7-1-2012

Understanding successful resistance management: The European corn borer and Bt corn in the United States

Blair D. Siegfried
University of Nebraska–Lincoln

Richard L. Hellmich
Iowa State University, richard.hellmich@ars.usda.gov

Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs

Part of the Agricultural Science Commons, Agriculture Commons, Entomology Commons, Genetics Commons, and the Plant Breeding and Genetics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ent_pubs/61. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Understanding successful resistance management: The European corn borer and Bt corn in the United States

Abstract
The European corn borer, *Ostrinia nubilalis* Hübner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn hybrids that express toxins from *Bacillus thuringiensis*, referred to as Bt corn, has suppressed corn borer populations and reduced the pest status of this insect in parts of the Corn Belt. Continued suppression of this pest, however, will depend on managing potential resistance to Bt corn, currently through the high-dose refuge (HDR) strategy. In this review, we describe what has been learned with regard to *O. nubilalis* resistance to Bt toxins either through laboratory selection experiments or isolation of resistance from field populations. We also describe the essential components of the HDR strategy as they relate to *O. nubilalis* biology and ecology. Additionally, recent developments in insect resistance management (IRM) specific to *O. nubilalis* that may affect the continued sustainability of this technology are considered.

Disciplines
Agricultural Science | Agriculture | Entomology | Genetics | Plant Breeding and Genetics

Comments

Rights
This article is available open access under a CC BY-NC license.
The European corn borer, *Ostrinia nubilalis* Hübnér (Lepidoptera: Crambidae), is an economically important insect pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn hybrids that express toxins from *Bacillus thuringiensis*, referred to as Bt corn, has suppressed corn borer populations and reduced the pest status of this insect in parts of the Corn Belt. Continued suppression of this pest, however, will depend on managing potential resistance to Bt corn, currently through the high-dose refuge (HDR) strategy. In this review, we describe what has been learned with regard to *O. nubilalis* resistance to Bt toxins either through laboratory selection experiments or isolation of resistance from field populations. We also describe the essential components of the HDR strategy as they relate to *O. nubilalis* biology and ecology. Additionally, recent developments in insect resistance management (IRM) specific to *O. nubilalis* that may affect the continued sustainability of this technology are considered.

Introduction

The European corn borer, *Ostrinia nubilalis* Hübnér (Lepidoptera: Crambidae), is an economically important insect pest of corn (*Zea mays* L.) and other crops in North America and Europe with yield losses up to 20% caused by larval feeding. Damage from larval infestations of corn was estimated to exceed US $1 billion annually in yield losses and control expenditures.1 It is a cosmopolitan species, originally distributed in Europe and from there introduced into America, where it has now spread to most of Southern Canada and the US east of the Rocky Mountains. Larval feeding on corn plants results in physiological disruption of plant growth and structural damage to the corn plant. Although capable of developing on > 200 herbaceous plant species, *O. nubilalis* has a strong preference for corn as a host plant.2 Chemical insecticides often are not effective against *O. nubilalis* infestations because once the larval tunnel into the corn stalk they are protected from exposure; thus there is a narrow application window for growers. European corn borers typically have one or two generations per year, although three or four generations can occur in some areas of its distribution.3

Transgenic corn plants that express insecticidal proteins from *Bacillus thuringiensis* (Berliner) (Bt) have become an effective method of protecting corn plants from damage by *O. nubilalis* and have been widely adopted throughout the US corn belt.4,5 Transgenic corn hybrids expressing either the Cry1Ab or Cry1F insecticidal proteins from *B. thuringiensis* have controlled *O. nubilalis* populations in North America since 1996 and 2002 respectively. In the US, approximately 65% of the total 37.3 million ha of maize in 2011 was planted with Bt hybrids targeting European corn borer, corn rootworm (*Diabrotica spp*) or stacked events that target both pests,4 exceeding 79% in Iowa and South Dakota with likely higher levels of adoption in some counties. Widespread adoption of Bt corn has resulted in an area-wide suppression of *O. nubilalis* populations, which has economically benefitted both growers of Bt and non-Bt corn.6 The first pyramided Bt corn hybrids express a chimeric gene consisting of both Cry1Ab and Cry1F domains and co-expressed with a second lepidopteran active protein, Cry2Ab2. These corn hybrids were commercially available in 2009. The chimeric protein, referred to as Cry1A.105, has four domains that are derived from corresponding domains from Cry1Ab, Cry1Ac and Cry1F proteins: Domains I and H (identical to Cry1Ab and Cry1Ac), Domain III (almost identical to the Cry1F protein) and the C-terminal Domain (identical to Cry1Ac protein).7

