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The features, or n-grams exhibiting high odds ratios were selected as features 
indicative of a given move and step; the features with odds ratios less than 
5 were removed. The final n-gram feature set contained 5,825 unigrams and 
11,630 trigrams for moves, and 27,689 unigrams and 27,160 trigrams for steps.

Sentence representation
We considered each sentence as an item to be classified into a move and a step; 
hence, it is represented as an n-dimensional vector in the Rn Euclidean space. 
Formally, each sentence ci is represented as ci = <f1, f2, f3,…,fn> where each 
fj measures feature j in sentence ci. Thus, the learning algorithm attempts to 
learn a functional mapping that maps each sentence in the corpus C to a move 
m, and then using this move m to map each sentence to a step s. Here M = {m1, 
m2, m3} and S = {s1, s2, s3,..,s17}. Mathematically, the learning algorithm tries to 
predict functions F and G such that

In other words, function F would map the sentences in the corpus to one of 
the three move classes in M, and function G would map those sentences to one 
of the 17 step classes in S. Although it would be ideal to accomplish many-to-
many mappings (which would be similar to the coders’ multi-level annotation 
of the corpus), at this point, both for simplicity and practicality, we assumed 
both F and G functions as many-to-one mappings.
	 Given that our units of analysis were individual sentences, which are very 
small documents and therefore inappropriate to use measures of the impor-
tance of a term in a document,7 we resorted to Boolean representation in order 
to indicate the presence or absence of a particular feature. In other words, we 
used binary coding such that if an n-gram feature j is present in sentence ci, fj 
equals 1; if an n-gram feature j is absent in sentence ci, fj equals 0. For example, 
for move classification the representation of a sentence may be:

where ci is a sentence from the annotated sub-corpus C, and mf1, mf2, mf3,…, 
mfn are the features representing the move to which a sentence belongs. Sen-
tence representation for step classification is similar, but includes an addi-
tional feature that specifies the step to which the sentence belongs:

where ci is a sentence from the annotated sub-corpus C, and sf1, sf2, sf3,…,sfn 
are the features representing the step of the sentence. Also m1:1, m2:0, m3:0 in 
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the example above implies that sentence ci belongs to move 1 and not to move 
2 or move 3. Thus, in this representation, the move predicted for a sentence 
is passed as an input to predict a step. Figure 2 provides an example of how a 
new sentence is processed and represented for move classification. First, the 
sentence is divided into unigrams and trigrams and matched with the exist-
ing feature set. Then, the unigrams and trigrams are represented as Boolean 
values: 1 if the n-gram was found in the feature set and 0 if it was not found. 
Based on the features represented as 1, the classifier makes a decision as to 
which move the sentence belongs to. 

Figure 2: Example of sentence classification as a move

Move and step classifiers
SVM learning has been traditionally exploited in text categorization prob-
lems. It is a supervised learning technique that uses an algorithm to analyze 
data and identify patterns, which are then used for classification. Provided 
with an input of a set of labeled training data, the SVM model represents the 
training examples as points in an N-dimensional space that are mapped such 
that the labeled classes are optimally separated by hyperplanes of maximal 
margin, or clear gaps. Once the SVM learns the hyperplanes, it can classify 
unseen data into one of the learned labeled classes. Fed with a new example, 
the model maps it into the same space and makes a prediction as to which 
class it belongs to based on which side of the hyperplane it is on.
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	 In our case, the labeled training data set was the annotated Introductions 
corpus, the training examples were the annotated sentences, the classes were 
the move and step categories, and the hyperplanes separated the move or the 
step classes. Figure 3 depicts this SVM learning trajectory for move identifica-
tion.8 We chose SVM not only because it generally yields better performance, 
but also because it performs well in a high dimensional space even with sparse 
values (Kivinen, Warmuth, & Auer, 1997), that is, when most of the values in a 
large vector are zero. This type of sparse representation is common in natural 
language analysis because in any given excerpts of text (sentences here) only a 
handful of items from the feature set are observed.

