Who's In the Conservation Reserve?

Larry G. Rigler  
Iowa State University

Earl O. Heady  
Iowa State University

Walter Butcher  
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/farmscience

Part of the Agriculture Commons

Recommended Citation
Rigler, Larry G.; Heady, Earl O.; and Butcher, Walter (1960) "Who's In the Conservation Reserve?," Iowa Farm Science: Vol. 14 : No. 11 , Article 2.  
Available at: http://lib.dr.iastate.edu/farmscience/vol14/iss11/2

This Article is brought to you for free and open access by the Iowa Agricultural and Home Economics Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa Farm Science by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Who's In the Conservation Reserve?

Who are the participants in the Conservation Reserve in Iowa? The results of the study reported in this article furnish some answers and some insights into the effects and possibilities of the program.

by Larry G. Rigler, Earl O. Heady and Walter Butcher

The Conservation Reserve—a long-time measure adopted in 1956 to reduce surplus production and to increase conservation—had taken 23 million acres of cropland out of production in the United States by the end of last year. This year about 28 million acres, or 6½ percent, of the nation’s cropland is in the Conservation Reserve.

Here in Iowa, some 490,000 acres had gone into the Conservation Reserve by the end of 1959, with about 6,000 farm owners participating. Preliminary estimates are that 675,000 acres, or 2.7 percent, of Iowa’s cropland is in the reserve this year.

Some land in every county has gone into the reserve. But most of the “banked” acres are in counties with rolling land and generally lower-than-average crop yields. Iowa counties having the most land in the reserve are shaded in the map.

Where erosion is a problem on rolling land, the Conservation Reserve does greatly reduce soil losses. And this is likely one of the reasons that more rolling land has been placed in the reserve. Another reason is that the difference in the reserve payment or rental rate between low- and high-quality land isn’t as large as the relative differences in net income per acre from the two types of land. Thus, for low-quality land where profits per bushel are relatively small, the Conservation Reserve is a better income alternative than for high-quality land.

We made a study last summer to find out what influenced farm owners to enter the reserve program. Since the program is limited mainly to farm owners, we compared participating farm owners with other owners in the same area who hadn’t placed land in the re-

LARRY G. RIGLER is a graduate assistant in agricultural economics at Iowa State. WALTER BUTCHER is agricultural economist, Farm Economics Research Division, ARS, USDA, stationed at Iowa State. EARL O. HEADY is executive director of the Center for Agricultural and Economic Adjustment at Iowa State.

Iowa counties with the most land in the Conservation Reserve.
serve. We also looked into the changes in farm operations made by the owners once they entered the program. With this information, we were able to estimate the effect of the Conservation Reserve in reducing grain production in particular areas. The study included one-fifth of the participants in eight south-central Iowa counties—Appanoose, Clarke, Decatur, Lucas, Monroe, Ringgold, Union and Wayne—where participation in the reserve was relatively high.

Who's "In" the Reserve?

Tenure: Farm owners in certain operating classes have participated more heavily than others in the reserve program. Let's look briefly at the different operating groups.

Participation in the reserve has been greatest by owner-operators (those who own all of the land they operate)—and particularly by operating-landlords (who operate part of their land and rent out part). In the eight-county area, about 6.3 percent of all owner-operators and 19.8 percent of all operating-landlords had put land into the reserve (see table 1).

<table>
<thead>
<tr>
<th>Operating class</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner-operator</td>
<td>6.3</td>
</tr>
<tr>
<td>Operating-landlord</td>
<td>19.8</td>
</tr>
<tr>
<td>Part-owner-operator</td>
<td>4.9</td>
</tr>
<tr>
<td>Nonoperating-landlord</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Participation by part-owner-operators (who own part of the land they operate and rent part) and by nonoperating-landlords (who don't operate any of their land) hasn't been as great. About 4.9 percent of all part-owner-operators and 4.6 percent of all nonoperating-landlords in the eight counties had put land into the reserve.

Part-owner-operators usually are younger farmers interested in getting more farmland rather than in retiring land into the reserve. Nonoperating-landlords may not be able to place land in the reserve if they have a tenant on the farm.

