7-1980

Inspection of the Lower Half of Wing Lap Joints with EMATs

J. F. Martin
Rockwell International

P. J. Hodgetts
Rockwell International

R. H. Houston
Rockwell International

R. Bruce Thompson
Rockwell International

Donald O. Thompson
Rockwell International

Follow this and additional works at: http://lib.dr.iastate.edu/cnde_yellowjackets_1979

Part of the Materials Science and Engineering Commons

Recommended Citation
http://lib.dr.iastate.edu/cnde_yellowjackets_1979/82

This 13. New Technology Applications is brought to you for free and open access by the Interdisciplinary Program for Quantitative Flaw Definition Annual Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Proceedings of the DARPA/AFML Review of Progress in Quantitative NDE, July 1978–September 1979 by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Inspection of the Lower Half of Wing Lap Joints with EMATs

Abstract
Detection of fatigue cracks at the fastener holes in the lower portion of the CSA wing lap joint is complicated by lack of a direct line of access, and by the presence of fasteners and sealant material. Furthermore, any successful detection procedure must take into account the wide variation in the geometrical features of the joint. In this work, periodic permanent magnet EMATs (electromagnetic-acoustic transducers) have been employed to excite the n=0 horizontally polarized shear mode of the skin at 200 kHz and 250 kHz. These modes are partially transmitted into the overlap region joined by the fastener. Spectral analysis of suitably time gated and apodized portions of the reflected waveform have allowed simulated cracks growing out of fastener holes to be detected, and preliminary sizing algorithms have been developed.

Keywords
Nondestructive Evaluation

Disciplines
Materials Science and Engineering
INSPECTION OF THE LOWER HALF OF WING LAP JOINTS WITH EMATS

J.F. Martin, P.J. Hodgetts, R.H. Houston, R.B. Thompson, and D.O. Thompson
Rockwell International Science Center
Thousand Oaks, California 91360

ABSTRACT

Detection of fatigue cracks at the fastener holes in the lower portion of the C5A wing lap joint is complicated by lack of a direct line of access, and by the presence of fasteners and sealant material. Furthermore, any successful detection procedure must take into account the wide variation in the geometrical features of the joint. In this work, periodic permanent magnet EMATs (electromagnetic-acoustic transducers) have been employed to excite the n=0 horizontally polarized shear mode of the skin at 200 kHz and 250 kHz. These modes are partially transmitted into the overlap region joined by the fastener. Spectral analysis of suitably time gated and apodized portions of the reflected waveform have allowed simulated cracks growing out of fastener holes to be detected, and preliminary sizing algorithms have been developed.

SUMMARY

A major problem in aircraft maintenance is the detection of cracks growing from fastener holes in wing lap joints. As shown in Fig. 1, the problem is particularly difficult in the lower half of the joint, where direct measurement is obscured by intervening metallic and sealant layers. The former is opaque to all but low frequency eddy currents, whereas the latter has a variable, and often high, attenuation for ultrasonic waves in the MHz frequency range.

*This research was sponsored by the Center for Advanced NDE operated by the Rockwell International Science Center, for the Advanced Research Projects Agency and the Air Force Materials Laboratory under Contract No. F33615-74-C-5180.
transmitter to the receiver. In effect, the receiver acts as a radio antenna. This leakage has been found to be quite useful since it provides a measure of the true zero of time for measurement of acoustic delays. The signal centered near 60 \(\mu s \) is the reflection from the first step encountered in the wing lap joint. This merges with the reflection from the extreme plate edge, which is centered at approximately 80 \(\mu s \). At 110 \(\mu s \), the reflection from the end of the stiffening rib (member C) is just beginning.

Figure 3c shows the signal after the Hanning apodization function is used to gate out all but the flaw information. Figure 3d is the Fourier transform of the waveform shown in Fig. 3c.

Note that Fig. 3a shows two paths for an acoustic beam to travel: \(L_1 \) and \(L_2 \). The concept used to guide the analysis here is that uncracked holes yield a signal which is a sum of the signals from both paths \(L_1 \) and \(L_2 \). That sum will show, at some angle \(\theta \), an interference null in the Fourier spectrum. The size of the signal due to the path \(L_2 \) will decrease as the crack or slot increases in length and therefore the depth of the interference null will correspondingly decrease. A theoretical model of the wing lap joint was constructed based on a single mode equivalent circuit. When combined with measurements of the geometry of the mock-up, the calculation of the structure transfer function for this model affirmed the presence of this interference null within the bandwidth of the EMAT transfer function (Fig. 4b). Figure 4c shows the results when an experiment with \(\theta = 45^\circ \) was performed on the wing mock-up. Indeed, there is an interference null, and its depth does decrease as the saw slot length increases. This allows a measurement of the length of the slot based on this null only.

