1991

Implications of Increased Regional Concentration and Oligopsonistic Coordination in the Beef Packing Industry

Azzeddine M. Azzam
University of Nebraska - Lincoln

John R. Schroeter
Iowa State University, johns@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/econ_las_pubs

Part of the Agricultural and Resource Economics Commons, Growth and Development Commons, and the Regional Economics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/econ_las_pubs/85. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Economics at Iowa State University Digital Repository. It has been accepted for inclusion in Economics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Implications of Increased Regional Concentration and Oligopsonistic Coordination in the Beef Packing Industry

Abstract
This article proposes an oligopsony pricing model for projecting the effects of increased concentration or oligopsonistic coordination in beef packing using simulation methods. The model combines an explicit behavioral theory of packing firms with an attempt to respect the regional scope of cattle procurement markets. Our results indicate less danger of falling cattle prices, as a result of increased packer concentration or coordination, than do results from conventional econometric studies.

Keywords
beef packing, conjectural variation, oligopsony, regional concentration, simulation

Disciplines
Agricultural and Resource Economics | Growth and Development | Regional Economics

Comments
This is an article from Western Journal of Agricultural Economics 16 (1991): 374. Posted with permission.
Implications of Increased Regional Concentration and Oligopsonistic Coordination in the Beef Packing Industry

Azzeddine M. Azzam and John R. Schroeter

This article proposes an oligopsony pricing model for projecting the effects of increased concentration or oligopsonistic coordination in beef packing using simulation methods. The model combines an explicit behavioral theory of packing firms with an attempt to respect the regional scope of cattle procurement markets. Our results indicate less danger of falling cattle prices, as a result of increased packer concentration or coordination, than do results from conventional econometric studies.

Key words: beef packing, conjectural variation, oligopsony, regional concentration, simulation.

Concern about the impact on live cattle prices of increased concentration in the beef packing industry has prompted several empirical studies. Notable examples of relevant econometric work in the Bain tradition [hereafter, the "structure-conduct-performance (or SCP) approach"] include Ward (1981, 1985); Menkhau, St. Clair, and Ahmadad; and Quail et al. Other work, including Azzam and Pagoulatos; Schroeter (1988); and Schroeter and Azzam, uses the conjectural variation approach to modeling equilibrium in homogeneous product oligopoly and tests for packer price-taking behavior in both factor and output markets. Both approaches have the same objective: to determine how recent (or future) increases in concentration have affected (or will affect) cattle prices. Each approach has its shortcomings, however.

The SCP approach seeks to infer the degree of competition in cattle procurement markets through ad hoc models relating a performance measure (live cattle price) to structural characteristics (including concentration) using regional data. The structural characteristics in the empirical models are supplemented by other components believed by the investigator to affect performance. The problem is that the models are not explicitly connected to behavior at the firm level. To begin, the manner in which variables are chosen for use in estimation is often "more akin to a literature search for a list of possible variables than the development of a coherent structure-performance model" (Sawyer, p. 296). More fundamentally, the models and estimation procedures fail to test or impose important restrictions implied by theory (Schroeter 1990). As a result, the empirical estimates from the SCP approach come with no guarantee of consistency with a coherent model of rational firm conduct.

The conjectural variation approach, on the other hand, is explicitly theory based. "The behavioral equations by which firms set price..."
and quantity (are) ... estimated, and parameters of those equations ... directly linked to analytical notions of firm and industry conduct" (Bresnahan, p. 1012). The problem here is that, to date, applications of the conjectural variation approach to the problem of testing competitive behavior in the beef industry have not adequately addressed the fact that relevant cattle procurement markets are regional, not national, in scope.

This article proposes an alternative, non-econometric, procedure for projecting the price effects of increased concentration or oligopsonistic coordination in beef packing. It combines an explicit behavioral theory of beef packing firms with an attempt to respect the regional scope of competition in cattle procurement. The behavioral model is used to derive the relationships among structure, firm conduct, and performance in cattle markets. Not all of the current values of the structure/behavior/performance parameters are directly observable, however, so the model first must be calibrated using estimates of these before it can serve as a basis for simulations of the performance effects of future changes in structure or conduct. Our simulation results suggest somewhat less danger of falling cattle prices due to increasing concentration than do the results of conventional econometric studies utilizing the SCP approach.

