An Analysis of Corn and Soybean Supply Response to Changing Government Programs

Karl D. Skold
Iowa State University

Patrick C. Westhoff
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/card_workingpapers

Part of the Agricultural and Resource Economics Commons, Agricultural Economics Commons, and the Econometrics Commons

Recommended Citation
http://lib.dr.iastate.edu/card_workingpapers/72

This Article is brought to you for free and open access by the CARD Reports and Working Papers at Iowa State University Digital Repository. It has been accepted for inclusion in CARD Working Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
An Analysis of Corn and Soybean Supply Response to Changing Government Programs

Abstract
An econometric corn and soybean supply response model is provided that endogenously determines program participation. The impacts of a decrease in the target price, an increase in the set-aside rate, and the introduction of a paid diversion are analyzed for the 1985 crop.

Disciplines
Agricultural and Resource Economics | Agricultural Economics | Econometrics

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/card_workingpapers/72
An Analysis of Corn and Soybean Supply Response to Changing Government Programs

Karl D. Skold and Patrick Westhoff

Working Paper 88-WP 34
September 1988
Contents

Abstract ... V
Introduction ... 1
Corn and Soybean Supply Model Structure 2
Estimation Results .. 8
Policy Variable Simulations12
Summary15
References17

Tables

Table 1. Variable definitions 4
Table 2. Effects of a decrease in the target price
 by 10 percent of 1985 .. .14
Table 3. Results of an increase in the set-aside
 requirement from 10 to 20 percent in 198514
Table 4. Results of the introduction of a 10 percent
 paid diversion in 198514
Abstract

An econometric corn and soybean supply response model is provided that endogenously determines program participation. The impacts of a decrease in the target price, an increase in the set-aside rate, and the introduction of a paid diversion are analyzed for the 1985 crop.
Introduction

The estimation of the supply response to changing government commodity programs has been problematic because of frequent adjustments made in the composition of the commodity programs, as well as changes in their underlying payment structures and acreage reduction options. The most common approach for incorporating the influence of commodity programs on supply response is to include effective support payment and diversion payment variables as explanatory variables in the acres planted equations, as exemplified by Houck and Ryan (1972). However, as de Gorter and Paddock (1985) note, these composite variables ignore the voluntary nature of the commodity programs and impose questionable restrictions on the effects of changing policy parameters.

For example, with the use of effective price support variables, an increase in price support payments will always increase total production. As de Gorter and Paddock correctly contend, this ignores the potentially offsetting effects of participant planted acres and nonparticipant planted acres. Higher support prices may actually reduce production as increased participation in government programs results in more acres being idled in land diversion programs. Thus, it is possible that an increase in support prices may result in an increase in participant planted acres that is smaller than the decrease in nonparticipant planted acres. The effective policy proxy variables do not account for changes in participation in the commodity program and
thus ignore changes in program and nonprogram planted acres. To remove these policy variable response restrictions, de Gorter and Paddock advance a corn supply response model that explicitly accounts for the discrete program participation choice, as well as the continuous planting decision.

This paper extends the model of de Gorter and Paddock and presents a corn and soybean acreage response model that incorporates the corn program participation decision in the determination of planted acres for corn and soybeans. The model provides a means of analyzing the effects of policy parameter changes on the participation rate, the corn acres planted by participants and nonparticipants, corn yields, corn production, and soybean planted acres.

First, the structure of the model is given and each equation is discussed in turn. Second, estimation results are provided and discussed. Third, the effects of three separate policy parameter changes are analyzed for the 1985 crop. The policy changes are a 10 percent decrease in the target price, an increase of the set-aside rate from 10 percent to 20 percent, and the inclusion of a 10 percent paid diversion, paid at the rate of $1.50 per bushel.