Landlords: Participation in the reserve by landlords presents a special situation. To a landlord, putting land in the reserve is an alternative to renting the land to a tenant. Unlike the operator, the landlord doesn't have an investment in machinery or livestock that may have to be sold or left idle if he participates.

One-fourth of the participants interviewed were nonoperating-landlords. Many said that they'd put their land in the reserve when they didn't have a tenant but could get enough labor to take care of the reserve land. Some of their reasons for putting land in the reserve were: (1) It was a way of avoiding the "headaches" of renting. (2) It would "build up" the land. (3) The payment was better than renting.

Nonoperating-landlords are only able to obtain Conservation Reserve contracts for their land if the tenant voluntarily leaves the farm or is designated in the contract to receive part of the annual payment. If the payment has to be divided, it seldom will provide an adequate return for both landlord and tenant. Therefore, this rule has tended to discourage landlord participation.

Since nonoperating-landlords made up only 25 percent of the total participants, however, we focused most of our analysis on farm operators.

Farm Operators: Three-fourths of the Conservation Reserve participants were operating land before entering the program. Since entering the program, about 60 percent of this group had quit farming any cropland. In some cases, they continued to operate pasture land and to raise a few livestock. Generally these former operators who had placed their whole farm in the reserve, while those who continued to farm were those who had placed only part of their farm in the program. Very few had retired their whole farm and then rented or bought additional land.

We found that some of the factors affecting farm owners' decisions to place land in the reserve were off-farm employment, age, farm size, invested capital, previous participation in the Acreage Reserve program and attitudes toward government programs. Let's take a closer look at these factors and see how they influenced participation.

Off-farm employment: Our study showed that off-farm employment was about twice as common among reserve participants as among nonparticipants. Before entering the reserve almost 20 percent of the participants had a full-time off-farm job as compared with about 8½ percent of the nonparticipants (see table 2). Nearly all of the participants with off-farm employment had been working a year or more before entering the program. Only 7 of the 115 participants we questioned placed their land in the reserve and then found an off-farm job; 6 of the 115 quit their off-farm work after placing their land in the reserve. So the program apparently hasn't yet resulted in participants seeking more off-farm work.

Farmers with off-farm jobs usually are younger and farm less land, and their off-farm opportunities sometimes are greater than their farming opportunities. The reserve offers them a way to reduce their farming operation, to concentrate on their off-farm employment and, at the same time, to get a return on their land.

Age differences: On the average, participants were slightly older than nonparticipants. But both older and younger farmers are participating. The average age of participants and nonparticipants was 54.4 and 51.9, respectively. The average age of participants who'd quit farming was 57.7; of those who continued to farm, 49.8.

The older average age of participants who quit farming indicates that many older farmers had placed their land in the reserve to retire or to reduce their farming operations (see table 2). Also, the high proportion of participants who were 60 or over indicates that the reserve program has been attractive to farmers considering retirement; 54 percent of the participants who quit farming were 60 or more, while only 27 percent of the nonparticipants were in this age group.
Almost 10 percent of the participants were 20-34 years of age; only slightly more than 7 percent of the nonparticipants were in this age group. The younger farmers, who are more likely to have off-farm jobs, tend to be attracted to the program.

So the program seems to encourage participation at both ends of the age span—by younger farmers who are "only partly in farming" and by older operators who participate so they can retire sooner.

**Farm size:** Participants who quit farming operated an average of 576 acres of cropland before entering the program. Nonparticipants were operating an average of 142 acres of cropland. Smaller farms tend to have relatively lower profits per acre than larger farms since costs are spread over a smaller acreage. So generally an operator of a small farm who places his whole farm in the reserve has a relatively greater gain from participation than does an operator with a larger unit and lower per-acre costs (see table 2).

Participants who continued to farm operated an average of 163 acres of cropland before entering the reserve—slightly more than the nonparticipants were operating. But participants who continued to farm indicated that they'd placed their lower-quality land in the reserve and continued to farm their better land.