A Model of Oligopsony Pricing in Regional Cattle Markets

Let K denote the number of cattle procurement regions. Each packer in every region is assumed to be a perfect competitor in a common national output market with price p. Denote the annual output of packer j in region k by q_{kj}. Adopting the convention of measuring cattle inputs in carcass weight equivalent units, q_{kj} also represents the annual livestock input of packer j in region k. The market inverse cattle supply function in region k is given by $w_k = g(Q_k)$, where w_k is the price of cattle in region k, $Q_k = \sum_{j=1}^{N_k} q_{kj}$ is total cattle sales volume for the year in region k, and N_k is the number of packers in region k. If the jth packer in the kth region has processing cost function $C_k(q_{kj})$, then the packer’s annual profit is given by

$$\pi_j = (p - w_k)q_{kj} - C_k(q_{kj}).$$

Packers choose their cattle input quantities to maximize profit. A firm with market power will internalize the effect that its choice of quantity will have on regional quantity and, in turn, on regional cattle price. The first-order condition for profit maximization is obtained by differentiating the profit function with respect to q_{kj} and setting the result equal to zero, yielding

$$\frac{\partial}{\partial q_{kj}} (p - C_k(q_{kj}) - w_k) = \frac{d}{dq_{kj}} q_{kj} (1 + \lambda_{kj}).$$

Here, $\lambda_{kj} = \frac{d\pi_j}{dq_{kj}}$ and can be interpreted as the jth firm’s conjecture regarding its regional rivals’ responses to a change in its own input. In effect, λ_{kj} identified the jth firm’s degree of market power. But rather than work with the firm-specific λ_{kj}, we follow Clarke and Davies in adopting a parametrization of them that leads to region-specific conduct indices. Assume that the behavior of each firm in region k is consistent with the expectation that its rivals’ proportionate quantity responses will all be a constant multiple, say α_{kj}, of its own proportionate change. That is,

$$\frac{dq_{kj}}{q_{kj}} = \alpha_k \frac{dq_{kj}}{q_{kj}} \quad \text{for all } i \neq j$$

or

$$\frac{dq_{kj}}{dq_{kj}} = \alpha_k \left(\frac{q_{kj}}{q_{kj}} \right) \quad \text{for all } i \neq j.$$

Substituting this expression into the definition of λ_{kj} yields

$$\lambda_{kj} = \alpha_k \left(\frac{Q_k}{q_{kj}} - 1 \right).$$

Defined this way, α_k provides an index, with values between zero and one, of the degree of firms’ implicit coordination in the kth regional cattle market. A value of zero for α_k can be identified with firms anticipating no responses to their output adjustments. This is Cournot conduct, the polar case of noncooperative behavior. When α_k is set to one, equations (2) and (1) imply that output price minus marginal

3 This may not be a tenable assumption. However, since most of the attention seems to have focused on market power in procurement markets rather than output markets, we proceed accordingly.
processing cost is equal to marginal factor cost computed from the region’s aggregate cattle supply curve. Thus, \(\alpha_k = 1 \) signals perfect cattle market collusion among region \(k \)'s packers. 4

Substituting (2) into (1) and multiplying by the \(j \)th firm’s market share yields

\[
(p - w_k) \left(\frac{d\alpha_k}{\alpha_k} \right) - \frac{\alpha_k C'_k(q_{ik})}{Q_k} = Q_k \left(\frac{dw_k}{dQ_k} \right) \left[\frac{d\alpha_k}{Q_k} + \alpha_k \left(\frac{d\alpha_k}{Q_k} - \left(\frac{d\alpha_k}{Q_k} \right)^2 \right) \right].
\]

Summing over firms in the \(k \)th region and dividing by \(w_k \) yields

\[
p - c_k - w_k = \frac{[\alpha_k - H_k(\alpha_k - 1)]}{\epsilon_k},
\]

where \(c_k \) is a market-share weighted average of region \(k \)'s packers’ marginal processing costs, \(\epsilon_k \) is the elasticity of cattle supply in region \(k \), and \(H_k = \sum_{j=1}^N \left(\frac{q_{ij}}{Q_k} \right)^2 \) is the Herfindahl index of concentration in region \(k \).

