Two differentially expressed ommochrome-binding protein-like genes (obp1 and obp2) in larval fat body of the European corn borer, Ostrinia nubilalis

Brad S. Coates
Iowa State University, brad.coates@ars.usda.gov

Richard L. Hellmich
Iowa State University, richard.hellmich@ars.usda.gov

Leslie C. Lewis
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs

Part of the Entomology Commons, and the Plant Breeding and Genetics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ent_pubs/90. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Two differentially expressed ommochrome-binding protein-like genes (obp1 and obp2) in larval fat body of the European corn borer, Ostrinia nubilalis

Abstract
Ommochrome-binding proteins function in coloration and detoxification pathways by transporting tryptophan metabolites, and increase in hemolymph concentration prior to diapause. Two ommochrome-binding protein genes from the European corn borer Ostrinia nubilalis (Hübner) (Onobp1 and Onobp2; GenBank accession nos. AY819651 to AY819655 and AY862870) were isolated. Relatedness to OBP-encoding genes was suggested by peptide similarity, phylogenetic reconstruction, and expression data. 21 single nucleotide polymorphisms between obp1 and 23 polymorphisms between obp2 alleles were identified, and resultant genomic markers were inherited in a Mendelian fashion. RT-PCR showed fat body specific Onobp1 and Onobp2 transcription. The Onobp1 transcript was RT-PCR amplified from fat body of 5th instars, whereas Onobp2 was expressed in fat body of 4th and 5th instars, and peaked in 5th instar wandering and 1 week old diapausing larvae. Expression suggests gene duplicates are maintained by change in temporal expression. The significance of Onobp1 and 2 gene products to O. nubilalis diapause physiology requires additional investigation.

Keywords
Ostrinia nubilalis, diapause induction, transcriptional variation

Disciplines
Entomology | Plant Breeding and Genetics

Comments
This article is from Journal of Insect Science; 5 (2005); 1-12; doi: 10.1673/031.005.1901

Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Two differentially expressed ommochrome-binding protein-like genes (obp1 and obp2) in larval fat body of the European corn borer, *Ostrinia nubilalis*

Brad S. Coates 1 2 3, Richard L. Hellmich 1 3 and Leslie C. Lewis 1 3

1 USDA-ARS, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, Iowa 50011.
2 Interdepartmental Genetics Program, Iowa State University, Ames, IA, 50011.
3 Department of Entomology, Iowa State University, Ames, IA, 50011
coutes@iastate.edu

Received 18 January 2005, Accepted 7 March 2005, Published 3 August 2005

Abstract

Ommochrome-binding proteins function in coloration and detoxification pathways by transporting tryptophan metabolites, and increase in hemolymph concentration prior to diapause. Two ommochrome-binding protein genes from the European corn borer *Ostrinia nubilalis* (Hübner) (Onobp1 and Onobp2; GenBank accession nos. AY819651 to AY819655 and AY862870) were isolated. Relatedness to OBP-encoding genes was suggested by peptide similarity, phylogenetic reconstruction, and expression data. 21 single nucleotide polymorphisms between Onobp1 and 23 polymorphisms between Onobp2 alleles were identified, and resultant genomic markers were inherited in a Mendelian fashion. RT-PCR showed fat body specific Onobp1 and Onobp2 transcription. The Onobp1 transcript was RT-PCR amplified from fat body of 5th instars, whereas Onobp2 was expressed in fat body of 4th and 5th instars, and peaked in 5th instar wandering and 1 week old diapausing larvae. Expression suggests gene duplicates are maintained by change in temporal expression. The significance of Onobp1 and 2 gene products to *O. nubilalis* diapause physiology requires additional investigation.

Keywords: *Ostrinia nubilalis*, diapause induction, transcriptional variation

Abbreviation:

DAP diapause-associated polypeptide
OBP ommochrome binding protein
Onobp1 *Ostrinia nubilalis* ommochrome binding protein 1
Onobp2 *Ostrinia nubilalis* ommochrome binding protein 2