The season-long and high expression levels of Bt proteins in transgenic corn and its widespread adoption are thought to impose considerable selection pressure for resistance on target pest populations of *O. nubilalis*, and the risk for resistance evolution is perceived to be high. As a consequence, insect resistance management (IRM) strategies designed to minimize selection pressures and prevent or at least delay resistance evolution have been considered essential to maintaining the viability of transgenic Bt plants for control and management of the European corn borer. Because plant-incorporated protectants (PIPs) involving Bt proteins are recognized as a safe and valuable method of insect pest control, the US Environmental Protection Agency (USEPA) has imposed management requirements on registered PIPs to prevent insects from developing resistance.8
The IRM strategy that has received the most attention from both industry and regulatory agencies involves the “high dose/refuge” (HDR) concept. With this approach, insects that feed on the Bt corn are exposed to an extremely high dose of toxin. This is complemented with a refuge, usually non-Bt corn, that provides a population of susceptible insects that are not exposed to Bt toxin. Consequently, rare resistant moths that develop on Bt corn, instead of mating with each other, mate with individuals among the overwhelming number of susceptible moths from the refuge. The high dose is intended to reduce the fitness of heterozygotes such that inheritance of resistance is functionally recessive. This process essentially dilutes resistance genes and maintains a population of susceptible insects.

In spite of what has been perceived as intense selective pressures and a likelihood for resistance evolution, O. nubilalis populations apparently remain susceptible to all the currently deployed Cry toxins that have been registered as PIPs by the USEPA. While it is not possible to determine whether this lack of resistance is a consequence of regulatory IRM mandates, the predictions from initial theoretical models about Bt susceptibility and the HDR concept appear to have been realized. Moreover, in other insects when there has been an apparent increase in resistance allele frequencies among field populations of lepidopteran pests targeted by Bt corn or where there has been documented field control failures, certain aspects of the pest’s biology or attributes of the technology do not comply with the assumptions of the high dose/refuges concept.

In this review, we describe what has been learned with regard to O. nubilalis resistance to Bt toxins either through laboratory selections or isolation of resistance from field populations. We also describe the essential components of the HDR strategy as they relate to O. nubilalis biology and ecology. Additionally, recent developments in IRM specific to O. nubilalis that may affect the continued sustainability of this technology are discussed.

Bt Resistant O. nubilalis Colonies

Selection experiments among a variety of insect pest species have repeatedly shown the potential for development of resistance to Bt toxins including O. nubilalis. Outside the laboratory, Bt resistance has also been documented in populations of Plodia interpunctella, Plutella xylostella, and Trichoplusia ni in response to repeated applications of Bt sprays. More recently, field evolution resistant to transgenic Bt crops resulting in control failures has been reported in Bruxella foca (Fuller) to Cry1Ab-expressing corn in South Africa, in Spodoptera frugiperda to Cry1F-expressing corn in Puerto Rico and in the coleopteran pest, Diabrotica virgifera virgifera to Cry3Bb1-expressing corn in the US. Field control failures of Cry1Ac-producing cotton have also recently been reported for the pink bollworm, Pectinophora gossypella in the Gujarat State of India. Additionally, Tabashnik et al. reported resistance to Cry1Ac-producing cotton among US populations of Helicoverpa armigera based on analysis of more than a decade of resistance monitoring data. These recent reports of field evolution contrast with what has been observed with O. nubilalis and Bt corn where susceptibility and field performance of the technology have been sustained for more than 15 y. A critical gap in our ability to assess the factors that contribute to the sustainability of IRM is the lack of resistant colonies that exhibit the ability to survive on transgenic plants and that represent resistance that is likely to evolve in the field. Since the initial introduction of Bt corn, a number of resistant strains of O. nubilalis have been isolated and characterized with varying levels of resistance and ability to survive on transgenic plant tissues. These strains have provided valuable information regarding potential resistance mechanisms, resistance inheritance, fitness costs of resistance, cross resistance among different Bt toxins and most importantly, have provided a means to evaluate assumptions of the HDR strategy.

Laboratory Selection

The first Bt resistant strains of O. nubilalis to be reported were identified through laboratory selection with commercial formulations of Bt incorporated into artificial rearing diet. Bolin et al. reported selection with a Bt formulation (MVP) that contains only Cry1Ac resulting in resistance levels up to 162-fold after 17 generations, although not evaluated for survival on Cry1Ac expressing corn. Huang et al. incorporated the Bt formulation Dipel®-ES into rearing diet for seven weeks.

<table>
<thead>
<tr>
<th>Name</th>
<th>Selection/Isolation</th>
<th>Resistance Ratio</th>
<th>Inheritance</th>
<th>Number of Generations</th>
<th>Relevant Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-I</td>
<td>MVP Formulation of Cry1Ac</td>
<td>162</td>
<td>Not Tested</td>
<td>Not Tested</td>
<td>Not Tested 30</td>
</tr>
<tr>
<td>KS-SC-R</td>
<td>Dipel-ES</td>
<td>65</td>
<td>-</td>
<td>Completely dominant/autosomal</td>
<td>1 or few 29</td>
</tr>
<tr>
<td>RSTT</td>
<td>Cry1Ab</td>
<td>1,200</td>
<td>-</td>
<td>Intermediate/autosomal</td>
<td>5-10 40</td>
</tr>
<tr>
<td>ELH</td>
<td>Cry1Ab</td>
<td>3,000</td>
<td>-</td>
<td>Intermediate/autosomal</td>
<td>5-10 40</td>
</tr>
<tr>
<td>SKY</td>
<td>Cry1Ab</td>
<td>815</td>
<td>-</td>
<td>Completely recessive/autosomal</td>
<td>> 2 48</td>
</tr>
<tr>
<td>Cry1F-Selected</td>
<td>Cry1F</td>
<td>> 3,000</td>
<td>+</td>
<td>Recessive/autosomal</td>
<td>1 43, 44</td>
</tr>
<tr>
<td>HAM County*</td>
<td>Cry1F</td>
<td>> 3,000</td>
<td>+</td>
<td>Recessive/autosomal</td>
<td>1 53</td>
</tr>
</tbody>
</table>