The sizes of farm tracts owned by each group of participants wasn't greatly different from those of nonparticipants. Participants who continued to farm owned, on the average, 263 acres of farmland, participants who quit farming owned 197 acres, and nonparticipants owned 214 acres.

**Invested capital:** Operators who placed land in the reserve generally had lower machinery and livestock inventories. We found that participants had machinery inventories averaging about $2,500, or about $23 per acre of cropland operated, compared with $4,700 or $33 per acre of cropland operated, for nonparticipants. A few of the participants who retired their whole farm had sold all or part of their machinery. But most, we found, hadn't liquidated any of their machinery investments.

The differences in machinery inventories of participants and nonparticipants indicate that part of the decision as to whether to enter the reserve depends on how much capital a farmer has tied up in his farming operation. The reserve payment gives a return to the land but not to the machinery owned. So a participant must be able to sell his machinery, let it remain idle or use it to farm some additional land that he owns or rents.

We found also that farmers who put land in the reserve had smaller livestock operations before entering the program than did nonparticipants. Livestock operations of participants averaged about 40 percent as large as those of nonparticipants. Participants who quit farming since entering the reserve have since reduced their livestock operations by about half. But the participants who continued to farm have about the same size livestock operations as before entering the reserve.

The decision of whether to put land in the reserve, thus, depends partly on whether or not the livestock operation can be continued with pasture or other rented or owned land not in the reserve.

**TABLE 2. Characteristics of participating and nonparticipating farmers.**

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participating</th>
<th>Nonparticipating</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Invested capital</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operators who placed land in the reserve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>who generally had lower machinery and livestock inventories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>We found that participants had machinery inventories averaging about $2,500, or about $23 per acre of cropland operated, compared with $4,700 or $33 per acre of cropland operated, for nonparticipants.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Past participation in land-retirement programs:</strong> We found that all participants had relatively more contact with the Acreage Reserve part of the Soil Bank program than did nonparticipants. More than 60 percent of the participants had land in the Acreage Reserve before entering the Conservation Reserve. Only 36 percent of the nonparticipants had ever had land in the Acreage Reserve.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Besides the possible greater knowledge of government land-retirement programs, land owners who'd placed land in the Acreage Reserve indicated that they weren't adverse to accepting payments for letting their land stand idle. And, on the other hand, our study indicated that there are land owners who would have gotten greater returns by placing their land in the reserve but didn't because they were adverse to a government land-retirement program.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Attitudes toward government programs:</strong> About 70 percent of both participants and nonparticipants indicated that they believed farmers generally are better off at the present time with the government programs in effect than without them. But 47 percent of the nonparticipants thought that supply and demand should be left to solve the farm problem; 30 percent of the participants indicated this (see table 3). Along the same line, 50 percent of the nonparticipants and 30 percent of the participants felt it was morally wrong to let land stay idle.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So it appears that farm operators' personal convictions or philosophies of "what's best" are related to their willingness to participate in a land-retirement program. A majority of both participants and nonparticipants thought it better not to raise crops in the first place than to produce them for government storage. This was the belief of 60 percent of nonparticipants and 77 percent of participants.
Reducing Production . . .

One of the goals of the Conservation Reserve is the reduction of farm production to bring supply more in line with market demands. For 40 farms in which all eligible land had been placed in the reserve, we estimated the cost of reducing grain production to be about 70 cents per bushel in terms of corn equivalents (feed converted to corn on the basis of feeding value). Taking into account both the reduction of hay and grain, the cost was about 50 cents per bushel of corn equivalent.

We couldn’t estimate accurately the cost of production control on farms where only part of the farm was placed in the reserve—mainly because of the shifts which can take place within the remaining farm operation. But in general, we’d expect that the control effects would be less when only parts of farms, rather than whole farms, are placed in the reserve.

How does the 70-cents-per-bushel cost compare with costs under the present support-storage program? If the grain went into storage for a period of 4½ years, total storage costs would be approximately 72 cents per bushel, based on a 16-cent-per-bushel cost for each year the corn is in storage.

Over the past 8 years, corn stocks have been in storage for an average of 5 years. Thus, considering total realized costs, it’s possible that reducing production in the first place may be cheaper than storing grain after it has been produced.