Introduction

Ommochromes (ommatin and ommin) are tryptophan derivatives (Kayser 1985) biosynthesized from kynurenine and 3-hydroxykynurenine, and noticed as yellows, red, brown, and black pigments (Oxford and Gillespie 1998). These pigments are localized in eye and cuticle, and excreted into the gut lumen as part of a detoxification pathway (Linzen 1974). Insects lack analogous vertebrate glutarate (Linzen 1974) and nicotinic acid pathways (Kayser 1985), and thus rely on conversion of tryptophan to ommochromes for removal. Ommochrome binding proteins (OBPs) transport these pigments in Lepidoptera through the hemolymph within a general detoxification pathway (Martel and Law 1991; 1992). OBPs are 31 kDa glycoproteins that were characterized from *Manduca sexta* (Martel and Law 1991; Yepiz-Plascencia et al. 1993), and *Antheraea yamamai* (Saito et al. 1998). OBP level in the hemolymph increase significantly during late instars (Martel and Law 1992) and may serve as a marker of lepidopteran diapause induction. Larval diapause associated polypeptides (DAPs) also show increased hemolymph levels during late instars and function in nutritive storage (Palli et al. 1993).

The European corn borer, *Ostrinia nubilalis* (Hübner), is a crop pest in its larval stage. Voltinism ecotypes of *O. nubilalis* (univoltine, bi-, and multivoltine) show differing larval response to photoperiod and temperature for induction of diapause (Showers 1993; Mason et al. 1996). Additionally, phenotypic differences in number of degree-days required post-diapause prior to pupation were observed between volinte ecotypes (Showers 1979), and showed paternal inheritance (Showers et al. 1972; Reed et al. 1981; Showers 1981). Juvenile hormone may play a major role in control of ecdysis, diapause maintenance, and metamorphosis (Yin and GM Chippendale 1976), and suppression of 20-hydroxyecdysone is crucial in delay of molting during diapause (Denlinger 1985). The diapause state also is characterized by brain inactivity, and non-response of the
prothoracic glands to activation by the prothoracotropic hormone (Richard and Saunders 1986; Gelman et al. 1992). Larval diapause induction is marked by physiological changes in hemolymph composition (Chippendale and Beck 1967).

Harsh winter conditions are natural barriers to pest species range expansion. The ability of a species or ecotype to enter and maintain diapause may dictate survival in geographic ranges by delaying reproductive cycles until more favorable climatic conditions occur. North-south clines are observed with univoltine *O. nubilalis* ecotypes restricted to northern ranges (Showers 1979; Showers 1993). The univoltine *O. nubilalis* ecotype may have selective advantages in northern climates where short growing seasons favor single generations (Showers 1993). An extended time is required for univoltine larvae to break diapause compared to bivoltine counterparts (Calvin and Song 1994; Hoard and Weiss 1995), suggesting genes or environment influence volitionism traits.

Physiological changes associated with *O. nubilalis* larval diapause induction are manifested in the hemolymph (Chippendale and Beck 1967). We focused on characterization of ommochrome binding proteins from *O. nubilalis* as molecular markers of diapause, and to better understand genes expressed at the onset of the diapause state. Genetic markers developed herein also can be integrated into a molecular linkage map of the *O. nubilalis* genome.

Materials and Methods

Ostrinia nubilalis samples and extraction protocols

Fat body, midgut, head, and whole body samples were collected from 5th instar *O. nubilalis* larvae. Additionally, fat body tissue was removed from 4th and 5th *O. nubilalis* larvae, and from larvae exposed to diapause conditions for one week (Beck 1982). All *O. nubilalis* were bivoltine Z-pheromone strain individuals from the USDA-ARS, Corn Insects and Crop Genetics Research Unit lab colony in Ames, Iowa. Dissected tissue samples were flash frozen in liquid nitrogen, ground to powder, and RNA extracted with RNeasy extraction kits (Qiagen, www.qiagen.com) according to manufacturer instructions. All DNA extractions used adult thoracic tissue and were performed as described by Coates and Hellmich (2003). Extracts were quantified by absorption at 260 nm (A260), diluted to 50 ng/µl, and stored at –20°C.