Corn and Soybean Supply Model Structure

The model consists of five behavioral equations and three identities. The model endogenously determines the corn program participation rate, total corn acres planted, participant planted corn acres, nonparticipant planted corn acres, corn yield, corn acres.
harvested, total corn production, and soybean acres planted. Table 1 provides definitions of the endogenous variables and the exogenous variables. Below is provided the general form of the model; each equation will be discussed in turn.

\[\text{GOPART} = F(\text{GOPRTNR, CONPNR, SOYNPNR}) \]

\[\text{COAPLU9} = F(\text{CONPNR}/\text{SOYNPNR}, (\text{COPART}/100) \times \text{COABST} \times (\text{CODIVR} + \text{CODIVA})) \]

\[\text{COAPLFT} = (\text{COPART}/100) \times \text{COABST} \times (1 - \text{CODIVR} - \text{CODIVA}) \]

\[\text{COAPLNP} = \text{COAPLU9} - \text{COAPLFT} \]

\[\text{COYD} = F(\text{TREND}, (\text{COPART}/100) \times \text{COABST} \times (\text{CODIVR} + \text{CODIVA})) \]

\[\text{COAHAU9} = F(\text{COAPLU9, TREND}) \]

\[\text{COSPR} = \text{COAHAU9} \times \text{COYD} \]

\[\text{SOYSA} = F(\text{SOYNPNR, CONPNR, (COPART}/100) \times \text{COABST, TREND}) \]

The corn program participation decision is based on a comparison of

the expected corn net returns per acre with participation and with nonparticipation, and with the expected net return per acre from soybean production. Thus, the corn program participation rate, \((11) \), is a function of expected participant corn net return, expected nonparticipant corn net return, and expected soybean net return. Increases in participant net return are expected to have a positive effect on program participation, while increases in nonparticipant corn and soybean net returns are expected to have a negative effect on program participation. The model assumes that soybeans are the only alternative crop.
Table 1. Variable definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPART</td>
<td>Corn program participation rate, percent of total base acres in compliance with program provisions</td>
</tr>
<tr>
<td>COPRNR</td>
<td>Expected corn net returns for program participants, dollars per acre</td>
</tr>
<tr>
<td>CONPNR</td>
<td>Expected corn net returns for nonparticipants, dollars per acre</td>
</tr>
<tr>
<td>SOYNPNR</td>
<td>Expected soybean net return, dollars per acre</td>
</tr>
<tr>
<td>COAPLU9</td>
<td>Total corn acres planted, millions of acres</td>
</tr>
<tr>
<td>COAPLPT</td>
<td>Participant planted corn acres, millions of acres</td>
</tr>
<tr>
<td>COAPLN8</td>
<td>Nonparticipant planted corn acres, millions of acres</td>
</tr>
<tr>
<td>COABST</td>
<td>Total corn base acres, millions of acres</td>
</tr>
<tr>
<td>CODIVR</td>
<td>Proportion of total participant base acres set aside</td>
</tr>
<tr>
<td>CODIVA</td>
<td>Proportion of total participant base acres diverted</td>
</tr>
<tr>
<td>COYD</td>
<td>Corn yield, bushels per acre</td>
</tr>
<tr>
<td>TREND</td>
<td>Time trend</td>
</tr>
<tr>
<td>COAHAU9</td>
<td>Total corn acres harvested, millions of acres</td>
</tr>
<tr>
<td>COSPR</td>
<td>Total corn production, millions of bushels</td>
</tr>
<tr>
<td>SOYSA</td>
<td>Total soybean acres planted, millions of acres</td>
</tr>
<tr>
<td>COLOAN</td>
<td>Corn price support loan rate, dollars per bushel</td>
</tr>
<tr>
<td>COFFML</td>
<td>Expected corn price, previous crop year's season average price, dollars per bushel</td>
</tr>
<tr>
<td>DPS</td>
<td>Direct price support payment, dollars per bushel</td>
</tr>
<tr>
<td>COYDT</td>
<td>Corn trend yield, bushels per acre</td>
</tr>
<tr>
<td>COPTGT</td>
<td>Corn target price, dollars per bushel</td>
</tr>
<tr>
<td>COYDPRG</td>
<td>Corn program yield, bushels per acre</td>
</tr>
<tr>
<td>COEDP</td>
<td>Effective diversion payment, dollars per bushel</td>
</tr>
<tr>
<td>COVC</td>
<td>Corn variable cost, dollars per acre</td>
</tr>
<tr>
<td>SOYDT</td>
<td>Soybean trend yield, bushels per acre</td>
</tr>
<tr>
<td>SOYVC</td>
<td>Soybean variable cost, dollars per acre</td>
</tr>
<tr>
<td>USFW</td>
<td>1 divided by the U.S. wholesale price index (1980 = 100)</td>
</tr>
<tr>
<td>DM17173</td>
<td>Dummy variable, 1 if year 1971-1973, 0 otherwise</td>
</tr>
<tr>
<td>DM1**</td>
<td>Dummy variable, 1 if year**, 0 otherwise; ** = 74, 75, 76, 77, 80, 81, 82</td>
</tr>
</tbody>
</table>
Equations (9) to (11) detail the derivation of participant net returns, nonparticipant net returns, and soybean net returns, respectively.