Under the assumption of a competitive output market, \(p - c_k \) is the value of the marginal product of cattle net of packers’ average marginal processing costs. Since this would equal the factor price under competition, \((p - c_k - w_k)/w_k\) provides a relative measure of the oligopsony distortion in region \(k \)'s cattle market. Denoting this by \(D_k \), we have

\[
D_k = \frac{[\alpha_k - H_k(\alpha_k - 1)]}{\epsilon_k}.
\]

Notice that, for given values of the conduct parameter, \(\alpha_k \), and supply elasticity, \(\epsilon_k \), the distortion increases with concentration, \(H_k \). Thus increasing concentration worsens performance even with completely noncooperative, or Cournot, conduct. For given conduct and concentration, the distortion decreases as supply elasticity increases. Thus even tightly coordinated oligopsony becomes less distortionary as supply responsiveness grows. Finally, for a given concentration and supply elasticity, the distortion increases as \(\alpha_k \) increases and approaches the pure monopsony level, \((1/\epsilon_k)\), as \(\alpha_k \) approaches the value of one consistent with perfect collusion. Specifically, when \(\alpha_k = 1 \), \(H_k \) drops out of the expression: In a joint profit-maximizing input buyers’ cartel, market performance is independent of buyer concentration. From (3), a quantity weighted average of regional oligopsony price distortions can be formed as

\[
D = \frac{\sum_{k=1}^K D_k Q_k}{Q} = \frac{\sum_{k=1}^K \left(\frac{\alpha_k - H_k(\alpha_k - 1)}{\epsilon_k} \right) Q_k}{Q},
\]

where \(Q = \sum_{k=1}^K Q_k \) is national cattle sales volume.

The starting point of each simulation reported in the next section is a “baseline case” which combines estimates of regional quantities and concentration indices, \(\hat{Q}_k \)s and \(\hat{H}_k \)s, with assumed values for the current conduct parameters, \(\hat{\alpha}_k \)s, and an estimate of the national average oligopsony distortion, \(\hat{D} \), formed from industry financial data. Each baseline case is a candidate description of the current situation in the industry. Assuming that supply elasticities are constant across regions, equation (4) can be used to solve for the common value of \(\epsilon \) that is consistent with any particular baseline case:

\[
\hat{\epsilon} = \frac{1}{\hat{D} \hat{Q}} \sum_{k=1}^K \left(\hat{\alpha}_k - \hat{H}_k(\hat{\alpha}_k - 1) \right) \hat{Q}_k,
\]

where \(\hat{Q} = \sum_{k=1}^K \hat{Q}_k \).

Establishing a baseline case enables comparison with “test cases.” These will be characterized by sets of prospective future values for concentration and conduct parameters, \(\hat{H}_k \)s, and \(\hat{\alpha}_k \)s. Assuming that regional supply elasticities will be unaffected by changes in packer concentration or conduct, the regional and national average price distortions corresponding to the test case are
\(D^*_k = \frac{\alpha^*_k - H^*_k (\alpha^*_k - 1)}{\hat{\varepsilon}} \)

and

\(D^* = \sum_{k=1}^{\kappa} D^*_k \frac{Q^*_k}{Q^*} \).

\(D^* \) is the estimate of the national average oligopsony distortion that would result due to the test case's hypothetical changes in concentration and/or conduct. The corresponding effects on national cattle sales volume and average price can be projected given assumptions about the aggregate (that is, national) supply and demand curves. Assume constant elasticity forms for the national market's cattle supply curve,

\(Q = bw^*, \quad e > 0, \)

and derived demand curve

\(Q = dw^*, \quad \eta < 0. \)

At this point, normalize by setting current, or baseline case, values of price and quantity to 1 and 100, respectively. As figure 1 illustrates, the supply price at \(Q = 100 \) will then be \(\hat{w} = 1 \) while the derived demand price at this quantity will be \((1 + \hat{D}) \), where \(\hat{D} \) is the estimate of the current distortion. Substituting these values into equations (8) and (9) and solving for \(b \) and \(d \) yields

\[b = 100 \quad \text{and} \quad d = 100(1 + \hat{D})^{-\eta}. \]

Denote the test case projections of the national market quantity and average price by \(Q^* \) and \(w^* \), respectively. Again referring to figure 1, the point with these coordinates must lie on the supply curve:

\[Q^* = 100(w^*)^e. \]

Moreover, since \(Q^* \) and \(w^* \) must be consistent with an oligopsony distortion of \(D^* \), the demand price at \(Q^* \) must be \(w^*(1 + D^*) \):

\[Q^* = 100(1 + \hat{D})^{-\eta}[w^*(1 + D^*)]. \]

Solving the last two equations for \(Q^* \) and \(w^* \) yields

\[Q^* = 100 \left[\frac{1 + D^*}{1 + \hat{D}} \right]^{\frac{e}{1 - e}} \]

and

\[w^* = \left[\frac{1 + D^*}{1 + \hat{D}} \right]^{\frac{1}{1 - e}}. \]