Figure 3: SVM move learning and classification trajectory

	 Further, the accuracy of classification depends on careful selection of 
parameters that are fed to the SVM model. Considering our task of building 
a predictive classifier, we employed a common technique known as k-fold 
cross-validation in order to estimate how well the model would perform 
when given completely new data. This procedure involved the application of 
the remaining 370 annotated Introduction texts not used for model train-
ing, which were randomly partitioned into 10 equal size subsets and used 
for 10-fold cross validation, a common technique for this type of evaluations 
(McLachlan, Do, & Ambroise, 2004). Specifically, we fed the learned model 
with one of the 10 subsets of unseen labeled data at a time and compared the 
move and step classes it generated with the move and step labels assigned by 
the coders.
	 We experimented with different feature sets for both move and step clas-
sification tasks (Tables 2 and 3). For evaluating the performance of the classi-
fier on these feature sets, we used measures of accuracy on each of the models 
built. Accuracy measures the proportion of correctly classified instances to the 
total number of classified instances. Other standard metrics used for evaluat-
ing the model performance are precision and recall. Precision measures the 
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proportion of items assigned to a category that actually belong to that category, 
whereas recall measures the proportion of items belonging to a category that 
were classified correctly. In the formulas below, TP is the number of true pos-
itives; FP is the number of false positives, TN is the number of true negatives, 
and FN is the number of false negatives, and all these terms indicate a compar-
ison of the results of the classifier with expert judgments. True and false indi-
cate whether the classifier’s prediction corresponds to the expert judgment (in 
our case the coders’ move/step label), while positive and negative refers to the 
expected prediction by the classifier. 

1.	 Accuracy:

2.	 Precision:

3.	 Recall:

Table 2: Feature set for move classification

N-gram features

# Unigrams # Trigrams

1,000 0

2,000 0

3,000 0

0 1,000

0 2,000

0 3,000

1,000 1,000

2,000 2,000

3,000 3,000

5,825 11,630

Table 3: Feature set for step classification

N-gram features

# Unigrams # Trigrams

1,000 0

5,000 0

6,334 0

10,000 0

26,789 0

0 1,000

0 5,000

0 5,986

0 10,000

1,000 1,000

5,000 5,000

10,000 10,000

27,689 27,160

Figures 4 and 5 report the performance of the classifier on cross-validation 
data, showing that the accuracy of the move classifier increases as the feature 
set increases in size. Also, accuracy is slightly higher when the feature set con-
tains both unigrams and trigrams than when unigrams or trigrams are used 
separately. The accuracy of the step classifier exhibits a comparable trend.
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Figure 4: SVM performance on move classification

Figure 5: SVM performance on step classification

	 Similarly, in terms of precision and recall, the feature sets containing only 
unigrams or trigrams have lower precision and recall for both move and step 
classifiers. The move and step classifier models show an increase in precision 
and recall as more unigrams and trigrams are added into the feature set. A 
high precision and recall for both move and step classifiers is evident with the 
feature set containing most unigrams and trigrams taken together. It is also 
noticeable that the combined unigram and trigram feature sets yield precision 
figures that are higher than recall – 70.3% versus 61.2% for the move classifier 
and 68.6% versus 55% for the step classifier. This may be preferable when it 
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comes to classification for error feedback generation. The developers of Crite-
rion® opted for maximizing precision even if it was at the expense of recall; for 
example, precision for article and preposition error detection is 90% and 80% 
while recall is 40% and 25%, respectively (Chodorow, Gamon, & Tetreault, 
2010). Nagata and Nakatani (2010) also hypothesized that feedback based on 
precision-oriented error-detection is likely to have a stronger learning effect 
than the recall-oriented feedback. For us however, tuning for precision is not 
advisable. Since we are classifying every single sentence, high precision in one 
category necessarily leads to low precision in another category. Therefore, our 
ultimate objective is to maximize accuracy.
	 Having found which model performed best, we built a cascade of two SVM 
classifiers. When a new input sentence is passed, it goes through the move 
classifier, which predicts its move, and then it is passed on to the step classi-
fier, which predicts its step within the assigned move (Figure 6).

Figure 6: Sentence classification process by RWT analyzer

Evaluation and discussion
It is important to consider the classifiers’ performance at the level of individual 
moves and steps. Like other systems, both our classifiers can predict some dis-
course elements better than others. In the following discussion, we compare 
the precision, recall and F1 scores obtained for each move/step. The F1 score, 
or the harmonic mean of precision and recall, measures the overall perfor-
mance of the system for a category (Van Rijsbergen, 1979) and is calculated as:

Table 4 shows that the move classifier predicted Move 1 and Move 3 with 
higher precision than Move 2. This result is in agreement with our earlier 
experimentation where we found that Move 2 is most difficult to identify and 
that it tends to be misclassified as Move 1 (Pendar & Cotos, 2008). This is not 
surprising since this time the training data for Move 2 was also considerably 
sparser than the data for the other two moves (6,039 sentences for Move 1; 
1,609 for Move 2; and 2,352 for Move 3). In our testing dataset, the moves were 
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not equally distributed either, with Move 2 being least represented (3,233 sen-
tences for Move 1; 926 for Move 2; and 1,301 for Move 3). It is worth noting 
that the system obtained the best recall on Move 1, which combined with rel-
atively high precision on that category results in the highest F1 score. While 
this may be attributed to the larger amount of features in the dataset, this move 
may also contain less ambiguous and/or more overt linguistic cues.

