Toward Sequencing Cotton (Gossypium) Genomes

Z. Jeffrey Chen
University of Texas at Austin

Brian Eric Scheffler
United States Department of Agriculture

Elizabeth Dennis
CSIRO Plant Industry

Barbara A. Triplett
United States Department of Agriculture

Tianzhen Zhang
Nanjing Agricultural University

Follow this and additional works at: http://lib.dr.iastate.edu/eeob_ag_pubs

Part of the [Ecology and Evolutionary Biology Commons](http://lib.dr.iastate.edu/eeob_ag_pubs), [Genomics Commons](http://lib.dr.iastate.edu/eeob_ag_pubs), and the [Plant Breeding and Genetics Commons](http://lib.dr.iastate.edu/eeob_ag_pubs)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/eeob_ag_pubs/45. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Toward Sequencing Cotton (Gossypium) Genomes

Abstract
Despite rapidly decreasing costs and innovative technologies, sequencing of angiosperm genomes is not yet undertaken lightly. Generating larger amounts of sequence data more quickly does not address the difficulties of sequencing and assembling complex genomes de novo. The cotton (Gossypium spp.) genomes represent a challenging case. To this end, a coalition of cotton genome scientists has developed a strategy for sequencing the cotton genomes, which will vastly expand opportunities for cotton research and improvement worldwide.

Keywords
Sequencing, angiosperm genomes, cotton

Disciplines
Ecology and Evolutionary Biology | Genomics | Plant Breeding and Genetics

Comments

Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Authors

This letter to the editor is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/eeob_ag_pubs/45
Toward Sequencing Cotton (*Gossypium*) Genomes

Despite rapidly decreasing costs and innovative technologies, sequencing of angiosperm genomes is not yet undertaken lightly. Generating larger amounts of sequence data more quickly does not address the difficulties of sequencing and assembling complex genomes de novo. The cotton (*Gossypium* spp.) genomes represent a challenging case. To this end, a coalition of cotton genome scientists has developed a strategy for sequencing the cotton genomes, which will vastly expand opportunities for cotton research and improvement worldwide.

WHY SEQUENCE COTTON GENOMES?

Cotton is the world’s most important natural textile fiber (Fig. 1A) and a significant oilseed crop. The seed is an important source of feed, foodstuff, and oil. World consumption of cotton fiber is approximately 115 million bales or approximately 27 million metric tons per year (National Cotton Council, http://www.cotton.org, 2006). Genetic improvement of fiber production and processing will ensure that this natural renewable product will be competitive with petroleum-derived synthetic fibers. Moreover, modifying cottonseed for food and feed could profoundly enhance the nutrition and livelihoods of millions of people in food-challenged economies.

Cotton production provides income for approximately 100 million families, and approximately 150 countries are involved in cotton import and export. Its economic impact is estimated to be approximately $500 billion/year worldwide. China is the largest producer and consumer of raw cotton, but more than 80 countries, including Australia, some African countries, India, Pakistan, the United States, Mexico, and Uzbekistan, also produce cotton. The United States is the second largest producer, and grows cotton worth approximately $6 billion/year for fiber and approximately $1 billion/year for cottonseed oil and meal. Cotton is a major economic driver for some developing countries, like Uzbekistan, which annually produces approximately 4 million tons of raw cotton and exports fiber worth approximately $900 million.

Cotton fiber is an outstanding model for the study of plant cell elongation and cell wall and cellulose biosynthesis (Kim and Triplett, 2001). Each seed has approximately 25,000 cotton fibers, each of which is a single and greatly elongated cell from the epidermal layer of the ovule (Fig. 1B). The fiber is composed of nearly pure cellulose, the largest component of plant biomass. Compared to lignin, cellulose is easily convertible to biofuels. Translational genomics of cotton fiber and cellulose may lead to the improvement of diverse biomass crops.