PCR primer design, DNA amplification, and sequencing

Forward (DAP1-F: 5′-TTA GCC AGT GCT GCC TTG GT-3′) and reverse PCR primers (DAP1-R: 5′-GTC AGG CGC ATC ACA CTG TT-3′) were designed from an *O. furnacalis* diapause-associated protein gene sequence (GenBank accession no. AF169311; positions 269 of the 291 amino acid long *O. furnacalis* OBp1 and 2 obp2 alleles, and *M. sexta* OBp gene sequence (GenBank accession no. L00975; positions 59 to 575). A 350 nt on obp2 allele fragment (Onobp2-B4) that spanned *O. furnacalis* DAP positions 487 to 836 was omitted from the alignment. Additionally, expressed sequence tag sequences from *Bombyx mori* 5th instar fat body (fbVm022; male; strain p50) and ovary (ovS318H0, and ovS10G0) were include in the alignment. The consensus alignment was generated using AlignX software (Informax; gap penalty = 10), and a shared 516-nucleotide region of the alignment was used to construct a parsimony-based phylogeny using programs from the PHYLIP package (Felsenstein 1989). *Bombyx mori* ovarian expressed sequence tag ovS10G0 was used as the outgroup. One thousand bootstrap resampling steps were produced by the SeqBoot program, parsimony trees were generated using DNAPars, a strict consensus tree was estimated from all possible phylogenies with CONSENSE, and was viewed using TreeView (Page 1996).

Expression analysis

Total RNA extracted from fat body, midgut, head, and whole larvae from 5th instar larvae, and fat body from 4th and 5th, 5th instar wandering, and 1 week old diapausing *O. nubilalis* larvae was subjected to reverse transcriptase (RT)-PCR analysis. Individual RT-PCR first strand cDNA synthesis reactions used 250 ng total RNA template, 10 pmol of primer DAP1-R or β-actin-R (5′-GAC AAC GGC TCC GGT ATG TT-3′; controls only), 2.5 U Tth polymerase (Promega), 100 µM dNTPs, 2.5 mM MgCl2, and 2.0 µl of 10X Tth reverse transcriptase buffer (Promega) in a 10 µl reaction volume. A PTC-100 thermocycler (MJ Research, www.mjr.com) performed a primer extension cycle of 85°C for 1 m, 56°C for 1 m, and 72°C for 20 m. A 4.0 µl aliquot of 1st strand cDNA synthesis product was mixed with 1.6 µl chelate buffer (Promega), 10 pmol of primer OnOBP1-F, OnOBP2-F, or β-actin-F (5′-CCG AGG GT-3′; controls only), MgCl2 concentration adjusted 2.0 mM in a 20 µl final volume. RT-PCR reactions were carried out on a PTC-100 thermocycler (MJ Research) using 40 cycles of 95°C for 30 s, 56°C for 30 s, and 72°C for 1 m. RT-PCR products (20 µl) were separated on a 10 cm 1.0 % agarose 1X tris-borate gel containing 0.5 µg/ml ethidium bromide. PCR product was ligated using the pGEM-T Easy Cloning system (Promega) by overnight incubation at 4°C, and was used to transform 80 µl *E. coli* SURE (Stratagene, www.stratagene.com). Cloned inserts were DNA sequenced in 10 µl DTCS Quickstart reactions (Beckman-Coulter, www.beckman.com) using 1.6 pmol T7 primer according to manufacturer instructions. Sequence reaction products were purified by ethanol precipitation, suspended in 40 µl deionized formamide, and separated on a CEQ 8000 Genetic Analysis System (Beckman-Coulter) with method LFR-1 (denature: 90°C for 120 sec; inject: 2.0 kV for 15 sec; and separated: 4.2 kV for 85 min in a 50°C capillary). Sequence data was used to design transcript-specific reverse primers. Electropherogram output from duplicate runs was inspected visually for sequencing errors on the CEQ8000 Genetic Analysis Software.

Gene homology and orthology

The *Ostrinia furnacalis* diapause-associated protein sequence (DAP; GenBank accession no. AF169311; positions 246 to 762) was aligned with homologous regions from three *O. nubilalis* obp1 and 2 obp2 alleles, and *M. sexta* OBp gene sequence (GenBank accession no. L00975; positions 59 to 575). A 350 nt on obp2 allele fragment (Onobp2-B4) that spanned *O. furnacalis* DAP positions 487 to 836 was omitted from the alignment. Additionally, expressed sequence tag sequences from *Bombyx mori* 5th instar fat body (fbVm022; male; strain p50) and ovary (ovS318H0, and ovS10G0) were include in the alignment. The consensus alignment was generated using AlignX software (Informax; gap penalty = 10), and a shared 516-nucleotide region of the alignment was used to construct a parsimony-based phylogeny using programs from the PHYLIP package (Felsenstein 1989). *Bombyx mori* ovarian expressed sequence tag ovS10G0 was used as the outgroup. One thousand bootstrap resampling steps were produced by the SeqBoot program, parsimony trees were generated using DNAPars, a strict consensus tree was estimated from all possible phylogenies with CONSENSE, and was viewed using TreeView (Page 1996).
EDTA gel containing 0.5 µg/ml ethidium bromide, and digital images taken under UV illumination on a BioRad ChemiDoc System (BioRad, www.bio-rad.com).

