Prepared by Jay Harmon, professor, ag and biosystems engineering; Mike Brumm, professor emeritus in animal science at University of Nebraska-Lincoln and Brumm Swine Consultancy; and Dana Petersen, program coordinator, ISU Farm Energy Initiative; Iowa State University Extension and Outreach. Sponsored by the Iowa Energy Center.