*Isolated from field populations and identified as exhibiting < 99% mortality at diagnostic concentrations used for annual susceptibility monitoring programs. See text for details. + + indicates no survival, + some survival suggested but less than on non-expressing plants. ++ survival not different from non-expressing plants.
generations resulting in a strain with 73-fold levels of resistance to the Bt population. The resistance was reported as being conferred by an incompletely dominant autosomal gene, and as a consequence, the usefulness of the HDR strategy for resistance management of Bt maize was called into question. However, the Dipel-resistant and unselected control O. nubilalis larvae were similar in susceptibility to Cry1Ab expressing corn hybrids, and the resistant strain was unable to complete development on Bt transgenic plants expressing Cry1Ab toxins. The resistance identified from this strain has been associated with reduced quinone-like protease activity in the gut resulting in a slower rate of protein activation. Moreover, Li et al. demonstrated that plant enzymes hydrolyze Cry1Ab protoxin to one that is functionally activated. Although Dipel resistance and reduced protease activity may be common among field populations, these populations are not resistant to Cry1Ab expressing hybrids and a role in resistance evolution for transgenic Bt corn appears unlikely. Laboratory selections conducted with North American and European populations and with fermentation products of Cry1Ab producing cells incorporated into larval rearing diet resulted in low levels of resistance (<35-fold) after 10–15 generations of selection in a number of different populations. Continued selection by exposure to either Cry1Ab fermentation product or purified toxin throughout larval development in these same strains yielded >800-fold resistance after 60 generations of repeated exposures. Reciprocal crosses of resistant and susceptible parental populations and backcrosses of the F1 progeny to a susceptible parental population suggest that resistance in these populations is inherited as an intermediate trait and is conferred by multiple loci as might be expected given the probable rarity of a resistance allele conferring high levels of resistance and the relatively small population sizes (<500) used to initiate selections. While all of these studies provide evidence for genetic adaptation and confirm the potential for Bt resistance evolution in O. nubilalis, the utility of these strains for validating assumptions of the HDR strategy are limited by the apparent complexity of the resistance mechanisms and more importantly, by their inability to survive on Cry1Ab-expressing plant tissue (Siegfried B.D., unpublished). Importantly, the lack of a single major resistance allele that confers the ability to survive and develop on Bt corn plants in spite of repeated attempts to select for resistance supports the contention that such a gene is rare among field populations.

In contrast to the results of selection with Cry1Ab, laboratory selection with the Cry1F protein has allowed isolation of an O. nubilalis strain that exhibits high levels of resistance and characteristics of what has been described as a “Mode I” pattern where high resistance is conferred by a single, recessive genetic factor that causes loss of toxin binding to midgut receptors. For vegetative stage plants, there appeared to be a reduction in survival of the resistant colony relative to survival on the non-expressing isolate. However, based on the number of surviving larvae recovered and their advanced development, it is likely that at least some of these larvae would have pupated and emerged as adults. On reproductive stage plants, there was no significant difference between the survival rate of the resistant colony on Cry1F-expressing plants and the isolate. These data strongly suggest that a single major genetic factor confers high levels of resistance to Cry1F, which allows the larvae to grow and develop on Cry1F-expressing plants. In addition, since the resistance was isolated from a relatively small field collection, the frequency of this resistance may be higher than that observed for Cry1Ab.

Isolation of resistant field populations. Annual assessments of Bt susceptibility involving diagnostic bioassays based on the upper end of the 95% confidence interval of the LC50 derived from baseline susceptibility studies have been conducted since the initial registration of Cry1Ab expressing events in 1996. In the approximately 15 y that Cry1Ab susceptibility has been assessed and among almost 200 different populations that have been assayed, only one population (Kandiyohi County, MN 2001) was identified that did not exhibit mortality in excess of 99% in the diagnostic bioassay. USEPA registrations of Bt corn events mandate that if resistance is suspected, a series of additional tests must be initiated to determine whether the resistance is heritable, to quantify the magnitude of resistance, and to measure the ability of the resistant strain to survive on Bt expressing corn plants. Survivors of initial diagnostic bioassays were further selected by exposure to corn leaf discs expressing Cry1Ab and subsequently to artificial diet treated with high concentrations
of Cry1Ab. The resulting resistant strain exhibited > 800-fold resistance to Cry1Ab that was primarily conferred by an autore-
mal and incompletely recessive genetic factor.53 Analysis of the
backcross progeny resulting from mass mating of the parental
resistant strain with F1 generation indicated that the resistance
was conferred by a small number of loci with major effects on
Cry1Ab resistance.54

