2016

Grain Drying Energy Use

H. Mark Hanna
Iowa State University, hmhanna@iastate.edu

Dana Schweitzer
Iowa State University, schweitz@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/farmprogressreports

Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons

Recommended Citation
DOI: https://doi.org/10.31274/farmprogressreports-180814-1417
Available at: https://lib.dr.iastate.edu/farmprogressreports/vol2015/iss1/90

This Northeast Research and Demonstration Farm is brought to you for free and open access by the Extension and Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Farm Progress Reports by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Grain Drying Energy Use

RFR-A1582

H. Mark Hanna, extension ag engineer
Dana Schweitzer, program coordinator
Department of Agricultural and Biosystems Engineering

Introduction
Direct energy expenses (diesel, gasoline, propane, electricity) total more than $1 billion annually for Iowa’s farmers. When it’s required, grain drying energy can be significant for corn. This study measured propane and electrical energy used in high-temperature bin drying of corn on the research farm.

Materials and Methods
Corn is dried in two stir-batch drying bins on the farm. Load cells under the propane tank measured weight of propane consumed, and current transducers measured electricity used for fan and stirrator use.

Corn harvest is relatively slow from small plot areas, so drying typically began with a partially full bin. Measurements were recorded from seven bin batches of about 6,000 to 8,000 bushels each at 130°F drying temperature during 2013-15.

Results and Discussion
Most of the drying energy used was 95 percent from propane with the remaining electricity used for the fan and stirrator. Propane use averaged 0.018 gal/point of grain moisture content removed per bushel of dried corn (Table 1). Electricity used averaged 0.022 kWh per point of grain moisture removed per bushel of dried corn.

Total energy used for drying per pound of water removed from grain is a measure of energy efficiency and ranged from 2,470 to 2,960 Btu per pound of water removed.

Grain drying energy also was measured at locations in central and southwest Iowa. Considering all locations, energy used for drying increased somewhat as outdoor air temperatures decreased during drying (Figure 1).

Conclusions
Propane was the predominant energy expense for high-temperature drying. Approximately 150 gallons of propane were used per 1,000 bushels dried with incoming moisture content of 23 percent, but this value reduced to about 75 gallons per 1,000 bushels with initial moisture content of 18 percent. Energy use tended to increase with colder air temperatures.

Acknowledgements
Research was supported by a grant from the Iowa Energy Center. The authors would like to thank Ken Pecinovsky and Ralph White for recording incoming grain and moisture content, as well as monitoring instrumentation. Students Kyle Wester and Jason Schuster assisted with data collection and analysis, and Anthony Battazzi installed instrumentation.
Table 1. Conditions and energy used for corn drying during 2013-15 at the ISU Northeast Research and Demonstration Farm, Nashua, Iowa.

<table>
<thead>
<tr>
<th>Bushels</th>
<th>Outside temp. °F</th>
<th>Moisture content, %</th>
<th>Energy per water removed Btu/lb</th>
<th>Propane Gal/pt/bu<sup>a</sup></th>
<th>Electricity kWh/pt/bu<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>6,790</td>
<td>36.7</td>
<td>23.6</td>
<td>15.0</td>
<td>2800</td>
<td>0.019</td>
</tr>
<tr>
<td>7,190</td>
<td>42.2</td>
<td>23.5</td>
<td>14.8</td>
<td>2480</td>
<td>0.017</td>
</tr>
<tr>
<td>7,980</td>
<td>32.3</td>
<td>25.4</td>
<td>14.8</td>
<td>2910</td>
<td>0.017</td>
</tr>
<tr>
<td>5,884</td>
<td>49.5</td>
<td>24.4</td>
<td>15.2</td>
<td>2470</td>
<td>0.017</td>
</tr>
<tr>
<td>5,844</td>
<td>42.7</td>
<td>22.3</td>
<td>14.5</td>
<td>2880</td>
<td>0.020</td>
</tr>
<tr>
<td>7,886</td>
<td>44.5</td>
<td>20.5</td>
<td>14.7</td>
<td>2960</td>
<td>0.020</td>
</tr>
<tr>
<td>6,820</td>
<td>48.9</td>
<td>18.3</td>
<td>15.0</td>
<td>2750</td>
<td>0.016</td>
</tr>
</tbody>
</table>

^aGallons propane per percentage point moisture removed per bushel dried.
^bKilowatt hours per percentage point moisture removed per bushel dried.

Figure 1. Energy used per pound of water removed during grain drying versus outside air temperature at the Ag 450 Farm near Ames (Central), Northeast Research Farm (Nashua), and Armstrong Research Farm near Atlantic (Southwest).