The effort in Ref. 1 also included experiments on a real wing lap joint supplied by AFML into which a 0.100" saw slot was inserted. Both reflection and transmission data was collected and analyzed. Figure 5 shows the experimental setup and the results. With the bolt removed, the 0.100" saw slot definitely decreased the depth of the interference null. Furthermore, the data in transmission indicate that the acoustic energy transmitted through the lap joint was also affected by the presence of the saw slot. Hence, this 1978 work demonstrated the feasibility of using EMATs and horizontally polarized shear waves to detect fatigue cracks growing from fastener holes in the lower half of the joint. Saw slots originating in the fastener holes were successfully detected and the ultrasonic response quantified in terms of slot length. However, the primary limitations of that study included a high noise level, the lack of an opportunity to study

PROCESSED WAVEFORMS

![Fig. 3 Signal processing](image-url)
CRACK DESTROYS INTERFERENCE NULL BY ELIMINATING ONE WAVE PATH

(a)

THEORETICAL MODEL

(b)

Fig. 4 Data on mock-up sample

LABORATORY SYSTEM

REFLECTION DATA

TRANSDUCER LOCATIONS

TRANSMISSION DATA

Fig. 5 Data on real wing lap joint
real fatigue cracks in assembled wing joints, and
the lack of an opportunity to explore procedures
which were adaptable to changes in part geometry.

The new study, in progress now, has as its
objectives:

1. to achieve refinement of the system developed in Ref. 1 and to establish procedures
to distinguish flaw responses from sample-
geometry-determined changes in the ultrasonic response;
2. to prepare, and use in experiments, a mini-
imum of three wing joint specimens, two of
which would contain laboratory grown in-
terior layer corner fatigue cracks;
3. to develop a preliminary configuration de-
sign of an EMAT system suitable for field
inspection of wing lap joints for such

In order to achieve objective 1., the 250 kHz
EMATs were replaced with 200 kHz devices in order
to avoid all but the n=0 mode of acoustic propaga-
tion. The power supplies for the amplifying electronics were replaced. Finally and most important of all, the analog signal processor was replaced by a minicomputer-based data acquisition and
analysis system. The computer is used to acquire,
gate, and Fourier transform the time waveforms. A
few of the resulting advantages are:

1. Averaging of up to 250 signals can be used to
improve the signal-to-noise ratio.
2. Data can be collected once, and then the
location of the gate and the type of
apodization used can be varied for the same
data. This allows accurate comparison of
the effects of the differences of these different parameters.
3. The graphical display capabilities of the
computer can be employed for comparison
purposes.

Figure 6 shows the results of the first
experiments on the original mock-up, unassembled. Here \(\theta \) was varied over 5 angles from 40° to 50°. Notice that the curves generated by the Fourier transform for the hole with no slot are all very similar in shape. However, the same angles for a slotted hole yield curves very dissimilar in
shape. This kind of comparison could be easily
quantified with appropriate software in the
computer for a yes/no decision on whether a crack
was present. Furthermore, this technique may
prove to be less geometry dependent than the use
of data at just one \(\theta \).

The current directions of the new study
include:

1. detailed mapping of the acoustic energy
field in the region of the fastener hole
with a special, small area, EMAT probe;
2. preparation of 2 fully assembled specimens
with laboratory-induced fatigue cracks;
3. investigations of the effects of the seal-
ant and other geometrical variables;
4. selection of the design parameters of a
fieldable instrument.

REFERENCE

1. "Detection of Cracks in the Inaccessible
Lower Half of Wing Lap Joints Using EMATs," Air Force Materials Laboratory, Contract No.
F33614-74-C-5180, Science Center Report
No. SC955.445A.

COMPUTER USED TO GATE AND ANALYZE SIGNALS

- SIGNAL AVERAGING USED TO IMPROVE SIGNAL-TO-NOISE RATIO.
- FLEXIBILITY IN SELECTION OF GATE LOCATION AND APODIZATION.

Fig. 6 New results as function of angle.

571