Table 4: Precision and recall for the move classifier

Move # Move name Precision (%) Recall (%) F1 Score (%)

1 Establishing a territory 73.3 89.0 80.4

2 Identifying a niche 59.2 37.3 45.8

3 Addressing the niche 78.4 57.2 66.1

Average 70.3 61.2 65.4

Table 5 shows that 10 out of 17 steps were predicted quite well by the step clas-
sifier. A few steps, in particular, had very high precision: Clarifying definitions 
– 100%, Outlining the structure of the paper – 92%, Reviewing previous research 
– 86.7%, and Presenting research questions – 84.6%. Table 5 also lists the steps 
that had a precision below the 68% average, three of which belong to Move 2 
(Highlighting a problem, Raising general questions, Proposing general hypothe-
ses) and four to Move 3 (Introducing present research descriptively, Summariz-
ing methods, Announcing principal outcomes, and Stating the value of the present 
research). The steps of Move 1 were identified relatively well, as were many of 
the Move 3 steps, especially considering that Move 3 has the highest number 
of steps. The steps of Move 2, on the other hand, appear to be more problem-
atic for classification – just like Move 2 itself. Overall performance is best on 
Step 3, Reviewing previous research, Step 5, Highlighting a problem, and Step 
17, Outlining the structure of the paper, suggesting that these categories are sig-
naled by relatively unambiguous lexical cues. The system, however, appears to 
struggle with Step 6, Raising general questions, Step 13, Clarifying definitions 
(despite high precision on this category), and Step 16, Stating the value of the 
present research.

Table 5: Precision and recall for the step classifier

Step # Step name Precision (%) Recall (%) F1 Score (%)

1 (Move1) Claiming centrality 67.9 49.6 57.3

2 (Move1) Making topic generalizations 70.4 76.6 73.4

3 (Move1) Reviewing previous research 86.7 85.2 85.9

4 (Move2) Indicating a gap 75.2 55.5 63.9

5 (Move2) Highlighting a problem 64.7 79.9 71.5
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6 (Move2) Raising general questions 50.0 27.8 35.7

7 (Move2) Proposing general hypotheses 66.3 50.0 57.0

8 (Move2) Presenting a justification 68.9 66.2 67.5

9 (Move3) Introducing present research 
descriptively

50.6 61.9 55.7

10 (Move3) Introducing present research 
purposefully

78.6 67.2 72.5

11 (Move3) Presenting research questions 84.6 26.2 40.0

12 (Move3) Presenting research hypotheses 74.2 43.4 54.8

13 (Move3) Clarifying definitions 100.0 18.2 30.8

14 (Move3) Summarizing methods 44.6 51.9 48.0

15 (Move3) Announcing principal outcomes 51.4 55.2 53.2

16 (Move3) Stating the value of the present 
research

39.8 34.4 36.9

17 (Move3) Outlining the structure of the paper 92.0 84.5 88.1

Average 68.6 54.9 61.0

Our performance evaluation measures are slightly lower than Criterion’s overall 
precision of classification into discourse elements by best single system (81%) 
and by the voting system (85%) (Burstein, Marcu, & Knight, 2003). However, 
this is not at all discouraging given the increased complexity of our categoriza-
tion task. Compared with Anthony and Lashkia (2003), our SVM model per-
forms better when identifying Claiming centrality and Highlighting a gap. Their 
Naïve Bayes model classified statements of announcing research with higher 
accuracy than our step SVM; however, in Mover this category combined five 
steps that our classifier identifies separately (Introducing present research pur-
posefully, Introducing present research descriptively, Presenting research ques-
tions, Presenting research hypotheses, and Summarizing methods). Principal 
outcomes and value statements are problematic for both Mover and RWT.
	 To better understand why and how misclassification occurs, we computed 
a confusion matrix comparing the categories predicted by the step classifier 
with the coders’ annotation using the training dataset (Figure 7). The col-
umns in the matrix represent the steps predicted by the step classifier, and 
the rows represent the primary step labels assigned by the coders. The high-
lighted diagonal line shows the number of correct predictions, and the off-
diagonal counts represent the classifications that are different from human 
annotation. The calculations are based on the final SVM model of 27,689 uni-
grams 27,160 trigrams. The matrix reveals that the steps with the precision 
below the 68.6% average were confused with other steps. Additionally, it indi-
cates that when misclassifications occurred, the misclassified step was still in 
the realm of the correct move. The classifier had lower performance when 
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distinguishing between the steps of Move 1, in particular getting confused 
about Step 1 (Claiming centrality) and Step 2 (Making topic generalizations). 
In Move 2, it tended to classify sentences as Step 8 (Presenting a justification) 
instead of Step 5 (Highlighting a problem), and Step 5 instead of Step 6 (Raising 
general questions), Step 7 (Proposing general hypotheses) and Step 8. In Move 3, 
Step 9 (Introducing present research descriptively) appears to be most challeng-
ing – it was misclassified as Steps 14 (Summarizing methods), 15 (Announcing 
principal outcomes), and 16 (Stating the value of present research); Step 14 – as 
Steps 9; Step 15 – as Steps 9 and 14; and Step 16 – as Step 9. 