What Do They Do?

There’s been some concern about farm owners in nonfarm occupations retiring their land into the Conservation Reserve. We classified all participants by their major occupations both before and after entering the reserve program (see table 4).

About two-thirds of the participants were either full- or part-time farm operators before entering the program. Another 10 percent were retired farmers, and 4 percent were widows of farmers. A total of 20 percent of the participants had occupations other than farming.

Thus, most of the participants in the reserve were land owners whose major employment was farming. Some persons with major employment other than farming put their land into the reserve, but the income from the reserve generally was small in comparison with their nonfarm earnings.

After the participants had entered the reserve program, we reclassified the occupational groupings as of last summer. More than half of the full-time farmers remained full-time farmers after entering the reserve. The majority of the rest retired, and a few moved into off-farm employment. More than half of the part-time farmers continued to farm on a part-time basis; about a third quit farming to concentrate on their off-farm employment; the remainder retired.

In a Nutshell . . .

Our study showed that all types of farm owners have participated in the Conservation Reserve. The two largest groups have been younger part-time farmers and older retiring farmers. In total, 75 percent of the farmers who'd placed land in the reserve were either of or nearing retirement age (60 or older) or had off-farm work. As a whole, the reserve program seems to have speeded up retirements and shifted a few farmers to exclusively off-farm employment.

About two-thirds of the participants in the eight-county area studied had also participated in the previous Acreage Reserve. And participants generally were more favorable than nonparticipants toward a land-retirement program for reducing surplus production.

Many farmers and part-time farmers had entered the program to reduce their individual farming operations. And we found that farmers who entered the program usually had lower livestock and machinery inventories than those who did not. Others entered the program to get a better return on the lower-quality land on their farms. For landlords, the reserve has been an alternative to otherwise renting out their land.

Altogether, the study indicates that an expanded Conservation Reserve offers one possible way of reducing the buildup of farm surpluses and should be examined further along with other alternatives.

---

**TABLE 3. Attitudes of participants and nonparticipants.**

<table>
<thead>
<tr>
<th>Major Area of Agreements and Disagreements</th>
<th>Percent of Participants Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Percent of Nonparticipants Agree</th>
<th>Undecided</th>
<th>Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Farmers would be better off today if the government had stayed clear of agriculture.</td>
<td>21</td>
<td>12</td>
<td>67</td>
<td>21</td>
<td>9</td>
<td>70</td>
</tr>
<tr>
<td>2. Farmers would be better off if the government would let supply and demand work things out.</td>
<td>30</td>
<td>49</td>
<td>21</td>
<td>47</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>3. It isn’t right to have farmland idle where growing crops wouldn’t hurt the land.</td>
<td>31</td>
<td>13</td>
<td>56</td>
<td>50</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>4. It’s better not to raise crops in the first place if they are going to build up more surplus.</td>
<td>77</td>
<td>9</td>
<td>14</td>
<td>60</td>
<td>18</td>
<td>22</td>
</tr>
</tbody>
</table>

**TABLE 4. Major occupations of participants before entering the Conservation Reserve and major occupations of each occupation group in 1959.**

<table>
<thead>
<tr>
<th>Major original occupation groups of participants</th>
<th>Percent</th>
<th>Major occupations of each occupation group in 1959</th>
<th>Widows, others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmer ............................................</td>
<td>43</td>
<td>Farmer ............................................</td>
<td>Widows, others</td>
</tr>
<tr>
<td>Part-time farmer ..................................</td>
<td>22</td>
<td>Part-time farmer ..................................</td>
<td>Widows, others</td>
</tr>
<tr>
<td>Retired farmer ...................................</td>
<td>10</td>
<td>Retired farmer ...................................</td>
<td>Widows, others</td>
</tr>
<tr>
<td>Business, professional, labor .....................</td>
<td>20</td>
<td>Business, professional, labor .....................</td>
<td>Widows, others</td>
</tr>
<tr>
<td>Widows, others ...................................</td>
<td>5</td>
<td>Widows, others ...................................</td>
<td>Widows, others</td>
</tr>
</tbody>
</table>

*Less than 1 percent.*
Effect of fertilizer on turf density and color; the unfertilized turf is at left in photo above.

