2015

Systematic Testing and Comparison of Deterministic and Stochastic Unit Commitment on an 8-Zone Test Case Based on ISO New England Data

Wanning Li
Iowa State University, wanningl@iastate.edu

Dheepak Krishnamurthy
Iowa State University

Leigh Tesfatsion
Iowa State University, tesfatsi@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/econ_las_conf

Part of the Growth and Development Commons, Industrial Organization Commons, and the Power and Energy Commons

Recommended Citation
http://lib.dr.iastate.edu/econ_las_conf/50

This Poster is brought to you for free and open access by the Economics at Iowa State University Digital Repository. It has been accepted for inclusion in Economics Presentations, Posters and Proceedings by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Systematic Testing and Comparison of Deterministic and Stochastic Unit Commitment by means of an 8-Zone Test System Based on ISO New England Data

Wanning Li, Dheepak Krishnamurthy, Leigh Tesfatsion, Iowa State University
{wanningl, dheepakk, tesfatsi}@iastate.edu

Introduction
Stochastic Security-Constrained Unit Commitment (SCUC) is an important tool for handling uncertainties introduced by increasing penetration of variable energy resources (e.g., wind, solar). The goal of this ARPA-E-supported project has been to develop an empirically-grounded test system permitting systematic comparison of Stochastic SCUC and Deterministic SCUC under a wide variety of possible system conditions, including wind power penetration levels, reserve requirement (RR) levels for deterministic SCUC, and months of the year. An agent-based method is developed and used to model wind power penetration. Our results demonstrate that the average cost saving resulting from a switch from Deterministic SCUC to Stochastic SCUC under an increasing RR level has a U-shape, with least (possibly negative) cost saving occurring at the RR turning point of the U-shape.

8-Zone Test System Based on ISO New England Data
The 8-zone test system developed by our group in Iowa State University is based on structural attributes and data from ISO-NE; see [1] for details.

Key features:
1. Open-source
2. Power market-oriented test system
3. Based on empirical conditions of an actual energy region
4. Small-scale test system
5. Permits users to configure attributes for generators, load-serving entities, the transmission grid, and the system operator.

Wind Power Penetration Modeling
Rather than simply scale up or down the historical wind, we propose an agent-based method to model wind power penetration. Specifically, we increase wind penetration level by queue build-out.

Wiring Data Source:
- Eastern Wind Integration and Transmission Study (EWITS) data set by NREL
- Provides 3 years of modeled time series data at a high wind penetration level
- New England Wind Integration Study (NEWIS) by ISO-NE
- Provides wind installation built-out queue with locations and capacities of planned wind power plants

Sensitivity Design

- Tested Settings for Treatment Factors
 1. Stochastic vs. deterministic SCUC
 2. Reserve requirement (RR) level for deterministic SCUC as % of peak net load
 3. Wind penetration (WP) level as % of energy demand: 2%, 10%, 20%
 4. Month of the year (different wind volatility levels): January, May, July

- Performance Metric: Total Cost Saving
 - Total Cost ($) = NoLoadCost + StartUpCost + ShutDownCost + DispatchCost
 - Total Cost Saving (%) = (TotalCost(Det) - TotalCost(Sto)) / TotalCost(Det) x 100%
 - TotalCost(Det) is deterministic total cost
 - TotalCost(Sto) is stochastic total cost

Simulation Results
- For each month M and wind penetration WP, the plot of Average Total Cost Saving (Avg. TCS) vs. Reserve Requirement (RR) has a U-shape with a turning point RR* at approximately RR = 30%
 - For WP = 2%, the RR turning point is RR* = 25%.
 - For WP = 10%, the RR turning point is RR* = 30%.
 - For WP = 20%, the RR turning point is RR* = 35%.
- Reason for positive correlation between WP and RR*: Higher WP leads to more net load uncertainty, resulting in higher reserve needs for deterministic SCUC