Bean Leaf Beetle Survival Just Above Average

Erin W. Hodgson
Iowa State University, ewh@iastate.edu

Adam J. Sisson
Iowa State University, ajsisson@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, Agriculture Commons, and the Entomology Commons

Recommended Citation
http://lib.dr.iastate.edu/cropnews/72

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Bean Leaf Beetle Survival Just Above Average

Abstract
Bean leaf beetle adults are susceptible to cold weather and will die when the temperature falls below -10°C. However, they have adapted to winter by protecting themselves in leaf litter. An overwintering survival model was developed by Lam and Pedigo from Iowa State University in 2000, and is helpful for predicting winter mortality based on accumulating subfreezing temperatures. Predicted mortality rates ranged from 40-90 percent for the 2012-2013 winter (Fig. 1). The northern third of Iowa did experience a colder winter, and more than 80 percent of beetles were not predicted to survive.

Keywords
Entomology

Disciplines
Agricultural Science | Agriculture | Entomology

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/72
Bean Leaf Beetle Survival Just Above Average

By Erin Hodgson and Adam Sisson, Department of Entomology

Bean leaf beetle adults are susceptible to cold weather and will die when the temperature falls below -10°C. However, they have adapted to winter by protecting themselves in leaf litter. An overwintering survival model was developed by Lam and Pedigo from Iowa State University in 2000, and is helpful for predicting winter mortality based on accumulating subfreezing temperatures. Predicted mortality rates ranged from 40-90 percent for the 2012-2013 winter (Fig. 1). The northern third of Iowa did experience a colder winter, and more than 80 percent of beetles were not predicted to survive.

Figure 1. Predicted overwintering mortality of bean leaf beetle based on accumulated subfreezing temperatures during the winter (October 1, 2012 – April 15, 2013).

The average mortality rate over the last 24 years in central Iowa is 71 percent. The 2012-2013 winter had slightly better predicted survivorship than average (Fig. 2). It is important to remember insulating snow cover can influence the survivorship of bean leaf beetle. The recent cold weather could also influence spring activity in alfalfa and later in soybean.
Overwintering adults are strongly attracted to soybean and will move into fields with newly emerging plants (Fig. 3). First-emerging fields should be monitored this month, especially in southern Iowa. Other fields of concern include food-grade soybean and seed fields where reductions in yield and seed quality can be significant. Bean leaf beetle is easily disturbed and will drop from plants and seek shelter in soil cracks or under debris. Sampling early in the season requires you to be sneaky to estimate actual densities. Although overwintering beetles rarely cause economic damage, their presence may be an indicator of building first and second generations later in the season.

To learn more about managing bean leaf beetle and bean pod mottle virus, click here.

Erin Hodgson is an assistant professor of entomology with extension and
bean leaf beetle survival

research responsibilities; contact her at ewh@iastate.edu or 515-294-2847.
Adam Sisson is an Integrated Pest Management extension specialist; contact him at ajsisson@iastate.edu or 515-294-5899.

This article was published originally on 5/2/2013. The information contained within the article may or may not be up to date depending on when you are accessing the information.

Links to this material are strongly encouraged. This article may be republished without further permission if it is published as written and includes credit to the author, Integrated Crop Management News and Iowa State University Extension. Prior permission from the author is required if this article is republished in any other manner.