In greenhouse experiments with isolate and Cry1Ab express-
ing plants, no survivors were found on vegetative stage Bt plants.
However, the F1 resistant larvae and the F2 progeny of resistant
× susceptible parents were able to survive on reproductive corn
15 d after infestation, although the larvae that survived were
found feeding on silk, ear shanks, ear tips, kernels and pollen
accumulated in leaf axils, which are known to express lower
levels of resistance in diet bioassays and was able to feed on high-Cry1Ab-expressing tissues of vegetative-stage plants in
the subsequent generation. This does not preclude an increased fre-
quency of Cry1Ab resistance alleles for the second generation,
where the resistance does not appear to be functionally recessive.
However, it should be noted that survival was measured at 15 d
after infestation and does not reflect survivorship to the adult
stage. Because the development of the F1 progeny was signifi-
cantly delayed on the reproductive-stage plants, it is likely that
a much higher proportion of larvae would be unable to complete
development than reflected by the 15 d survival. Although the resistance identified in this population colony exhibited high lev-
els of resistance in diet bioassays and was able to feed on Cry1Ab-
expressing leaf tissue, there was no evidence of feeding or survival
on whole plants expressing Cry1Ab.55 Moreover, in each year
since the strain was initially collected, additional collections
obtained from the same area have not shown unusual survival at
the diagnostic concentration.56

As previously described for Cry1Ab, baseline susceptibil-
ity of O. nubilalis populations was established46 and used to
estimate the upper end of the 95% confidence interval for the
LC50 as a diagnostic Cry1F concentration for annual assessments
of Cry1F susceptibility among field populations of O. nubila-
is that is coordinated through the Agricultural Biotechnology
Stewardship Technical Committee (ABSTC). This concentra-
tion was validated with field populations in 2001 and 2002 prior to
the commercial release of Cry1F-expressing hybrids. In both
years of validation experiments, however, at least one population
was observed that exhibited < 99% mortality suggesting that
either the calculated diagnostic concentration was inaccurate or
that there was a higher frequency of resistant individuals than
expected among field populations.

In 2004 as in the only the second year of commercial availability for
corn hybrids expressing Cry1F, a field collection obtained from
Hamilton County, IA exhibited significantly reduced mortality
at the diagnostic concentration and an elevated LC50 value for
Cry1F. Therefore, the initial collection consisted of only 11 egg
masses, multiple generations of rearing were required to obtain
sufficient numbers of neonates for bioassays. In contrast to the
other populations examined in 2004, the colony established from
Hamilton County collections exhibited much lower mortality rates
(50.7%) at the diagnostic Cry1F concentration, which was
consistent with the elevated LC50 and EC50 observed for Cry1F
in this collection. As with the Kandiyohi County, MN popu-
lation that exhibited Cry1Ab resistance, a series of experiments
was initiated to document inheritance of resistance, to quantify
the magnitude of resistance and to assess survival on Cry1F-
expressing plants.

The results of these additional tests indicated that F1-F2
progeny of individuals collected from Hamilton County in 2004
that survived exposure to the Cry1F diagnostic concentration
possessed high levels of resistance to the Cry1F protein. After
pooling the survivors of the initial diagnostic bioassay and rear-
ing for four additional generations, mortality had declined to
< 3% at the diagnostic Cry1F concentration. Additionally, neo-
nate larvae from the strain selected from survivors of the initial
diagnostic bioassay exhibited rates of survival and growth on 1
cm-diam leaf discs cut from whorl stage plants expressing Cry1F
that were not statistically different from survival and growth on
leaf discs cut from non-expressing plants.

Greenhouse experiments involving exposure of the resistant
Hamilton County populations to both vegetative and reproduc-
tive stage plants were also conducted. While increased feeding
and some larval survival was observed on vegetative stage plants,
it appears likely that even with the high level of resistance,
the ability of these insects to complete development was com-
promised. However, on reproductive stage plants, the resistant
larvae survived equally well and grew to similar sizes on isolate
and Cry1F expressing plants. Although emerging adults could
not be recovered from the plants, late instars recovered from the
transgenic plants were able to complete development and emerge
as adults under laboratory rearing conditions.

The primary trait expressed by the Hamilton County colony
was highly recessive, which is the identical pattern observed in
the Cry1F resistant laboratory colony46 and described previously.
The resistance that was identified in the Hamilton County popu-
lation resembles that which developed in the laboratory selected
strain described previously in that the resistance in both strains
was highly recessive, apparently conferred by a single genetic
locus. Moreover, the resistance may have already been
consistent with the elevated LC50 and EC50 observed for Cry1F
in the Kandiyohi County population. As with the Kandiyohi County, MN popu-
lation that exhibited Cry1Ab resistance, a series of experiments
was initiated to document inheritance of resistance, to quantify
the magnitude of resistance and to assess survival on Cry1F-
expressing plants.