Above: Fertilizer burn from a poorly adjusted spreader.

At right: Burn from opening spreader trap before starting or from stopping spreader before closing the trap.

drastically reduced as cutting height is lowered. Note the reduction in root development of the turfgrass clipped at 1½ inches. As compared with unclipped grass, the relatively underdeveloped root system of mowed grass doesn't have as large a volume of soil from which to draw water and nutrients to support vigorous growth.

For an attractive lawn, you must compensate for the relatively stunted root system by watering and fertilization. Under many conditions, mowing lower than 1½ inches injures the turf to the extent that water and nutrient requirements become so critical that it's difficult to keep turfgrasses alive. But regular mowing at about 1½ inches is necessary for lawn development. Unmowed grasses become lumpy and quickly lose the growth characteristics of a good turf.

Now let's look at what you can do to improve a poor lawn or to maintain a good one.

**Mowing:** Use a cutting height of about 1½ inches. If possible, mow in relation to the amount of growth since the last cutting rather than by day of the week. For best results, don't clip off more than a third of the exposed growth at any one mowing. This would mean clipping off about 3⁄4 inch each time you mow at 1½-inch cutting height. Clippings of this length filter down through the turf and needn't be raked off. Raking and removal of longer clippings is recommended to prevent accumulations that will encourage diseases.

You can do a good job with any type of power or hand mower—if you keep it well adjusted and sharp. Fescues, particularly, are easily injured if your mower doesn't make a clean cut.

**Fertilization, Liming:** Many lawns are thin and show poor color because the nutrient level of the soil won't support a vigorous turf. In most cases, weeds invade a lawn because the grass isn't fed or fertilized enough to be able to compete with weeds for space.

Acid soil conditions also reduce the vigor of turfgrasses. Lawn soils should have a pH of 6.0-7.0 for best growth conditions. Applying 50 pounds of ground limestone per 1,000 square feet usually will correct slightly acid soils. Make applications in the spring or fall. Two or more treatments may be needed to fully correct highly acid conditions.

A soil test is helpful in finding the needs of a lawn for both lime and fertilizer. County extension offices as well as commercial concerns and many landscape contractors and nurserymen can provide more information on soil testing. It is important, however, to take several samples, at a depth of 3 inches, from the entire area, mix them together and save 1 cupful for the test.

Remember that lime itself isn't a substitute for fertilizer or lawn food, though it helps the turf make more efficient use of the nutrients that are available. There are many types and ratios of fertilizer that are well suited for use on turf. Choose one that has the first or nitrogen (N) number in the analysis as large or larger than the second and third numbers, which represent phosphorus (P₂O₅) and potassium (K₂O), respectively.

Where adequate phosphorus and potassium are available, a recommendation based on a soil test will usually include one of the nitrogen fertilizers shown in group
Hand aerifying fork relieves soil compaction.

Mechanical aerifier is better where large areas of soil are compacted.

I in the table. If phosphorus and potassium both test low, recommendations will probably include one of the fertilizers in group II. If potassium alone is deficient, use an application of muriate of potash (60% grade) at 3 pounds per 1,000 square feet. If phosphorus alone is deficient, use an application of superphosphate (20% grade) at 10 pounds per 1,000 square feet. Either of these may be added separately or mixed with one of the nitrogen fertilizer materials.

For average lawn conditions and if no soil test is available, use a lawn fertilizer from group

### Fertilizers for Lawn Maintenance

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Amount (lbs./1,000 sq. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td></td>
</tr>
<tr>
<td>38-0-0 (urea form)</td>
<td>15</td>
</tr>
<tr>
<td>33-0-0 (ammonium nitrate)</td>
<td>3</td>
</tr>
<tr>
<td>20-0-0 (ammonium sulphate)</td>
<td>5</td>
</tr>
<tr>
<td>16-0-0 (sodium nitrate)</td>
<td>7</td>
</tr>
<tr>
<td>II.</td>
<td></td>
</tr>
<tr>
<td>10-10-10</td>
<td>10-15</td>
</tr>
<tr>
<td>8-8-8</td>
<td>15-20</td>
</tr>
<tr>
<td>9-7-7</td>
<td>15-20</td>
</tr>
<tr>
<td>III.</td>
<td></td>
</tr>
<tr>
<td>10-6-2</td>
<td>10-15</td>
</tr>
<tr>
<td>Processed sewage sludge</td>
<td>20-30</td>
</tr>
<tr>
<td>Special lawn mixes</td>
<td>as specified</td>
</tr>
</tbody>
</table>

*On basis of soil test recommendations.
cover with the coming of the early fall rains.