The genus *Gossypium* includes approximately 45 diploid (2n = 2x = 26) and five tetraploid (2n = 4x = 52) species, all exhibiting disomic patterns of inheritance. Diploid species (2n = 26) fall into eight genomic groups (A–G, and K). The African clade, comprising the A, B, E, and F genomes (Wendel and Cronn, 2003), occurs naturally in Africa and Asia, while the D genome clade is indigenous to the Americas. A third diploid clade, including C, G, and K, is found in Australia. All 52 chromosome species, including *Gossypium herbaceum* and *Gossypium barbadense*, are classic natural allotetraploids that arose in the New World from interspecific hybridization between an A genome-like ancestral African species and a D genome-like American species. The closet extant relatives of the original tetraploid progenitors are the A genome species *Gossypium herbaceum* (A1) and *Gossypium arboreum* (A2) and the D genome species *Gossypium raimondii* (D5) ‘Ulbrich’ (Brubaker et al., 1999). Polyploidization is estimated to have occurred 1 to 2 million years ago (Wendel and Cronn, 2003), giving rise to five extant allotetraploid species. Interestingly, the A genome species produce spinnable fiber and are cultivated on a limited scale, whereas the D genome species do not (Applequist et al., 2001). More than 95% of the annual cotton crop worldwide is *G. hirsutum*, Upland or American cotton, and the extra-long staple or Pima cotton (*G. barbadense*) accounts for less than 2% (National Cotton Council, http://www.cotton.org, 2006). Understanding the contribution of the A and D subgenomes to gene expression in the allotetraploids may facilitate improving fiber traits (Jiang et al., 1998; Saha et al., 2006; Yang et al., 2006).

Decoding cotton genomes will be a foundation for improving understanding of the functional and agronomic significance of polyploidy and genome size variation within the *Gossypium* genus. The haploid genome sizes are estimated to be approximately 880 Mb for *G. raimondii* ‘Ulbrich’, approximately 1.75 Gb for *G. arboreum*, and approximately 2.5 Gb for *G. hirsutum* (Hendrix and Stewart, 2005). Variation in DNA content in the diploid species reflects increases and decreases in copy numbers of various repeat families (Zhao et al., 1998), especially retrotransposon-like elements (Hawkins et al., 2006). DNA content of the allotetraploids is approximately the sum of the A and D genome progenitors, and nearly all of the approximately 22,000 amplified fragment length polymorphism fragments surveyed are additive in the allotetraploids (Liu et al., 2001). This suggests a role of genetic and epigenetic mechanisms for gene expression in phenotypic variation and selection of allotetraploid species (Jiang et al., 2006).
WHAT RESOURCES ARE AVAILABLE?

Genomic resources such as bacterial artificial chromosomes (BACs), ESTs, linkage maps, and integrated genetic and physical maps provide landmarks for sequence analysis and assembly.

Linkage maps in tetraploid cotton have been most densely populated by analysis of interspecific G. hirsutum × G. barbadense F₂ families (Reinisch et al., 1994; Rong et al., 2004) and backcross lines (Lacape et al., 2005; Guo et al., 2007) due to low levels of DNA polymorphism within cotton species. Mapping populations have also been developed for G. hirsutum × Gossypium tomentosum F₂ (Waghmare et al., 2005) and Gossypium mustelinum × G. hirsutum (P. Chee and A. Paterson, unpublished data). Molecular marker linkage groups were localized and oriented with various interspecific hypoaneuploid F₁ hybrids available for most chromosomes, and elsewhere by in situ hybridization (Hanson et al., 1995; Saha et al., 2006; Wang et al., 2006; Ji et al., 2007). Synteny and locus order were also determined by wide-cross whole-genome radiation hybrid mapping, a method complementary to other forms of cotton genome mapping (Gao et al., 2006).

At least a dozen genetic maps of crosses between diverse cotton species and genotypes are available, most made to map specific traits and quantitative trait loci (QTLs). Some of these maps collectively include approximately 5,000 DNA markers (approximately 3,300 restriction fragment length polymorphisms, approximately 700 amplified fragment length polymorphisms, approximately 1,000 simple sequence repeats, and approximately 100 single nucleotide polymorphisms). In addition, sequence-tagged site-based maps consisting of 2,584 loci at 1.72-cM (approximately 600 kb) intervals in tetraploids (AD genomes), 1,014 loci at 1.42-cM (approximately 600 kb) intervals in diploids (D genome; Rong et al., 2004, 2005), and an EST-simple sequence repeat-based genetic map of 1,710 loci at 1.92-cM intervals in tetraploids (AD genomes; Guo et al., 2007) are available. There is a high degree of co-linearity among the respective genome types (Rong et al., 2005).