The results of these additional tests indicated that F1-F2
progeny of individuals collected from Hamilton County in 2004
that survived exposure to the Cry1F diagnostic concentration
possessed high levels of resistance to the Cry1F protein. After
pooling the survivors of the initial diagnostic bioassay and rear-
ing for four additional generations, mortality had declined to
< 3% at the diagnostic Cry1F concentration. Additionally, neo-
nate larvae from the strain selected from survivors of the initial
diagnostic bioassay exhibited rates of survival and growth on 1
cm-diam leaf discs cut from whorl stage plants expressing Cry1F
that were not statistically different from survival and growth on
leaf discs cut from non-expressing plants.
present at relatively high frequencies prior to the introduction of Cry1F-expressing corn plants based on the initial validation experiments of the diagnostic Cry1F concentration. It should be noted that in each year since 2004, additional collections obtained from the same area have not shown unusual survival at the diagnostic concentration and there have been no reports of unexpected damage to Cry1F-expressing corn plants. Therefore, the HDR strategy that is in place for Cry1F expressing hybrids appears to be functioning even when the frequency of resistance may be higher than 10^{-3}, which is the theoretical value often cited in support of the HDR strategy.\cite{10,14,43}

The success of the HDR strategy for *O. nubilalis* and Bt corn may be also associated with incomplete resistance and fitness costs, factors that are not usually considered in IRM planning.\cite{59} Fitness costs are evident when homozygous resistant insects on a non-Bt plant have lower fitness than susceptible larvae on non-Bt plants.\cite{57,58} Pereira et al.\cite{58} and Crespo et al.\cite{59} compared life-history traits and population growth rates of genotypes homozygous and heterozygous for resistance with susceptible genotypes to Cry1F and Cry1Ab, respectively. In both studies, the existence of weak and, recessive to incompletely recessive, fitness costs were indicated in both strains. However, the incomplete nature of the resistance where resistant homozygotes have reduced fitness on Bt plants than susceptible insects on non-Bt plants is clearly indicated in both strains (see above), and may be a more important factor in delaying resistance evolution.

O. nubilalis Resistance and HDR

The success of IRM for Bt corn targeted against *O. nubilalis* is apparently dependent on characteristics of the insect's biology and attributes of the technology that comply with assumptions of the HDR. Since the initial registrations of Bt corn in 1996, we have learned a great deal regarding biology and ecology of *O. nubilalis* and the genetic architecture of Bt resistance that has provided a means to validate the various components of the HDR strategy and their inherent assumptions.

Evidence of high dose expression.

One of the assumptions underlying the HDR strategy is that resistance is functionally recessive, which means that the protein concentration in tissues fed on by homozygous susceptible *O. nubilalis* is sufficiently high that nearly all (> 99.9%) of larvae feeding as neonates fail to complete development, and insects heterozygous for resistance alleles are expected to suffer at least 95% mortality.\cite{9} The definition of “high dose” as it relates to the IRM strategies that have been developed for *O. nubilalis* and Bt maize has generally been described as levels of expression in plant tissue that are 25-fold in excess of the concentration of toxin needed to kill 99.9% of susceptible larvae.\cite{9} The “25-fold” definition was initially based on a conservative estimate derived from empirical data on the inheritance of resistance in species where resistance has been characterized by crossing resistant and susceptible parents.\cite{59}

While it is difficult to experimentally compare the concentration of toxin in artificial diet that consistently causes high mortality of susceptible homozygotes (i.e., LC$_{99}$) with expression levels in plants, there seems to be a general consensus that Bt corn for *O. nubilalis* complies with the definitions that have been proposed. Field surveys of *O. nubilalis* infestations of Bt corn established that the Bt hybrids produce at least 99.99% control relative to non-Bt hybrids.\cite{9} In addition, for all the laboratory lines selected either with Bt formulations or with Bt fermentation products, even very high levels of resistance were insufficient to allow the insects to develop on expressing plants.\cite{9} Siegfried B.D., unpublished) and support the high-dose designation. For the Cry1Ab-resistant Kandiyohi population that was identified through annual monitoring of susceptibility, neither the resistant parental strain nor F$_2$ hybrids of resistant x susceptible parents were able to survive on vegetative stage plants. However, for reproductive stage plants, there was some indication that both the parental resistant line and the heterozygotes are able to feed and develop on lower expressing tissues such as silk and pollen and that functional recessiveness may be somewhat dependent on the toxin concentration of the specific plant tissue.\cite{9} For Cry1F-expressing hybrids, the Cry1F resistance that is conferred by a single, highly recessive genetic factor, where only the resistant homozygotes are capable of developing on Cry1F-expressing plants, confirms the high-dose nature of these plants.