\[
\text{COPRTNR} = \max \left[\text{COPFML}, \text{COLOAN} + \text{DPS} \right] \times (1 - \text{CODIVR} - \text{CODIVA} \times \text{COYDT}) \\
+ (\text{COPTGT} - \text{COPFML}) \times (1 - \text{CODIVR} - \text{CODIVA}) \times \text{COYDPGR} \\
+ \text{CODIVA} \times \text{COEDP} \times \text{COYDPGR} - \text{COVC} \times (1 - \text{CODIVR} - \text{CODIVA})
\]

\[
\text{CONPNR} = (\text{COPFML} \times \text{COYDT} - \text{COVC})
\]

\[
\text{SOYNPNR} = (\text{SOYPFML} \times \text{SOYYOT} - \text{SOYVC})
\]

Producers are assumed to have naive price expectations and to base their yield projections on an exogenous trend yield. In the first component of the participant net return calculation, (9), the expected price is the maximum of the expected market price and of the loan rate plus the direct price support payment. (The direct price support payment was paid on total production in the 1962 through 1965 crops.) This maximum is multiplied by the proportion of base acres in production, \((1 - \text{CODIVR} - \text{CODIVA})\). \text{CODIVR} is the proportion of base acres idled in any unpaid set-aside, and \text{CODIVA} is the proportion of base acres idled under any paid diversion provisions. This product is multiplied by the exogenous trend yield, \text{COYDT}. In the next component of the participant net return derivation is the expected deficiency payment, which is the target price, \text{COPTGT}, less the expected market price, \text{COPFML}. The deficiency payment is multiplied by the proportion of base acres in production and then multiplied by the program yield,
(The target price was set equal to the expected market price when no deficiency payments were made, or when only advance deficiency payments were paid [1969-1973], and when market prices were above the target price [1974-1977 and 1980-1981].)

The next component is the paid diversion, which equals the proportion of base acres idled under the paid diversion times the effective diversion payment, times the program yield. (The effective diversion payment was calculated as a weighted average of diversion payment rates when more than one diversion option was available. The weights represent the fraction of total paid diverted acres removed under each diversion provision.) The fourth component is the variable cost per acre multiplied by the proportion of base acres planted in compliance with program provisions. (No cost is assumed for idled acres, since in many years participants could graze livestock for limited time periods.) Subtracting the fourth component from the sum of the first three components gives the participant net return.

The expected net returns for nonparticipants planting corn, (10), and soybeans, (11), on a per acre basis are simply the expected market prices times the trend yield minus a per acre variable cost for the respective crops. In the model, the net returns are deflated by the wholesale price index, USPW.

Total corn acres planted, (2), is determined by the ratio of nonparticipation net returns to soybean net returns. This explanatory variable is expected to have a positive influence on total planted
acreage, since increasing returns of nonparticipant corn would induce increased corn plantings and increases in soybean net returns would decrease corn plantings. Also, the corn acres set aside and diverted \((\text{COPART/100}) \times \text{COABST} \times (\text{CODIVR} + \text{CODIVA})\) is expected to have a negative effect on total corn acres planted. Corn acres set aside and diverted is a product of the participation rate, as a fraction, times total base acres times the proportion of base acres set aside and diverted. Participant planted acres, (3), which is derived from an identity, equals the participation rate times total base acres times the proportion of base acres in production. Nonparticipant planted acres, (4), are total corn acres planted minus participant planted acres.