Of particular long-term value are permanent recombinant inbred lines (RILs) and chromosome substitution lines. RILs have already begun to contribute to QTL definition, e.g. for a G. hirsutum × G. barbadense cross (Frelichowski et al., 2006) and intraspecific crosses within G. hirsutum (Ulloa et al., 2005; Abdurakhmonov et al., 2007; Shen et al., 2007). Near-isogenic disomic substitution lines of G. hirsutum enable the localization of net phenotypic effects. Moreover, chromosome-specific RILs enable high-resolution QTL definition and mapping (Stelly et al., 2005).

Reference maps have incorporated diverse types and sources of DNA markers. Jean-Marc Lacape and his colleagues have integrated linkage maps developed by researchers in China (T. Zhang), France (J.M. Lacape), and the United States (A. Paterson and M. Ulloa) into TropGENE-DB (http://tropgenedb.cirad.fr/en/cotton.html) using a CMap comparative map viewer (Nguyen et al., 2004). A similar map viewer has been implemented in the CottonDB (http://cottondb.org) and the Cotton Microsatellite Database (http://www.cottonmarker.org) that contains approximately 8,000 microsatellites (Blenda et al., 2006). The further development of comprehensive linkage maps will be used to anchor and assemble genomic sequences.

BAC libraries have been developed for several G. hirsutum cultivars (‘0–613-2R’, ‘Acala Maxxa’, ‘Auburn 623’, ‘Tampcot HQ95’, and ‘TM-1’), G. barbadense (‘Pima S6’), two G. arboreum strains (AKA8401 and Jinglinzhongmian), G. raimondii, Gossypium longicalyx, and an outgroup (Gossypiodes kirkii). A total of 10 genome equivalents of G. raimondii BACs has been fingerprinted using standard procedures (Marra et al., 1997). All genetically mapped probes have been incorporated into the fingerprint assembly using the overlapping oligonucleotide hybridization method (Cai et al., 1998). The assembly will be publicly available via a WebFPC site and incorporated into the existing BACMan resource at the Plant Genome Mapping Laboratory (www.plantgenome.uga.edu). A G. hirsutum L. ‘TM-1’ library has been used to develop integrated genetic and physical maps (R. Kohel, J. Yu, and

Figure 1. Cotton bolls at maturity (A) and cotton fibers under electron microscope (B). Photos courtesy of Mike Dougherty from the National Cotton Council (A) and Barbara Triplet (B).

1998; Wendel, 2000; Adams et al., 2003; Yang et al., 2006; Chen, 2007).
T. Zhang, unpublished data). A G. hirsutum L. ‘0-613-2R’ library has been successfully used to locate the restorer of fertility gene in a 100-kb region (Yin et al., 2006) and to assign linkage groups to identified chromosomes using BAC-fluorescence in situ hybridization (FISH; Wang et al., 2006).

As of July 18, 2007, 356,889 Gossypium sequences were in GenBank, including 40,069 ESTs from G. arboresum (A), 67,098 from G. raimondii (D), 232,006 from G. hirsutum (AD tetraploid), and a few from other Gossypium members (Arpat et al., 2004; Udall et al., 2006; Yang et al., 2006; Taliercio and Boykin, 2007). Among these ESTs, many are from developing fiber and are enriched in putative MYB and WRKY transcription factors and phytohormone regulators (Yang et al., 2006). Transcription factors in these families are known to be important in the development of Arabidopsis (Arabidopsis thaliana) leaf trichomes, and phytohormonal effects on fiber cell development in immature cotton ovules cultured in vitro are well documented (Beasley and Ting, 1974). Moreover, A subgenome ESTs of all functional classifications are dramatically enriched in G. hirsutum fiber (Yang et al., 2006), a result consistent with the production of long lint fibers in A genome species. Some ESTs have been used to develop sequence-specific markers in breeding and to construct microarrays, leading to the identification of many candidate genes involved in fiber cell initiation and elongation (Arpat et al., 2004; Lee et al., 2006; Shi et al., 2006; Wu et al., 2006; Udall et al., 2007).

