INTRODUCTION

- Falls are very dangerous and prevalent in older adults (OA)
- Dim lighting combined with other vision problems common to OA leads to unstable gait [1]
- OA with reduced retinal sensitivity have increased fall rate in dim lighting [2]
- Stepping over obstacles may cause older adults to place greater demand on hip extensors of stance leg
- Hypothesis: hip extensor moments will be higher with an obstacle and hip abductor moments will be higher in the dark condition

METHODS

PARTICIPANTS and EQUIPMENT:
- Ten (5 female, 5 male) healthy young adults participated (age 21.9 ± 1.3 yr, mass 75 ± 19 kg, height 1.76 m ± 0.13 m)
- Force platform measured ground reaction forces during walking/walking over obstacle in light and dark lighting
- Obstacle was a low stool measuring about a foot high
- Eight Vicon Nexus Motion Capture cameras tracked reflective markers placed on each participant’s right leg and trunk

EXPERIMENTAL PROTOCOL:
- Four conditions:
 - Walking in normal lighting
 - Stepping over obstacle in normal lighting
 - Walking in dark
 - Stepping over obstacle in dark
- Participants performed 3 trials of each condition
- Participants walked at their preferred speed

RESULTS

- Obstacle vs. walking (in light): Ankle plantarflexion, hip extension, and hip abduction moments were significantly higher (p < 0.05)
- Obstacle vs. walking (in dark): Ankle plantarflexion and hip abduction moments were significantly higher (p < 0.05)
- Dark vs. light (walking): Ankle plantarflexion moments were significantly higher (p < 0.05)

DISCUSSION

- Increase in stance leg hip abduction moments when stepping over obstacle
 - Strengthening hip abductors may help with side-to-side balance when stepping over an obstacle
- Increase in stance leg ankle plantarflexion and hip extension moments while stepping over obstacle
 - Strengthening ankle plantarflexors and hip extensors may help with standing on one leg for longer duration when stepping over obstacle
- Increase in stance leg ankle plantarflexion moments in dim lighting
 - Ankle plantarflexors may play larger sensory role when visual information is reduced
- Further research is needed to test if OA effectively use their ankle plantarflexors when stepping over obstacles in dim lighting

REFERENCES