Low resistance allele frequencies.

One of the key assumptions of the high-dose/refuge strategy is that alleles conferring resistance to Bt toxins are rare, i.e., $< 10^{-5},$ which has been taken as a default when modeling the evolution of resistance to Bt toxins.\cite{9} However, estimates of allele frequencies prior to selection pressure are difficult because recessive alleles in heterozygotes will be missed by most traditional bioassay methods\cite{59} and reliable detection of allele frequencies less than about 10^{-3} is impractical. After Altstad described a method referred to as the F$_2$ screen that offers the advantage of potentially detecting recessive alleles for resistance in a heterozygous state. This methodology involves collecting a large number of individuals from the field and establishing single-female family lines. The offspring of each collected female are indeed within family lines. The offspring of these matings (i.e., the F$_2$ of the collected generation) are then screened at a discriminating concentration for tolerance to the toxin. The purpose of the inbreeding process is to allow potentially heterozygous offspring of the collected females to mate with each other, generating a significant and easily detectible fraction of homozygous resistant offspring. Through back-calculation of the frequency of family lines containing a resistant allele, the frequency of the resistance allele in the sampled population can be estimated. Although potential changes in frequency over time have not been examined, no major Cry1Ab resistant alleles have ever been recovered using this technique confirming that the frequency of alleles conferring resistance to Cry1Ab expressing plants is below 10^{-5} in all the populations examined to date.\cite{59}

Similar estimates of Cry1F resistance frequencies from field populations of *O. nubilalis* have yet to be reported. However, based on the ease with which resistance can be selected for in the laboratory and the identification of the same resistance allele among field populations, it appears likely that the frequency of Cry1F resistance is higher than 10^{-5} in field populations. Given that annual assessment of *O. nubilalis* susceptibility have provided strong evidence that field populations remain susceptible
to Cry1F, it appears likely that the HDR strategy that has been mandated for Bt corn is robust enough to maintain susceptibility even with an allele frequency that is possibly greater than 10^{-3}.

Refuge size and placement. Another key component of the HDR strategy involves a refuge of non-Bt corn to provide large numbers of homozygous susceptible insects to mate with the rare RR individuals capable of developing on Bt corn. The size and placement of the refuge is critically important to ensure that resistant and susceptible insects will mate more or less randomly. For the refuge to be effective, susceptible homozygotes should outnumber SR and RR insects by a ratio of 500:1 or more, assuming a low resistance allele frequency (> 5 × 10^{-3}).

Currently structured refuges with non-Bt corn are the most common type of refuge used for managing O. nubilalis resistance to Bt corn. Growers that plant Bt corn are required to plant a specific proportion of their crop into a non-Bt variety, either within (strips or blocks), adjacent (edges or headlands) or within a designated distance (separate fields) from the Bt cornfield.

There is general agreement that non-Bt corn provides the best refuge to increase the probability that susceptible corn insects will mate with resistant corn insects from Bt corn. Production of resistant offspring is therefore less likely in Bt corn. However, if a larva with one copy of a resistance gene (heterozygote) has greater fitness than a susceptible insect on Bt plants, then the high-dose component of the HDR strategy could be compromised.

In a strip or block refuge, most larvae that move will encounter the same type of plant (Bt or refuge) because O. nubilalis neonates (neonate) tastes a Bt plant, becomes sick, and moves to a non-Bt plant. This could occur if a young larva (neonate) tastes a Bt plant, becomes sick, and moves to a non-Bt plant. In this scenario if a larva with one copy of a resistance gene (heterozygote) has greater fitness than a susceptible insect then the high-dose component of the HDR strategy could be compromised.

Another type of refuge option is seed mixtures, which is becoming a viable option for corn growers, but previously had been discouraged. A seed mixture simply means the Bt and non-Bt seeds are mixed in the same bag, which is convenient for growers to plant and avoids size and placement concerns. Besides mating behavior, another important biological consideration is plant-to-plant movement of larvae. Such movement is primarily a concern with seed-mixture and narrow-stripe refuges as larval movement among Bt and non-Bt plants could violate the high-dose component of HDR. This could occur if a young larva (neonate) tastes a Bt plant, becomes sick, and moves to a non-Bt plant. In this scenario if a larva with one copy of a resistance gene (heterozygote) has greater fitness than a susceptible insect then the high-dose component of the HDR strategy could be compromised.