The Malvales (including cotton) are the nearest relative to Arabidopsis outside of the Brassicales for which detailed genetic and physical maps have been described (Bowers et al., 2003). Comparative analyses reveal a considerable degree of synteny/collinearity between the ancestral cotton and Arabidopsis genomes. A total of 1,738 (62%) sequenced loci in cotton had matches in Arabidopsis (Rong et al., 2005). Gaining access to the unique features that distinguish cotton from other plants both as an economic crop and a botanical model might benefit from translational genomics, leveraging of structural and functional information from Arabidopsis.

WHICH SEQUENCING STRATEGIES ARE BEST?

A comprehensive strategy needs to consider present needs along with long-term goals in relation to economics, technology, and priorities. A strong case can be made for complete sequencing of one or more representatives of each Gossypium genome group, A, B, C, D, E, F, G, K, and a tetraploid-derived AD (n = 26) genome (Paterson, 2006). Continuing progress in sequencing throughput and cost reduction will render this goal increasingly feasible and desirable.

Sequencing representatives from each diploid clade will be important for molecular dissection of evolutionary patterns and biological phenomena, including the genomic and morphological diversity that has permitted species within the genus to adapt to a wide range of ecosystems in warmer and arid regions of the world. Sequences from A and D genome diploid species will aid tetraploid AD genome sequence assembly and could prove to be invaluable for revealing differences in gene content and expression patterns across the ploidy levels and for providing insight into polyploid genome evolution. Although there is an approximately 3-fold variation in genome size among the diploids, the high degree of conservation of gene order at the macro level between diploids and tetraploids (Brubaker et al., 1999; Rong et al., 2004; Desai et al., 2006) suggests that the vast majority of sequence data from diploids will extrapolate directly to tetraploids. Sequencing an elite G. hirsutum genome, AD, will provide the ultimate reference and resource for application-oriented structural, functional, and bioinformatic needs for the species that accounts for >95% of world cotton production. Sequencing an elite G. arboresum or G. herbaceae genome will provide valuable data on fiber genes. Comparisons of four species across two ploidy levels, including A1, A2, D5, and AD tetraploid subgenomes, will provide clues as to how polyploidy and domestication “interact.” Parallel comparisons between domesticated and nondomesticated forms of the A and AD genome species will shed light on the effects of artificial versus natural selection.

Based on these considerations, one can envision multiple and parallel approaches to reveal genome diversity and complete genome information of Gossypium genomes. Additional ESTs should be sequenced from other diploid (e.g., C, G, and K genomes) and tetraploid (e.g., G. barbadense, AD) clades and in late fiber development stages such as secondary wall biosynthesis (Haigler et al., 2005). Sequencing using gene enrichment techniques such as methylation filtration and C5t-based cloning that appear to offer complementary coverage of the low-copy DNA will generate novel genomic sequences that are absent in EST collections. A pilot study in methylation filtration comparing G. raimondii, G. arboresum, G. hirsutum, and G. barbadense is under way (B.E. Scheffler, S. Saha, and Orion Genomics, unpublished data).

The whole-genome shotgun sequence of the smallest Gossypium genome, G. raimondii (approximately 880 Mb), will provide fundamental information about gene content and organization. The U.S. Department of Energy Joint Genome Institutes (http://www.jgi.doe.gov/) has selected G. raimondii for a pilot study for shotgun sequencing at 0.5× coverage to better define the genome and establish a workable strategy for its complete sequencing.

A partially or fully sequenced G. raimondii genome will establish the critical initial template for characterizing the spectrum of diversity among the eight Gossypium genome types and three polyploid clades (Wendel and Cronn, 2003). A survey of approximately 100 of the most abundant repetitive families in the tetraploid genome showed only four to be abundant in the D genome but rare or absent in the A genome (Zhao et al., 1998), which diverged from the D genome.
of *G. raimondii* about 5 to 10 million years ago (Senchina et al., 2003). Thus, most high-copy repetitive DNA families in the D genome are at least 5 to 10 million years old and likely to be amenable to assembly by a whole-genome shotgun approach.