Corn yield, (5), used to determine total corn production, is a function of a trend to capture advances in technology and of the number of corn acres set aside and diverted \([\text{COPART/100} \times \text{COABST} \times (\text{CODIVR} + \text{CODIVA})]\). The latter explanatory variable is included to capture the effect of intensified production practices on nondiverted land and thus is expected to have a positive effect on the corn yield. Total corn acres harvested, (6), is simply a function of total planted acres and a time trend. The trend captures the increased harvesting of total planted acres over the sample period, and thus a positive sign is hypothesized for the trend's coefficient. Total corn production, (7), is total planted acres multiplied by the endogenous yield. Soybean acres planted, (8), is hypothesized to be positively influenced by soybean net returns and negatively affected by nonparticipant corn net returns. Also, the number of acres removed by corn program
participants, \((\text{COPART}/100) \times \text{COABST}\), is hypothesized to have a negative effect on soybean acres planted because of an assumed implicit total land constraint. A time trend is also included as an explanatory variable to capture the increase in soybean acres planted over the sample period.

Estimation Results

The sample period for estimation was 1961-1985, and the model was estimated with ordinary least squares. The data used in estimation and to derive the expected net returns were obtained from USDA's *Feed Situation*, *Agricultural Statistics*, *News*, and *ASCS Commodity Fact Sheet*. The variable cost data and the wholesale price index were obtained from the data bank of the Center for Agricultural and Rural Development. In the estimation results that follow, students' t-statistics are presented in parentheses below the estimated coefficients, and elasticities are provided in brackets below the t-statistic values. Durbin-Watson and \(R^2\) statistics are also given for each equation. A discussion of relevant coefficients and variables follows the estimated model.

Corn Participation Rate

\[
\text{COPART} = 62.65 + (0.44) \times \text{COPRTNR} \times \text{USPW} - 0.13 \times \text{CONPNR} \times \text{USPW} - 0.39 \times \text{SOYNPNR} \times \text{USPW} + 29.39 \times \text{DM17173} - 61.78 \times \text{DM174}
\]

(12)

\[
\begin{array}{ccc}
(5.93) & (3.20) & (1.23) \\
[1.22] & [-0.33] & \\
\end{array}
\]

\[
\begin{array}{ccc}
(4.31) & (7.40) & (-5.90) \\
[-1.03] & & \\
\end{array}
\]
- 66.68 * DM175 - 74.16 * DM176 - 32.31 * DM177
 (-4.97) (-8.16) (3.65)
- 54.84 * DM180 - 57.54 * DM181 - 32.39 * DM182
 (-8.83) (-8.68) (-5.16)

R² = 0.98 D.W. = 2.16

Total Corn Acres Planted

COAPLU9 = 79.51 + 3.04 * (CONPNR/SOYNPNR) - 0.67 * (COPART/100) (13)
 (29.26) (1.30) (10.41)
 [0.39] [-0.11]

* COABST * (CODIVR + CODIVA) - 8.15 * DM183
 (-2.74)

R² = 0.91 D.W. = 1.27

Participant Planted Corn Acres

COAPLPT = (COPART/100) * COABST * (1 - CODIVR - CODIVA) (14)