Ostrinia nubilalis ommochrome binding protein (OBP) polymorphism

Two putative *O. nubilalis* ommochrome binding protein genes, called *Onobp1* and *Onobp2*, were co-amplified using primers DAP1-F and DAP1-R. Gene specific forward PCR primers OnOBP1-F (5′-GGG AGC GTG CTR AAG ACC AT-3′) and OnOBP2-F (5′-GGG ACT GTG CTG ATG AAG A-3′) were designed using Primer3 (Rozen and Skaltsky 1998) that could be used in combination with DAP1-R. The two PCR products were amplified separately, but with the same conditions (4 pmol of each primer, 2.5 mM MgCl2, 50 µM dNTPs, 100 ng of DNA template, and 0.9 U Taq DNA polymerase (Promega) in a 10.0 µl reaction). PTC-100 thermocycler conditions used 95°C for 2.5 min, followed by 40 cycles of 95°C for 30 s, 58°C for 30 s, and 72°C for 1 min.

Polymorphic restriction endonuclease cleavage sites were identified in *Onobp1* and *Onobp2* gene fragment alignments, and used to screen pedigrees and genotype light trap samples. The *Onobp1* fragment was digested with *Hinfl* or *Tsp509I*, and the *Onobp2* fragment was digested with *HaeIII*, *Msel* or *TagI*. All endonucleases were purchased from New England BioLabs except *TagI* (Promega). PCR-RFLP reactions included 6.0 µl of appropriate PCR product, 2.5 µl 10x Buffer, 0.1 mg/µl BSA, and 0.25 U of enzyme in 25 µl. Reactions were incubated at 37°C or 60°C (*Tsp509I* and *TagI*) for 14 h. Entire PCR-RFLP reaction volumes were loaded onto 10 cm 20% 1X TBE agarose gels that contained 0.5 µg/ml ethidium bromide. Samples were separated at 100 V for 1.5 h, and images captured under UV illumination on a ChemiDoc System (BioRad).

Mendelian inheritance of *Onobp1* and *Onobp2*

Mendelian inheritance of *Onobp1* and 2 was evaluated by allele segregation in pedigrees. Two paired matings of *O. nubilalis* adults from the USDA-ARS, CICGRU laboratory colony were used to establish two families. The F1 progeny were sib-mated (inbred) to produce F2 larvae. F2 larvae were reared on a semi-meridic diet (Guthrie 1987), DNA extracted from adults according to Coates and Hellmich (2003), and samples stored at −20°C prior to use. *Onobp1* and *Onobp2* loci were screened by PCR-RFLP as described previously, and chi-square tests used to measure goodness-of-fit between observed allelic distributions in the F2 generation and expectation Mendelian ratios.

Results and Discussion

Gene characterization and amplification

Two highly similar ommochrome-binding protein-like (*obp*) genes were characterized from the *O. nubilalis* genome. Both sequences were isolated from *O. nubilalis* by PCR, named *Onobp1* and *Onobp2*, and the data were submitted under GenBank accession nos. AY819651 to AY819655. GenBank accession nos. AY819651 and AY819652 are partial *Onobp1*, and AY819653 to AY819655 and AY862870 are partial *Onobp2* genes that lack N- and C-terminal peptide coding regions. Both *O. nubilalis* genes are transcribed in fat body tissue only, show derived structural characteristics similar to the *M. sexta* OBP, and likely encode glycoprotein products excreted into hemolymph. Structural identification of *Ostrinia* sequences as OBP encoding genes was based on peptide identity to the *M. sexta* OBP, similarity of the signal peptide, N-glycosylation, a conserved glycosyl hydrolase family 10 active site, and SwissProt classification of an *O. furnacalis* homolog within peptide Family PD125063 with the *M. sexta* OBP.