A BAC-based AD genome sequence may offer superior opportunities to elucidate the types and frequencies of changes that distinguish polyploid from diploid cottons. The process could be greatly enhanced by using the finished genome sequence of a diploid species as a template and guide. Intergenomic concerted evolution and the presence of recently amplified repetitive DNA families would be problematic for a whole-genome shotgun approach. A reasonable approach is to establish minimum tiling path of fingerprinted contigs of *G. hirsutum* homoeologous chromosomes. This goal can be achieved by developing integrated homoeologous chromosome maps that include anchored DNA markers in linkage maps and BAC-end sequences in physical maps that can be further validated by radiation hybrid mapping and/or BAC-FISH (Hanson et al., 1995; Wang et al., 2006). FISH of landed BACs indicated that homoeologous segments were readily detectable by BAC-FISH for low-copy probes and that they seemed amenable to differentiation on the basis of FISH signal strength (Wang et al., 2007). Large duplicated segments have been reported within individual corresponding homoeologous chromosomes, suggesting ancient or recent genome expansion in cotton genomes (Rong et al., 2005; Wang et al., 2007). It will be prudent to sequence and assemble representative homoeologous BACs and/or a few pairs of homoeologous chromosomes prior to large-scale sequencing of *G. hirsutum* tetraploid genomes.

WHAT ARE THE GOALS?

The cotton community and industry are cooperatively developing workshops and communication methods for planning, coordinating, and executing sequencing and post-sequencing activities. The key questions under consideration are: (1) which species should we sequence; and (2) which techniques should be used for each genome? In the long term, a singularly important goal will be to establish the complete genome sequence of the most widely cultivated cotton, i.e. *G. hirsutum*. Given its genomic redundancies, large size (approximately 2.5 Gb), polyploid nature, and other complexities, we anticipate a need to experimentally assess potential approaches that range from autonomous to heavily reliant on sequence from related genomes, e.g. *G. raimondii* and perhaps *G. herbaceum* or *G. arboreum*.

Toward this long-term goal, we envision the following specific actions.

1. Whole-genome shotgun sequencing of *G. raimondii*, a probable ancestor of cultivated cottons and among the smallest *Gossypium* genomes, to provide fundamental information about gene content and organization.

2. Comparative sequencing of corresponding segments of tetraploid *G. hirsutum* to reveal the technical obstacles likely to be encountered during complete sequencing.

3. Develop and implement a strategy to deliver high-quality sequence of *G. hirsutum*. This may very well require establishment of a minimum tiling path of finger-printed contigs of *G. hirsutum* homoeologous chromosomes.

4. Develop bioinformatic and database tools to assemble, analyze, and make the information usable to the cotton community.

Future characterization and utilization of sequence information should integrate functional and structural genomic resources at the molecular and in silico levels, sequence full-length cDNAs for genome annotation and expression assays, perform detailed annotation of the cotton genome sequence to support gene discovery and map-based cloning in this species, implement a large-scale platform for identifying DNA sequence diversity (single nucleotide polymorphisms and genome-specific polymorphisms), facilitate high-resolution whole-genome association studies, develop genomic tiling arrays to support gene expression and epigenomic analysis of biological and agronomic traits, and sequence and annotate small RNAs and microRNAs and identify their targets.

WHAT ARE THE CHALLENGES IN COTTON GENOME SEQUENCING AND GENOMICS?

To build and take full advantage of comprehensive cotton genomic resources, the most important factors to consider are fund raising, effort coordination, data dissemination and management, and data analysis and utilization. To coordinate genomic research in cotton, the International Cotton Genome Initiative (http://icgi.tamu.edu/) was established in 2000 with a mission to increase knowledge of the structure and function of the cotton genome for the benefit of the global community. A single-community Web site will be identified to establish a newsgroup list-server that will allow researchers to express and discuss their ideas about cotton genome sequencing and genomic research.