Simulations

The first step in performing the simulations is to establish the parameters of the baseline case. Bruce Marion provided 1986 data for the regional Herfindahl indices and annual slaughter volumes for the 13 fed cattle marketing regions described in Quail et al. These appear to be the most recent and detailed numbers for regional beef packing concentrations and market shares (table 1). We use them as baseline estimates, \(H_s \) and \(\hat{Q}_s \), of the \(H_s \) and \(Q_s \). For estimates of the elasticities of the national derived demand and supply curves for cattle, we adopt the figures \(e = -.53 \) and \(\hat{\varepsilon} = 1.68 \) obtained by Schroeter (1988) using annual data.

Baseline case estimates of the national average oligopsony distortion, \(\hat{D} \), and the regional conduct parameters, \(\hat{\alpha}_s \), are also required. The test cases are designed to address...
Table 1. Cattle Procurement Regions, Concentration Indices, and Slaughter Volumes for 1986

<table>
<thead>
<tr>
<th>Region (k)</th>
<th>Geographical Description</th>
<th>Herfindahl Index (H_k)</th>
<th>Slaughter Volume (1,000 head)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All of Washington, Oregon, Idaho, and Montana west of the Continental Divide</td>
<td>.5086</td>
<td>1,328</td>
</tr>
<tr>
<td>2</td>
<td>Northern California and Reno, Nevada</td>
<td>.3369</td>
<td>363</td>
</tr>
<tr>
<td>3</td>
<td>Southern California and Arizona</td>
<td>.1505</td>
<td>821</td>
</tr>
<tr>
<td>4</td>
<td>New Mexico and southwest Texas</td>
<td>.7718</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>All of Colorado, western Nebraska, and the southeastern corner of Wyoming</td>
<td>.3044</td>
<td>1,842</td>
</tr>
<tr>
<td>6</td>
<td>North and South Dakota and Montana east of the Continental Divide</td>
<td>.4620</td>
<td>438</td>
</tr>
<tr>
<td>7</td>
<td>Wisconsin, most of Minnesota, and northern Illinois</td>
<td>.3063</td>
<td>1,647</td>
</tr>
<tr>
<td>8</td>
<td>Iowa, eastern Nebraska, southern Minnesota, and Rockport, Missouri</td>
<td>.2068</td>
<td>6,386</td>
</tr>
<tr>
<td>9</td>
<td>Kansas (excluding the southwest corner), the western half of Missouri, and a northern slice of Oklahoma</td>
<td>.7277</td>
<td>1,087</td>
</tr>
<tr>
<td>10</td>
<td>Southwest corner of Kansas, the Oklahoma panhandle, the Texas panhandle, and three counties (Curry, Quay, and Union) in New Mexico</td>
<td>.2143</td>
<td>9,999</td>
</tr>
<tr>
<td>11</td>
<td>Remainder of Texas (excluding those parts in regions 4 and 10) and Oklahoma (excluding the parts in regions 9 and 10)</td>
<td>.1685</td>
<td>665</td>
</tr>
<tr>
<td>12</td>
<td>Eastern Missouri and southern Illinois</td>
<td>.3241</td>
<td>67</td>
</tr>
<tr>
<td>13</td>
<td>Indiana, Michigan, and Ohio</td>
<td>.0893</td>
<td>456</td>
</tr>
</tbody>
</table>

* These are rough geographical descriptions. Readers interested in the precise boundaries of the regions should refer to Quail et al.

† These data were provided by Bruce Marion.

** Studies of dynamic comovements among regional cattle prices provide indirect evidence of the extent of spatial arbitrage. Schroeder and Goodwin found that price shocks in the eastern Nebraska market (in our region 8) trigger contemporaneous (same week) price reactions in the Texas panhandle (in our region 10) of at least 70% of the initial shock. Moreover, the Texas price adjustment to the Nebraska price shock is completed in only two weeks.
nitude of regional supply elasticity will be discussed.

In any particular simulation, the test case’s values for the αs and the H_s are then combined with $\hat{\iota}$ in equation (6) to project regional distortions for the test case. These are averaged in equation (7) to obtain D^*, the projected national average distortion. Finally, D and D^* are combined with estimates of e and η in equations (10) and (11) to determine average price and quantity effects.