A PCR product amplified from *O. nubilalis* genomic DNA using primers DAP1-F and DAP1-R contained a heterogeneous mix of two approximately 775 bp products. The *O. nubilalis* sequences were gene fragments that omitted 9 and 22 codons from N- and C-terminal peptide regions, respectively. The *O. nubilalis* nucleotide sequences were 90-98% similar to an *O. furnacalis* diapause-associated peptide coding sequence (DAP; GenBank accession no. AF169311; Fig. 1; BLAST score ≥ 233 and E-score ≥ 6×10−8). All *O. nubilalis* *obp1* and 2 genes contained >90% of the CDS length and shared ≥ 80% identity at the peptide-level compared to *O. furnacalis*. The unpublished *O. nubilalis* GenBank accession AF169311 was therefore used to establish similarity to known genes. The 291 amino acid *O. furnacalis* DAP1 peptide showed similarity (35%) and identity (54%) to a 274 residue (31 kDa) *M. sexta* ommochrome binding protein encoding gene (obp; Martel and Law 1991; Yepiz-Plascencia et al. 1993; GenBank accession no. L00975; BLASTp score = 134, E-value = 10−8). A BLASTp search of using the *M. sexta* peptide P31420 identified our released *O. nubilalis* *obp1* and 2 sequences (E-values 4×10−14 to E-value 3×10−6; identities 52 to 58%; similarities 45 to 51%). Identities as low as 25% were present between putative chymotrypsin-like proteases from the Hessian fly (*Mayetiola destructor*; Zhu 2005) even though genes were derived from a single ancestor via gene duplication (Neurath et al. 1967). The peptide similarity of 46% was used to identify a 269-residue *B. mori* peptide fragment derived from fat body expressed sequence tag *fbVm0227* as an ommochrome binding protein (SilkBase, Bombyx Genome Database Working Group; Toru Shimada, Kazuei Mita, and co-workers unpublished). This suggests relative homology between *Ostrinia* and *M. sexta* genes is sufficient to classify the former as ommochrome-binding protein-related genes.

The derived amino acid sequence from *O. furnacalis* DAP GenBank accession no. AF169311 had a predicted molecular weight ≥ 32.6 kDa and isoelectric point (pl) of 4.89 (compute pl/MW program; Bjellqvist et al. 1993) that was near 31 kDa and pl of 5.89 for *M. sexta* OBP (Martel and Law 1991). The *O. furnacalis* peptide was predicted to have extracellular localization with 66.7% assurance (PSORTII program; Paul Horton unpublished; www.psort.org). Additionally, the *O. furnacalis* peptide may have an 18 amino acid signal peptide (residues 1 to 18) predicted by PSORTII program using methods described by von Heijne (1986), which is the exact length of the signal peptide from *M. sexta*. Although the two signal sequences appear to share little sequence identity, *O. furnacalis* and *M. sexta* OBP signal peptides were respectively composed of 12/18 and 11/18 residues with aliphatic side chains. Furthermore, the program SignalP 3.0 (www.cbs.dtu.dk/services/SignalP/) used a hidden Markov models to predict presence of a peptide cleavage site following a VSS residue sequence of the *O. furnacalis* OBP peptide (probability 0.998). The partial *O. nubilalis* *obp1* and *obp2* sequences contained 50% of the entire signal sequence length and
is the location of forward PCR primer (DAP1-F), showing the O. nubilalis obp1 and obp2 genes likely also encode a similar signal sequence. These properties suggest cell membrane transport out of the fat body, and proteins that are soluble in lepidopteran hemolymph (pH ≈ 7.0; see expression data below).

The derived peptide sequences from O. furnacalis or O. nubilalis gene fragments did not show similarity to Choristoneura funeifera (Lepidoptera: Tortricidae) DAP1 (753 amino acids; 74 kDa) or DAP2 (749 amino acids; 72 kDa; Palli et al. 1998), indicating they constitute a different class of hemolymph proteins. Therefore, we propose that the O. furnacalis DAP gene and homologous O. nubilalis genomic regions may encode ommochrome-binding proteins (OBPs).

A PredictProtein search of the ProSite database indicated the presence of two N-glycosylation sites, NITE and NKTK, from both O. furnacalis and O. nubilalis obp genes (Rost 1996; Fig. 1). A mannose attachment was found on the M. sexta OBP (Martel and Law 1991), and a single corresponding N-glycosylation site found by Yepiz-Plascencia et al. (1993). These predictions indicate the putative Ostrinia obp1 and obp2 gene products are also glycosylated. Additionally, a ProDom search (http://prosite.toulouse.inra.fr/ prodom/current/html/home.php) co-classified the Ostrinia and M. sexta OBPs within peptide Family PD125063 (Zdobnov and Apweiler 2001). All members of this protein family share a conserved glycosyl hydrolase family 10 active site that is present in O. furnacalis OBP residues 96 to 106 and O. nubilalis homologs (Fig. 1). Glycosyl hydrolases degrade cellulose and xylans, but the presence of this activity has not been previously described for OBPs. The function of this active site is unknown and it may be falsely identified by the Protein database. Nevertheless, the conserved domain provides evidence of co-ancestry between OBP encoding genes. Phylogenetic and expression level evidence for O. nubilalis obp1 and obp2 ommochrome binding protein classification also is shown (see below).