The amount of data generated from various sequencing projects will be extremely large and difficult to comprehend for many prospective end users, so it is essential to develop a data management system that can facilitate access and utilization of genomic and sequence data. In addition to the CMap and Cotton Microsatellite databases (see above), CottonDB (http://cottondb.org) provides genomic, genetic, and taxonomic information, including germplasm, markers, genetic and physical maps, trait studies, sequences, and bibliographic citations. The Cotton Portal (http://gossypium.info) offers the community a single port of entry to participating Cotton Web resources. One participating resource, the Cotton Diversity Database
CONCLUDING REMARKS

Sequenced cotton genomes will ultimately stimulate fundamental research on genome evolution, polyploidization and associated diploidization, gene expression, cell differentiation and development, cellulose synthesis, cell growth, molecular determinants of cell wall biogenesis, and epigenomics. Practical ramifications will include improvement of biological processes key to safe and sustainable production of high-yielding and high-quality fiber, seed, and biomass crops as well as expanded use of cotton germplasm and products. These advances will be underpinned by practical improvement in elements key to all of agriculture, e.g., improvement of yield, water-use efficiency, abiotic and biotic stress tolerance/resistance, and reduction of fertilizer and pesticide requirements. While some objectives are more tangible than others, the economic, health, and ecological (and, thus, societal) impacts are truly compelling on both national and international scales. The international community is committed, organized, and convinced of the immediate need and value of sequencing cotton genomes.

ACKNOWLEDGMENTS

We thank Joe Ecker (Salk Institute) for moderating a cotton genome sequencing white paper discussion forum and for insightful and constructive comments received from the members of the International Cotton Genome Initiative. We thank members of the cotton genomics and breeding community for their input and apologize for not citing many enlightening papers owing to space limitations. Support for cotton research is provided by grants from the National Science Foundation, U.S. Department of Agriculture, Cotton Inc., National Science Foundation of China, and additional state support groups and funding agencies in Australia, Belgium, China, India, Pakistan, the United States, Uzbekistan, and represented countries. The Cotton Genome Sequencing White Paper can be found at http://algodon.tamu.edu/sequencing/docs/2WhitePaper12_11_2006.pdf.

Received August 20, 2007; accepted September 10, 2007; published December 6, 2007.

LITERATURE CITED

Copyright © 2007 American Society of Plant Biologists. All rights reserved.

Z. Jeffrey Chen

Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712

Brian E. Scheffler

U.S. Department of Agriculture Agricultural Research Service, Catfish Genetics Research Unit, Mid South Area Genomics Facility, Stoneville, MS 38776–0038

Elizabeth Dennis

Commonwealth Scientific and Industrial Research Organization, Plant Industry, Black Mountain, Canberra, Australian Capital Territory 2601, Australia
Sequencing Cotton Genomes

Barbara A. Triplett
U.S. Department of Agriculture Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124

Tianzhen Zhang and Wangzhen Guo
National Key Laboratory of Crop Genetics and Germplasm Enhancement and Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China

Xiaoya Chen
Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China

David M. Stelly
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843

Pablo D. Rabinowicz
Institute for Genome Sciences and Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201

Christopher D. Town
J. Craig Venter Institute, Rockville, MD 20850

Tony Arioli and Curt Brubaker
Bayer Bioscience NV, B–9052 Gent, Belgium

Roy G. Cantrell
Monsanto Company, St. Louis, MO 63167

Jean-Marc Lacape
CIRAD, UMR-DAP, TA A-96/03, 34398, Montpellier cedex 5, France

Mauricio Ulloa
U.S. Department of Agriculture Agricultural Research Service, Western Integrated Cropping Systems Research Unit, Shafter, CA 93263

Peng Chee
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793

Alan R. Gingle
Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602

Candace H. Haigler
Department of Crop Science and Department of Plant Biology, North Carolina State University, Raleigh, NC 27695–7620

Richard Percy
U.S. Department of Agriculture Agricultural Research Service, Maricopa Agricultural Center, Maricopa, AZ 85239–3101

Sukumar Saha
U.S. Department of Agriculture Agricultural Research Service, Genetics and Precision Agriculture Unit, Mississippi State, MS 39762

Thea Wilkins and Robert J. Wright
Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409–3121

Allen Van Deynze
Seed Biotechnology Center, University of California, Davis, CA 95616

Yuxian Zhu
College of Life Sciences, Peking University, Beijing 100871, China

Shuxun Yu
Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455112, China