In a mixed-seed field, however, larval movement among Bt and non-Bt plants is more likely to occur. Gould and Davis and Onstad consider survival of larvae moving off of Bt corn to be a key parameter for the development of insect resistance. Research on larval behavior, however, suggests that some aspects of larval dispersal could reduce concerns. Many lepidopteran neonates, including O. nubilalis, disperse off their host plant before feeding. By means of gut dissections, Ruzze et al. determined that only a small percentage (~15%) of O. nubilalis neonates (within 2 d of egg eclosion) had fed on Bt tissues before dispersing off the plant. Other studies have reported O. nubilalis neonate deterrence of Bt-corn leaf tissue or Bt-incorporated diets. On the other hand, other research suggests that larval movement will remain an important consideration for resistance management. With on-plant tests Prasilka et al. estimated the relative survival of susceptible larvae moving off of Bt corn was about 60% (susceptible/resistant = 43%/71%), supporting the conclusion of Davis and Onstad that 50% mortality (relative to resistant larvae) is a realistic consequence for susceptible larvae.
feeding on Bt maize before dispersal. Furthermore, threats to the high-dose strategy could occur if other larvae from a non-Bt plant move to Bt plants and survive. Movement of older O. nubilalis larvae occurs frequently among vegetative corn plants when high densities of larvae are present (K.L.H., unpublished). There are similar high-dose violation concerns with ear tissues when non-Bt corn plants are fertilized with pollen from Bt corn.87 Theoretically, larvae could be exposed to low-levels of Bt or even high-dose tissue in close proximity to low or non-expressing tissues. If these conditions results in the survival of heterozygous larvae then IRM could be compromised. Corn earworm, Helicoverpa zea, mortality is influenced by Bt pollinated sweet corn14 and similar Bt and non-Bt cross pollination of corn could be an important factor for European corn borers.

When corn borer Bt corn was introduced, the size recommendations for refuge ranged from 5% to 40% depending on the type of Bt corn, which was confusing to growers. After several meetings between academic, government and regulatory scientists, organized by the NC-205 Regional Research Committee, with considerable discussion and use of insect resistant management models, a minimum 20% refuge recommendation was established with refuge placed within half a mile of the Bt cornfield.85 In the cotton growing areas in the Southern US the refuge recommendation for Bt corn is 50% or more because corn is an important refuge source for managing cotton bollworm, H. zea (a.k.a., corn earworm), resistance to Bt cotton.82 Corn has multiple pests so IRM recommendations often are influenced by the biology of all these pests. In particular, refuge recommendations were altered slightly after the introduction of Bt corn for rootworm, Diabrotica spp., in 2003. The 20% or greater refuge recommendation remained the same in the Corn Belt; however, the placement recommendation for rootworm Bt corn was changed to adjacent to the Bt cornfield. Rootworm beetles are more likely to mate within the field compared with corn borer moths, thus the refuge for rootworms had to be closer to the Bt cornfield. The chances that resistance beetles mate with susceptible beetles. The best proximity strategy will vary depending on the biology of each targeted pest species (Fig. 1). Seed mixtures are the best strategy for maximizing random mating of adults but the riskiest strategy when larval movement or Bt pollen contamination are important factors. Refuge placement for lepidopteran Bt corn is probably best optimized with separate blocks or fields, but in the case of coleopteran Bt corn within a field or even seed-mixture strategy may be optimal. From a grower perspective, though, refuge placement that is most convenient may be the most important factor, especially if compliance is an issue (Fig. 1).

Recent Developments

The introduction of pyramided corn producing two or more Bt proteins with different modes of action targeting the same pest has dramatically changed options for managing corn pest resistance to Bt corn. Two or more toxins results in “redundant killing” and reduces chances that insects will evolve resistance,89 especially when each of the toxins satisfy high-dose criteria, which is the case for Bt corn varieties developed for O. nubilalis. Pyramided corn also provides a wider spectrum of control for other lepidopteran pests. Pyramided corn opens the door for consideration of smaller non-Bt refuges in both corn and cotton areas and the possibility of mixing or blending Bt and non-Bt seeds in the corn belt. Providing non-Bt refuge through seed mixtures is an especially attractive and practical option for growers.86 As discussed previously, larval movement was the biggest obstacle for using seed mixtures for O. nubilalis control. This issue requires further study, but initial IRM models suggest that even with some movement, seed mixtures with pyramided corn will endure longer than single-toxin hybrids.88 Grower compliance in planting refuges has gradually decreased since early commercialization, especially following the commercialization of stacks of lepidopteran and coleopteran Bt corn varieties in 2004.89-90 This trend toward increasing non-compliance among growers has motivated both industry and regulators to pursue the mixed-seed option because this strategy enables growers to be 100% compliant for refuge size and placement. Bt corn hybrids allowing seed mixtures for Diabrotica were registered by the US Environmental Protection Agency (USEPA) in 2010,90 and Bt corn hybrids allowing seed mixtures for both Diabrotica and O. nubilalis were registered in 2011.91

Seed mixtures may be a viable option for managing resistance to European corn borer and possibly corn rootworm in the Corn Belt, but Bt corn is not high dose for many common maize pests. For example, lepidopteran Bt maize is not high dose for fall armyworm, Spodoptera frugiperda, corn earworm, H. zea, and cutworm species (Family Noctuidae). Also, since coleopteran Bt maize is not high dose for corn rootworm even pyramided corn for rootworm may be susceptible to insect resistance, especially in light of recent evidence that rootworm resistance in the field may have evolved to single-toxin Bt corn.87