Table 2 presents the results of simulations for two different test cases. The last two columns of the table give projections of test case, or “future,” values for cattle market quantity and price. Recall that baseline, or “current,” values of these variables are normalized to 100 and 1, respectively. The first line of the table projects the effects of increasing concentration to the extent of raising each regional Herfindahl index to the level $H_4 = .7718$, the highest measured value in 1986, while preserving completely noncooperative (Cournot) behavior in all regions. Reference to table 1 shows that the degree of consolidation necessary to bring the industry to this level of concentration would be extensive: in 1986, the four largest regions (regions 5, 7, 8, and 10 with a collective market share of nearly 80%) each had Herfindahl index values of less than half of H_4. Region 9 is the only region with a 1986 Herfindahl index value approaching that of region 4, but regions 9 and 4 together accounted for only 4.5% of slaughter. The projected quantity and price effects associated with this very significant change, 1.08% and .64% respectively, are relatively small, however.

Of course, it is natural to suspect that the result of increased concentration would be not merely a less competitive Cournot equilibrium but an outcome reflecting greater concentration and a greater degree of oligopsonistic coordination. The second line of table 2 simulates the effects of a transition from Cournot conduct in all regions to pure monopsony in all regions. This represents the perfectly collusive limiting case of market coordination. When all αs = 1, concentration, measured by the H_s is irrelevant. Even for this extreme scenario, the magnitudes of the changes seem modest: quantity falls by 1.55% and price falls by .93%.

<table>
<thead>
<tr>
<th>Table 2. Simulation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Case Parameters</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>National Market Supply Elasticity</td>
</tr>
<tr>
<td>θ</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

* Herfindahl indices, sums of squared market shares, are often reported as whole numbers. We write them as decimals because this is how they enter our equations.

This content downloaded from 129.186.176.188 on Fri, 29 Jul 2016 17:48:02 UTC
All use subject to http://about.jstor.org/terms
These results are based on the estimates \(\hat{D} = .0144, \hat{e} = 1.68, \) and \(\hat{\eta} = -.53, \) all of which are subject to challenge. We briefly consider the effects of changes in these values. Equations (5), (6), and (7) show that, with other parameters of the baseline and test cases held fixed, an increase in \(D \) will lead to an equi-proportional increase in \(D^* \). But since \(D^* > D \), the ratio \((1 + D^*)/(1 + D) \) will increase and, since the exponents in equations (10) and (11) are negative, \(Q^* \) and \(w^* \) will fall; that is, the projected quantity and price effects, \(100 - Q^* \) and \(1 - w^* \), will increase. Intuitively, a greater value of \(D \) can be reconciled with given baseline conduct assumptions only through a reduction in the estimate of the regional supply elasticity. The test case's increase in concentration or coordination will be more distor- tionary when coupled with the new lower elasticity estimate.

Differentiating equations (10) and (11) with respect to \(e \) and \(\eta \) for given \(D^* \) and \(\hat{D} \), yields
\[
dQ^*/de < 0, dQ^*/d\eta, dw^*/de, \text{ and } dw^*/d\eta > 0. \]
Thus, increasing \(\hat{e} \), other things being equal, will decrease \(Q^* \) and increase \(w^* \); that is, increase the projected quantity effect and decrease the projected price effect. These results can be seen in figure 1 by visualizing the effects of a clockwise rotation of the supply curve about the point \((\hat{Q}, \hat{w})\). As supply becomes more elastic, preserving the same test case distortion, \(D^* \), requires that \(Q^* \) fall and \(w^* \) rise. Similarly, increasing \(\hat{\eta} \) in absolute value decreases \(Q^* \) and \(w^* \) thus increasing both quantity and price effect projections. This can be seen by visualizing a counter-clockwise rotation of figure 1's demand curve about the point \((\hat{Q}, 1 + \hat{D})\). As demand becomes more elastic, preserving a given value of \(D^* \) for the test case distortion requires that \(Q^* \) and \(w^* \) both fall. The observations of this and the previous paragraph imply that "large" projected quantity impacts will obtain with "high" values of \(\hat{e}, |\hat{\eta}|, \) and \(\hat{D} \), while "large" projected price impacts will obtain with a "low" value of \(\hat{e} \) and "high" values of \(|\hat{\eta}| \) and \(\hat{D} \).

