Research Notes: Soybean Linkage Tests

R. I. Buzzel

Agriculture Canada

Follow this and additional works at: http://lib.dr.iastate.edu/soybeangenetics

Part of the Agronomy and Crop Sciences Commons

Recommended Citation

Available at: http://lib.dr.iastate.edu/soybeangenetics/vol4/iss1/4

This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Soybean Genetics Newsletter by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
IV. RESEARCH NOTES

AGRICULTURE CANADA
Research Station
Harrow, Ontario

1) Soybean linkage tests.

F_2 linkage results are presented in Table 1 with $a = XY$, $b = Xy$, $c = xY$, and $d = xy$ for the gene pairs listed in the form of Xx and Yy. Percentage recombination was obtained as previously (Buzzell, 1974).

The fg_1 gene appears to be loosely linked with dt_1 in Linkage Group 5. Scoring for dt_1 was done on F_2 plants and F_3 progenies; for the origin of $OX250$, see Buzzell (1975).

An estimate of the linkage between fg_3 and I was obtained, but additional work is needed to map fg_3 and fg_4 in Linkage Group 1. Since 'Kingwa' carries td (Bernard, 1975), I and t were scored on the basis of the presence or absence of quercetin glycosides in the leaves (Buttery and Buzzell, 1973).

Table 1
Soybean F_2 linkage tests

<table>
<thead>
<tr>
<th>Genes</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Sum</th>
<th>%R</th>
<th>SE</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>$OX250$ (fg_1 dt_1) X $OX922$ (Fg_1 Dt_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fg_1 fg_1 Dt_1 dt_1</td>
<td>135</td>
<td>31</td>
<td>33</td>
<td>16</td>
<td>215</td>
<td>39.8</td>
<td>3.0</td>
<td>c</td>
</tr>
<tr>
<td>$Blackhawk$ (fg_2 Fg_3 t ep i^i) X $Kingwa$ (Fg_2 fg_3 T Ep i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fg_2 fg_2 Fg_3 fg_3</td>
<td>122</td>
<td>42</td>
<td>37</td>
<td>18</td>
<td>219</td>
<td>54.9</td>
<td>3.2</td>
<td>r</td>
</tr>
<tr>
<td>Fg_2 fg_2 T t</td>
<td>126</td>
<td>38</td>
<td>44</td>
<td>11</td>
<td>219</td>
<td>52.6</td>
<td>3.5</td>
<td>c</td>
</tr>
<tr>
<td>Fg_2 fg_2 Ep ep</td>
<td>117</td>
<td>45</td>
<td>40</td>
<td>13</td>
<td>215</td>
<td>52.3</td>
<td>5.3</td>
<td>c</td>
</tr>
<tr>
<td>Fg_2 fg_2 i^i</td>
<td>126</td>
<td>36</td>
<td>39</td>
<td>14</td>
<td>215</td>
<td>46.8</td>
<td>4.9</td>
<td>c</td>
</tr>
<tr>
<td>Fg_3 fg_3 T t</td>
<td>111</td>
<td>48</td>
<td>59</td>
<td>1</td>
<td>219</td>
<td>13.7</td>
<td>6.6</td>
<td>r</td>
</tr>
</tbody>
</table>

References

1) Decapitation technique to screen for photoperiod insensitivity in soybean, *Glycine max* (L.) Merrill.

The lack of a suitable screening technique for photoperiod response has prevented the identification of photoperiod-insensitive (*P*$_I$) genotypes. In an *F$_2$* population, each plant has a specific genotypic constitution. To determine the photoperiod response, each *F$_2$* plant should be subjected to at least two different photoperiods. In rice, this was accomplished by separating the component tillers of each plant and subjecting them to different photoperiods (Chandraratna, 1955).

To obtain more than one individual of the same *F$_2$* genotype early in the growth stage, the following three different methods were tried: (a) rooting of cuttings, (b) grafting to a common stock, and (c) 'decapitation'. To test the above techniques, two strains identified as photoperiod insensitive, PI 194.647 (Acc. 215) and PI 248.407 (Acc. 1322) and one photoperiod-sensitive (PS) strain, Acc. 2120 (a pureline from PI 86.736) were used.

Rooting of cuttings: Ten plants from each strain were grown under long days, and cuttings of equal length were taken from each plant and rooted. The objective was to obtain two or more individuals for each *F$_2$* genotype for testing under different photoperiods. This technique did not work satisfactorily because the time taken for rooting varied with variety, and the cuttings were not satisfactorily rooted.

Grafting: Ten plants from each strain were grown as above. In this method, the cuttings were grafted to a common stock plant instead of rooting. The plants used as stock were grown to the first unifoliate leaf stage and cut between the unifoliate and cotyledonary node. The test cuttings (scions) were wedge grafted. The scion and stock were held together by a plastic clip. The graft union time between plants within and between varieties varied considerably. Therefore, this technique was also not satisfactory.