Transition to pyramided corn for lepidopteran and coleopteran Bt corn poses a challenge because the landscape, at least for a few years, will include a mosaic of single-toxin and multiple toxin corn. Such mosaics theoretically could foster the development of resistance to corn pyramids if insects develop resistance to single-toxin hybrids and if the same toxin is used in the pyramided hybrids.92

The fate of specific types of corn stacks and pyramids may be determined by the weakest link in the hybrid, that is, the pest most likely to evolve resistance. In the corn belt this weak link is unlikely to be O. nubilalis because Bt corn has satisfied high-dose criteria, but rather one or more of the insect pest species that does not satisfy these criteria, especially the rootworm. Bt corn for O. nubilalis established a high standard for growers, industry and regulators because it has been remarkably effective.85 In doing so, it established the HDR strategy as the IRM strategy of choice, which is not necessarily the most robust IRM strategy for all insect pests of corn.

Conclusions

Nearly a hundred years after the European corn borer was accidently introduced into North America, effective management...
and areawide suppression of pest populations has been made possible through the introduction of transgenic Bt corn. Prior to the introduction of this technology, *O. nubilalis* was difficult to control because larvae often escaped insecticide applications by boring into cornstalks. Bt corn circumvents this behavior by expressing a high dose of Bt toxin throughout the plant. When corn entomologists were introduced to this technology in the early 1990s, they were amazed that Bt corn was nearly “bulletproof” to *O. nubilalis* injury, more effective than any previous type of control. This effective control and the potential for intense selective pressures, insect resistance to Bt toxins was identified as the major threat to this technology. Fortunately, a perspicacious insect resistance management program based on the high-dose refuge strategy was implemented with three major assumptions: (1) Bt plants must produce a high dose of toxin sufficient to kill most heterozygous insects (i.e., insects with one copy of resistance gene); (2) the initial frequency of resistance alleles is rare; (3) susceptible moths from non-Bt refuges intermingle and mate with rare resistant moths. Apparently these assumptions are met for *O. nubilalis* with current types of lepidopteran Bt corn because in spite of intense selective pressures for resistance evolution, *O. nubilalis* populations appear to remain susceptible. Whether this lack of resistance is a consequence of regulatory mandates for IRM practices is unknown, but the predictions from initial theoretical models about the sustainability of the technology when deployed in a manner consistent with the HDR strategy appear to have been realized. Early surveys of Bt corn fields as well as the inheritance of resistance among selected populations supports the high-dose resistance of Bt corn events. That heterozygotes from even the most resistant strains do not survive exposure to either Cry1Ab or Cry1F expressing corn plants supports the functional recessive nature of resistance to these plants. Annual surveys of *O. nubilalis* susceptibility and repeated attempts to select for resistance to Cry1Ab protein suggest a major allele that confers resistance is rare among field populations. In contrast, laboratory selection with the Cry1F protein has isolated an *O. nubilalis* strain that exhibits high resistance conferred by a single, recessive genetic factor. Since Cry1F resistance was isolated from a relatively small field collection suggests that the frequency of this resistance may be higher than observed for Cry1Ab. However, there is no indication that the frequency of this resistance has increased suggesting that the HDR strategy may be robust enough to delay resistance evolution even when the frequency of resistance is higher than anticipated.

Introduction of pyramided corn that produces two or more Bt proteins with different modes of action targeted for the same insect is a major advancement. Because of IRM, Bt pyramided events targeting multiple pest species may be determined by the weakest link in the hybrid; that is, the pest most likely to evolve resistance. In the Corn Belt this weak link is unlikely to be *O. nubilalis* because the assumptions of the HDR strategy appear to be satisfied. Bt corn for *O. nubilalis* has established a high standard for growers, industry and regulators because it has been both remarkably effective and durable.

Acknowledgements

This research was a joint contribution from the USDA Agricultural Research Service and the Iowa Agriculture and Home Economics Experiment Station, Ames (Project 3025543). This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or a recommendation by the USDA for its use. Authors gratefully acknowledge support from the Agricultural Biotechnology Stewardship Technical Committee and the USDA NIFA Biotechnology Risk Assessment Grant Program; numbers 2006–3552–17394, 2010–35522–21675 and 2007–39231–18461.

References

McGaughey JW, Buschman LL. Baseline susceptibility of European corn borer (Ostrinia nubilalis) and its effects on Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae) in a field-derived strain of European corn borer. Entomol Exp Appl 2011; 140:1-16; http://dx.doi.org/10.1111/j.1570-7458.2010.00642.x.

McGaughey JW, Buschman LL. Baseline susceptibility of European corn borer (Ostrinia nubilalis) and its effects on Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae) in a field-derived strain of European corn borer. Entomol Exp Appl 2011; 140:1-16; http://dx.doi.org/10.1111/j.1570-7458.2010.00642.x.

74. Tate CD, Harris RW. Seed mixtures as a resistance management tool. J Econ Entomol 2011; 104:695-9; PMID:22004774; http://dx.doi.org/10.1603/EN11133.