Nonparticipant Planted Corn Acres

COAPLNP = COAPLU9 - COAPLPT (15)
Corn Yield

$$\text{COYD} = -4956.42 + 2.56 \times \text{TREND} + 0.38 \times \left(\text{COPART}/100\right) \times \text{COABST} \quad (16)$$

$$(-12.03) \quad (12.28) \quad (2.41)$$

$$[0.05]$$

$$\times (\text{CODIVR} \times \text{CODIVA}) - 14.69 \times \text{DM170} - 15.78 \times \text{DM174}$$

$$(-2.95) \quad (-3.16)$$

$$- 12.01 \times \text{DM180} - 38.01 \times \text{DM183}$$

$$(-2.47) \quad (-6.49)$$

$$R^2 = 0.94 \quad \text{D.W.} = 1.95$$

Total Corn Acres Harvested

$$\text{COAHAU9} = -169.92 + 0.88 \times \text{COAPLU9} + 0.09 \times \text{TREND} \quad (17)$$

$$(-1.99)(22.18) \quad (1.92)$$

$$[1.02]$$

Total Corn Production

$$\text{COSPR} = \text{COAHAU9} \times \text{COYD} \quad (18)$$

Soybean Acres Planted

$$\text{SOYSA} = 3741.66 + 0.102 \times \text{SOYNPNR} \times \text{USPW} - 0.067 \times \text{CONFPN} \times \text{USPW} \quad (19)$$

$$15.27 \quad (2.57) \quad (2.45)$$

$$[0.24] \quad [-0.15]$$

$$+ 1.92 \times \text{TREND} - 0.05 \times \left(\text{COPART}/100\right) \times \text{COABST}$$

$$15.47 \quad (1.17)$$

$$[-0.04]$$

$$R^2 = 0.90 \quad \text{D.W.} = 1.24$$
The coefficients in the participation rate equation, (12), have the hypothesized signs. Except for the one on CONPNR, the coefficients are significant at the 99 percent confidence level. The results suggest that the participation choice is heavily based on a comparison of participant net return and soybean net return and that nonparticipant net return has less weight in the decision process. Dummy variables were included for years in which the corn program had no effect (1974 to 1977, 1980, and 1981). Dummy variables also were included for the 1971-1973 and 1982 crops. The dummy variable for the 1971-1973 crops was included to account for the cross compliance provisions imposed, and the dummy variable for the 1982 crop was included because it was an outlier.

The estimates of the total ares planted equation, (13), imply an inelastic response to changes in nonparticipant corn or soybean net returns once the participation decision has been made. The coefficient on the expected net return ratio has the anticipated sign, but it is not significant at conventional levels. The acres diverted and set aside have a negative and highly significant effect on total corn acres planted. The coefficient is significantly different from negative one at the 99 percent significance level. This would suggest a relatively high amount of slippage present, since an acre diverted or set aside removes two-thirds of an acre of total corn plantings. The dummy variable for the 1983 crop is included because of the Payment-in-Kind program.
In the corn yield equation, (16), all variables have the hypothesized signs and are significant at conventional levels. Acres diverted and set aside have a positive influence on yields because of the adoption of more intensive production practices on nondiverted acres. The dummy variables for the 1970, 1974, 1980, and 1983 crops are included to account for low yields because of unfavorable weather conditions and pervasive disease outbreaks.

The explanatory variables in the total area harvested equation, (17), have the correct signs and are both significant at the 90 percent significance level. The variables in the soybean acreage equation, (19), have the anticipated signs and all but one are significant at the 95 percent significance level. The exception is the area planted and idled by program participants. It is insignificant at conventional levels but is retained to capture the effects of changes in program participation, and thus the removal of acres available for soybeans.

Policy Variable Simulations

Three separate policy parameter changes affecting the 1985 crop were made in order to analyze the effect on the endogenous variables. The three policy changes were (1) a 10 percent decrease in the target price, from $3.03 per bushel to $2.73 per bushel; (2) an increase in the set-aside rate from 10 percent to 20 percent; and (3) an introduction of a 10 percent paid diversion, paid at the rate of $1.50 per bushel on diverted acres, assuming all participants comply. The effects on selected endogenous variables when compared with baseline solutions
follow. Table 2 presents the effects of the target price decrease. Tables 3 and 4 present the results of the set-aside increase and the introduction of a paid diversion, respectively.

The decrease in the target price by 10 percent in 1985 causes a dramatic drop--21 percent--in the participation rate. Nonetheless, the decline in participant planted acreage is almost perfectly offset by an increase in nonparticipant planted acreage. The yield decreases as less land is idled, and total production demonstrates a small increase. Soybean planted acreage increases slightly, as most of the acreage leaving the corn program is shifted to nonparticipant corn production.

