2015

Dryland Malt Barley Yield and Quality in Response to Tillage, Cropping Sequence, and Nitrogen Fertilization

Upendra M. Sainju
United States Department of Agriculture

Andrew W. Lenssen
Iowa State University, alenssen@iastate.edu

Joy L. Barsotti
United States Department of Agriculture

Follow this and additional works at: http://lib.dr.iastate.edu/agron_conf

[Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons](http://lib.dr.iastate.edu/agron_conf)

Recommended Citation
http://lib.dr.iastate.edu/agron_conf/25

This Poster is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Conference Proceedings and Presentations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Introduction

- Malt barley requirements for malting purposes include sustained grain yield, ≤13.5% protein concentration, and ≥80% plump kernels.
- Effects of cultivars and N fertilization rates on malt barley yield and quality have been known.
- Little information is available about the effects of tillage and cropping sequence on malt barley yield and quality.
- Information is needed to reduce tillage intensity and N rates on malt barley production for reducing soil erosion, cost of N fertilization, and N leaching.

Objectives

- Evaluate the effects of tillage, cropping sequence, and N fertilization on dryland malt barley yield, protein concentration, kernel plumpness, and N-use efficiency from 2006 to 2011 in eastern Montana.
- Determine a management option that sustains malt barley yield and quality.

Treatments

Four tillage and cropping sequence (main plot):
- No-till continuous malt barley (NTCB)
- No-till malt barley-pea (NTB-P)
- No-till malt barley-fallow (NTB-F)
- Conventional till malt barley-fallow (CTB-F)

Four N fertilization rates: (split-plot)
- 0, 40, 80, and 120 kg N ha⁻¹

Randomized complete block with three replications

Location: Sidney, MT
Duration: 2006-2011

Conclusions

- Cropping sequence containing fallow increased malt barley yield compared to continuous cropping, especially during dry years.
- Cropping sequence containing fallow responded less to N fertilization in malt barley yield compared to continuous cropping (NTB-P>NTCB).
- Annualized malt barley grain yield is greater in continuous cropping than in crop-fallow.
- Tillage has no effect on malt barley grain yield, protein concentration, N-use efficiency, and kernel plumpness.
- Increased N fertilization rate increased malt barley grain yield and protein concentration, but reduced N-use efficiency and kernel plumpness.
- For sustaining malt barley yield and quality, no-till malt barley-pea with N rate between 40 to 80 kg N ha⁻¹ may be used. This management option also reduces the potentials of soil erosion, N leaching, N₂O emissions, and incidences of diseases, pests, and weeds compared to conventional till malt barley-fallow.