Lines 3 and 4 in table 2 report the results of simulations for the two test cases considered above but with different baseline values for \(\hat{D}, \hat{e}, \) and \(|\hat{\eta}| \). Values of \(\hat{e} \) and \(|\hat{\eta}| \) were set at twice our original estimates. Any error in our estimate of \(D \) would most likely have entered through the associated estimate of marginal processing cost: 11.12% of average revenue. Halving this figure leads to the estimate, \(\hat{D} = (100 - 5.56 - 87.62)/87.62 = 7.79\%. \) This provides the value of \(\hat{D} \) used in lines 3 and 4 of table 2. These choices for \(\hat{e}, |\hat{\eta}|, \) and \(\hat{D} \), favoring a large quantity effect, do generate the prediction of a 13.74% decline in volume as the result of a transition to pure regional monopsony.

Lines 5 and 6 of the table pertain to the same test cases and, once again, the values for \(D \) and \(|\hat{\eta}| \) used in lines 3 and 4. This time, however, the estimate of \(\hat{e} \) is one-half of its original level. These choices, favoring large price impact, achieve effects on price as large as 9.73% in the pure monopsony case.

Discussion and Conclusions

It is important, at this point, to reiterate the assumptions upon which our projections are based. First, the entire analysis takes static profit maximization as the maintained hypothesis and this, to be sure, is a theoretical limitation of our approach. If the dominant motivation of packing firms were some other goal, for example, profit-constrained market share maximization or any type of intertemporal objective, our results would be suspect. Second, all of the parameters characterizing the model's baseline case must be estimated and all of our estimation procedures (except perhaps the use of the Marion data for the \(H_{ks} \) and the \(Q_{ks} \)) are subject to challenge. For this reason, we investigated the sensitivity of the procedure to alternative choices for \(D, \hat{e}, \) and \(|\hat{\eta}| \).

How do our results compare with those obtained using other methods? The three most often cited econometric studies of the effects of packer concentration on regional cattle procurement are Ward (1981); Menkhaus, St. Clair, and Ahmaddaud; and Quail et al. As Connor notes in his summary of these studies, they are in general agreement with respect to magnitudes of price effects. Each of them finds a price range between the samples' least and most concentrated market areas/time periods of 1.2% to 2.5% of the price level. In the simulations reflecting our judgment about "most plausible" parameter values (lines 1 and 2 of table 2), price effects are less than 1%. Note that the Ward/Menkhaus, St. Clair, and Ahmaddaud/Quail et al. price effects represent differences between the least and the most concentrated market areas present in their sam-

10 The corresponding estimate of regional supply elasticity, \(\hat{e} \), is 3.39.
It is highly unlikely that firm conduct across these areas actually spanned the range delineated by the baseline and test cases of the simulation reported in line 2 of table 2: from completely noncooperative to perfectly monopsonistic. Yet our projected price effects are smaller than their measurements. Therefore, our results indicate less danger of falling cattle prices, as a result of increased packer concentration or coordination, than do those from conventional econometric studies.

The fact that our method produces small estimates of price impacts is primarily attributable to our high estimate of regional supply elasticity. In order to reconcile reasonable estimates of the current distortion with even completely noncooperative current conduct, a very high value of the elasticity of regional supply is required. High supply elasticities limit packers’ abilities to benefit from concentration or input market coordination. Just as monopoly behavior becomes decreasingly “monopoly like” as demand elasticity increases, very high supply elasticities make even pure monopsony conduct relatively ineffectual, at least with respect to price effects.

It should be noted, however, that even quite small price effects can have significant effects on packer and feeder profit. AMI figures for the years 1979–86 report that livestock costs were nearly 88%, and before-tax earnings only about 1.25%, of total beef packing sales during this period. Thus a fall in cattle prices of only .5% has the potential to increase packers’ profit by about 35%. Iowa Cooperative Extension Service figures (Futrell) estimate the returns from finishing yearling steers to Choice slaughter grade to have been approximately $49/head in the fourth quarter of 1990. The same .5% decline amounts to a $4.40/head profit loss on a 1,100 pound steer at $80/cwt. In other words, feeders’ profit would decrease by nearly 9%.

[Received April 1990; final revision received July 1991.]

References

11 The results of our sensitivity analysis do qualify this conclusion somewhat. As lines 5 and 6 of table 2 demonstrate, large price effect projections can be generated using parameter estimates significantly different from our “most plausible” values.

Futrell, G. “Estimated Returns from Cattle Feeding in Iowa under Two Alternative Feeding Programs.” Cooperative Extension Service, Iowa State University, M-1229 (revised) and addenda, Ames IA, 1991.