The increase in the set-aside requirement from 10 to 20 percent decreases the participation rate by 11 percent. Total acres planted decline by 4 percent; the increase in nonparticipant planted acres does not offset the decline in participant planted acres that is due to the increased set-aside requirement and the drop in participation. The corn yield increases slightly as more intensive production practices are applied. However, since the yield increase does not displace the decrease in total planted acres, total production declines by 2.7 percent. Soybean acres increase slightly.

The introduction of a 10 percent paid diversion, paid at the rate of $1.50 per bushel on diverted acres, decreases the participation rate marginally. Total planted acres decline by 5.2 percent as additional acres are diverted. The corn yield increases by 1.8 percent as more acres are idled, and total production declines because the yield increase fails to offset the effect of the decline in total planted
Table 2. Effects of a decrease in the target price by 10 percent in 1985

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline</th>
<th>Simulation</th>
<th>Percentage change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation rate</td>
<td>70.90%</td>
<td>58.80%</td>
<td>-21.0</td>
</tr>
<tr>
<td>Total corn acres planted</td>
<td>79.02</td>
<td>79.02</td>
<td>+0.8</td>
</tr>
<tr>
<td>Corn yield</td>
<td>118.00</td>
<td>117.65</td>
<td>-0.3</td>
</tr>
<tr>
<td>Corn production</td>
<td>8197.00</td>
<td>8238.00</td>
<td>+0.5</td>
</tr>
<tr>
<td>Soybean acres</td>
<td>70.40</td>
<td>70.80</td>
<td>+0.6</td>
</tr>
</tbody>
</table>

Table 3. Results of an increase in the set-aside requirement from 10 to 20 percent in 1985

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline</th>
<th>Simulation</th>
<th>Percentage change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation rate</td>
<td>70.90%</td>
<td>64.00%</td>
<td>-11.0</td>
</tr>
<tr>
<td>Total corn acres planted</td>
<td>79.02</td>
<td>75.80</td>
<td>-4.0</td>
</tr>
<tr>
<td>Corn yield</td>
<td>118.00</td>
<td>119.84</td>
<td>+1.5</td>
</tr>
<tr>
<td>Corn production</td>
<td>8197.00</td>
<td>7980.37</td>
<td>-2.7</td>
</tr>
<tr>
<td>Soybean acres</td>
<td>70.40</td>
<td>70.60</td>
<td>+0.3</td>
</tr>
</tbody>
</table>

Table 4. Results of the introduction of a 10 percent paid diversion in 1985

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline</th>
<th>Simulation</th>
<th>Percentage change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation rate</td>
<td>70.90%</td>
<td>70.23%</td>
<td>-0.9</td>
</tr>
<tr>
<td>Total corn acres planted</td>
<td>79.02</td>
<td>75.08</td>
<td>-5.2</td>
</tr>
<tr>
<td>Corn yield</td>
<td>118.00</td>
<td>120.20</td>
<td>+1.8</td>
</tr>
<tr>
<td>Corn production</td>
<td>8197.00</td>
<td>7932.50</td>
<td>-3.3</td>
</tr>
<tr>
<td>Soybean acres</td>
<td>70.40</td>
<td>70.36</td>
<td>-0.05</td>
</tr>
</tbody>
</table>
acres. Soybean acreage declines slightly as more acres are devoted to participant planted and idled acres.

Summary

The corn and soybean supply response model presented provides a means of capturing the effect of changes in policy parameters on participant and nonparticipant corn acreage planted. The model is an improvement over traditional approaches because it accounts for the possible offsetting effects between participant and nonparticipant corn acres planted and for the increase in yields when more acres are idled. However, the model is not complete, since corn and soybean prices remain exogenous. Also, the naive price expectations assumption is far from adequate, and more advanced models of price expectations have been proposed. Nevertheless, the model provides a start at incorporating the discrete participation choice with the continuous planting decision in a complete modeling framework.
References

