4-2010

Carbon Dynamics in the Tropics

Ann E. Russell
Iowa State University, arussell@iastate.edu

James W. Raich
Iowa State University, jraich@iastate.edu

Ricardo Bedoya Arrieta
Organization for Tropical Studies

Oscar Valverde-Barrantes
Kent State University - Kent Campus

Eugenio González
Texas A & M University - San Isidro de Peñas Blancas

Follow this and additional works at: http://lib.dr.iastate.edu/nrem_pubs

Part of the _Ecology and Evolutionary Biology Commons_, _Natural Resources and Conservation Commons_, and the _Natural Resources Management and Policy Commons_

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/nrem_pubs/51. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Natural Resource Ecology and Management at Iowa State University Digital Repository. It has been accepted for inclusion in Natural Resource Ecology and Management Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Carbon Dynamics in the Tropics

Abstract
Native tree species differed in their effects on above- and belowground carbon stocks and fluxes in these 16-yr-old experimental plantations at La Selva Biological Station, Costa Rica. Results were explained primarily by differences in growth rates, C allocation, turnover rates, and tissue chemistry. In this experiment established in an abandoned pasture, all five tree species had attained biomass amounts similar to that of nearby mature forest, whereas the abandoned pasture control remained in arrested succession. Carbon sequestration averaged 5.2 Mg·ha⁻¹·yr⁻¹ across species, close to the annual per capita fossil-fuel use in the United States of 5.3 Mg C.

Keywords
native tree species, carbon stock, fluxes, carbon sequestration, botany, forestry, biogeochemistry

Disciplines
Ecology and Evolutionary Biology | Natural Resources and Conservation | Natural Resources Management and Policy

Comments
This article is from Bulletin of the Ecological Society of America 91: 224, doi:10.1890/0012-9623-91.2.224. Posted with permission.

Rights
Copyright is by the Ecological Society of America.
Photo Gallery

CARBON DYNAMICS IN THE TROPICS

Photo 1. Landscape view of abandoned pasture in 1987 at La Selva Biological Station, Costa Rica. This land had been deforested and then grazed for ~30 years.

Native tree species differed in their effects on above- and belowground carbon stocks and fluxes in these 16-yr-old experimental plantations at La Selva Biological Station, Costa Rica. Results were explained primarily by differences in growth rates, C allocation, turnover rates, and tissue chemistry. In this experiment established in an abandoned pasture, all five tree species had attained biomass amounts similar to that of nearby mature forest, whereas the abandoned pasture control remained in arrested succession. Carbon sequestration averaged 5.2 Mg·ha⁻¹·yr⁻¹ across species, close to the annual per capita fossil-fuel use in the United States of 5.3 Mg C.

Historical Photos 1 and 2 were found abandoned in a box at La Selva Biological Station, with no identification of the photographer’s name. It was determined that these photos were taken in 1987, based on planting records and knowledge of the landscape in this area. Photo 3 was taken by Ann Russell.