Figure 7: Confusion matrix for steps predicted by the step classifier and annotated by 
coders

	 These misclassifications by the step classifier are not surprising. Sparse-
ness of training data, a major reason often mentioned in previous research, 
accounts for the lower performance in our study as well. In addition, there 
are a number of other factors that can help explain our SVM performance 
results. For instance, some steps are more challenging for automated identifi-
cation because their rhetorical meaning is not as clearly encoded in functional 
language and is, therefore, difficult to operationalize by a learning model. 
Another reason is that a sentence can carry multiple rhetorical functions and 
thus belong to more than one step. While the coders were able to capture this 
phenomenon when annotating the corpus, the classifiers were only capable 
of predicting one move and one step category. We will further qualitatively 
analyze the classifiers’ output to see whether the misclassifications are indeed 
inaccurate or whether they are capturing secondary functions. An equally 
important factor is meaning ambiguity; in the absence of lexical signals of 
functional meaning the coders were often confused as well.
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Conclusions and future work
In this study, we developed a cascade of two SVM move and step classifiers that 
are at the core of RWT’s Introduction discourse analyzer. For that, we combined 
work in genre analysis and ML, relying on linguistic cues indicative of rhetori-
cal functions. Our evaluation results are in agreement with previous research 
on classification of discourse elements and, in some aspects, outperform exist-
ing automated classification systems (e.g., Anthony & Lashkia, 2003). The ana-
lyzer classifies new input sentences with an overall move accuracy of 72.6% and 
step accuracy of 72.9%, the latter being slightly higher likely due to the preced-
ing move classification in the sentence classification sequence.
	 Up to this point, we have been treating each sentence as an independent 
random variable; that is, we were assuming that the move/step represented by 
each sentence is independent of its context. This is a useful, yet not a definitive 
assumption. It is useful in that it allows us to understand how much the lin-
guistic information contained within a sentence contributes to its move/step 
classification. It seems that we are reaching the limits of this approach, and 
it is now prudent to investigate the influence of the context. In further work, 
we are planning to incorporate context information and the sequencing of 
moves/steps in our predictive models. Additionally, we are planning to imple-
ment a ranking of classification decisions based on higher probabilities to be 
able to distinguish between primary and secondary step functions. For steps 
that are most difficult to detect, we will take a knowledge-based approach (as 
in Madnani, Heilman, Tetreault, & Chodorow, 2012) and experiment with a 
set of hand-written rules to recognize the functional language and, perhaps, 
the lexico-grammatical patterns that are identifiable in the annotated corpus 
but not frequent enough to appear in our current set of n-gram features. With 
new results from these additional approaches, we may develop a voting algo-
rithm that would pass final classification decisions considering the output of a 
number of independent analyzers, similar to Burstein et al. (2003). With this 
work, we not only demonstrate the usefulness of ML and NLP for automated 
genre analysis, but also pave the road for future endeavors that will lead to the 
development of AWE and ICALL systems with meaning-oriented feedback.
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Notes
	 1.	 Miller’s (1994) definition emphasizes the importance of genre in providing insight 
about discourse communities, which is particularly relevant given our end-goal to develop an 
AWE tool for the analysis of disciplinary RA genre discourse. 
	 2.	 The coders acquired the needed expertise through a focused four-week training that 
involved guided identification, analysis, and discussion of moves and steps in published Intro-
ductions.
	 4.	 Stamatatos et al. (2000) recommend at least 10 texts per category and an average text 
length no shorter than 1,000 words.
	 5.	 See Sebastiani (2002) for an overview of feature selection techniques in text categoriza-
tion.
	 6.	 Based on literature reporting feature selection experiments in ML (e.g., Mladenic, 
1998; Sebastiani, 2002), from different possible options – maximum values, information gain, 
and odds ratios – we chose the latter because it was found to result in the highest classification 
accuracy.
	 7.	 In text categorization, term frequency times the inverse document frequency (tf.idf) is 
used to measure the importance of a term in a document.
	 8.	 LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) was used to construct the move 
and step classifiers.
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Appendix A
Excerpt from an annotated text in Applied Linguistics.

Appendix B
RA Introduction sub-corpus used for training