If you want green turfgrass through the entire summer, it's necessary to supplement natural rainfall by watering in most seasons. For best growth, lawn grass needs about 1 inch of water every week. When possible, add this amount all at once. More frequent sprinkling with smaller amounts of water is likely to do more damage than good.

Add enough water to penetrate to the full depth of the root zone. This will encourage deeper rooting and, where the surface of the soil can become dry before the next watering, improved soil conditions will result.

You'll find that a coffee can or two placed near the sprinkler is a handy gauge for measuring the amount of water applied and for indicating when to move the sprinkler to another location. If water runs off the soil surface before you've applied the amount intended, move the sprinkler to another area and finish the first location later.

Aerating: Turfgrass roots need air to make good growth through the soil. Traffic on a lawn packs down the soil. This excludes air and makes it more difficult for water to penetrate. Alternate wetting and drying of the soil helps to keep the soil in good condition. But some lawns are used heavily enough to make the turf become thin or even to die where traffic is excessive.

Loosening the soil by punching in holes with a spade fork will help to relieve this condition. A hollow tined fork or hand aerator does a better job since plugs of soil are actually removed, allowing the soil to expand laterally. For large areas, use a mechanical aerifier (available from most local landscape concerns).

Regardless of method, relieve soil compaction at the first signs of turf thinning. Effective aeration of bare or weedy soil is more difficult than loosening soil under established turf where grass roots quickly grow into the holes. A fertilizer application following aeration in spring and fall will help further in the development and re-establishment of the turf.

**Topdressing:** If you have persistent irregularities in the surface of your lawn, level them with a topdressing to fill in the low spots. Otherwise, water and ice collecting in these depressions often kill or severely injure lawn grasses. The topdressing should be of soil virtually the same as that already in the area. For this purpose, don't use organic matter or humus since they serve no valuable function as a part of the topdressing.

**Rolling:** Freezing and thawing of the soil in the winter and early spring acts to relieve compaction under lawn turf. Use of too-heavy a roller in the spring may defeat your purpose. Where irregularities do appear in your lawn as a result of frost action, use a light roller (50-75 pounds). Before rolling, make sure that all frost is out of the soil and that the surface is no longer soggy or wet.

**Renovation:** There are three main reasons a lawn may fail:
1. It may have been poorly constructed and the soil, seed mixture or both weren't suitable.
2. It may have been well constructed but not properly maintained.
3. It may have become too shady for best growth of the turfgrasses originally seeded. The method for improving these areas will vary according to the condition of the turf.

Wherever less than 50 percent of a lawn is composed of basic grasses and where there are large patches of weeds, a complete reconstruction will give best results (see "Caution on 'Short Cuts' for Lawns" in the April issue or reprint, FS-863). If the lawn consists of more than 50 percent of basic grasses, removal of the weeds with a 2,4-D weed killer, followed by improved maintenance practices, will result in a better lawn.

If shade is the cause of a thin, weak turf, fertilize the area, rake it lightly and seed it with 5 pounds of Creeping Red fescue (Penn-lawn) per 1,000 square feet. If the shade is especially dense, removing some of the lower limbs of trees and thinning out the upper branches will let more light reach the turf below. Otherwise, with very dense shade, you may have to use shade-tolerant ground covers. Possibilities here are Winter Creeper Euonymus, Common Periwinkle or Fiveleaf Akebia.

The attractiveness of your house and your plantings of trees, shrubs and other ornamentals depends a great deal on the appearance and uniformity of the lawn that surrounds them.