Gene homology and orthology

Phylogenetic methods can predict relationships and genealogical history among genes or alleles, and was used to explore common ancestry between lepidopteran obp genes. The parsimony-based phylogeny incorporated an alignment of 516 nucleotides shared by O. furnacalis DAP (OBP1) coding sequence (GenBank accession no. AF169311), M. sexta (Yepiz-Plascencia et al. 1993; GenBank accession no. L00975), O. nubilalis obp1 and obp2 allele fragments (Fig. 1), and B. mori expressed sequence tags fbVm022, ovS318H0, and ovS10G0. The resultant phylogeny showed that Ostrinia obp genes are nested within a clade with the M. sexta gene, indicating derivation from a single ancestral gene and common ancestry of contemporary genes. The tree also indicated ≥ 950 of 1000 bootstrap pseudoreplicates supported presence of a node between O. nubilalis obp1 and 2 alleles (Fig. 2). Lower interspecific compared to intraspecific similarity between Onobp1 and Onobp2 sequences and the phylogeny (Fig. 2) suggested duplication of Onobp1 and Onobp2 from a common ancestral gene. Gene duplications are maintained by gain of function or division of function (Force et al. 1999; Lynch and Force 2000), otherwise gene duplicates may accumulate mutations (“decay”) resulting in reduced or lost function and pseudogene formation.

Expression analysis

Semi-quantitative RT-PCR showed that transcription of Onobp1 and Onobp2 is differentially regulated in O. nubilalis fat body, and duplicate genes may be maintained in the genome due to their having different functions. The ommochrome-binding protein gene expressed in fat body of 5th instar M. sexta larvae (Yepiz-Plascencia et al. 1993) corresponded to a peptide that increased in concentration in hemolymph during late instars (Martel and Law 1991; 1992). An OBP protein was also purified from 5th instar A. yamamai hemolymph (Saito et al. 1998). Two co-expressed obp-like genes have not previously been described in Lepidoptera, except for the evidence presented here for larval O. nubilalis fat body. The tissue specificity of O. nubilalis obp1 and obp2 provides further evidence for correct classification of these genes as coding for ommochrome-binding proteins.

Expression patterns of two highly similar O. nubilalis genes (Onobp1 and Onobp2) were characterized by locus-specific RT-PCR. Results indicated Onobp1 and 2 transcripts are present in total RNA preparations from whole larvae and dissected fat body tissue, but not in midgut or head tissues of 5th instar larvae (Fig. 3 A). Lack of obp1 and obp2 RT-PCR products suggests transcripts are not present or below the level of sensitivity in head and midgut tissues. Amplification of β-actin (b-actin) from total RNA obtained from each tissue indicated template integrity differences were not present between samples. Fat body expression of Onobp1 and Onobp2 transcripts was expected due to data from M. sexta (Yepiz-Plascencia et al. 1993) and further suggests correct classification as OBP-encoding genes.

The O. nubilalis obp1 gene has larval growth stage-specific expression. Onobp1 transcript was detected by RT-PCR in total RNA from fat body of 5th instar larvae, whereas the transcript was not detected from 4th instar, 5th instar wandering, or 1 week old diapausing larval fat body using identical methods (Fig. 3 B). Similar larval instar-specific transcription was observed for a M. sexta obp but in 5th instar wandering larvae (Yepiz-Plascencia et al. 1993). Also, an A. yamamai obp peptide product was identified in 5th larval hemolymph (Saito et al. 1998). Data collected from O. nubilalis, M. sexta, and A. yamamai suggest an orthologous obp gene may be expressed in 5th and late 5th instar Lepidoptera.

In contrast to obp1, transcription of the O. nubilalis obp2 gene is not restricted to a particular developmental stage. The Onobp2 transcript was amplified in fat body total RNA samples by RT-PCR from all larval growth stages tested, suggesting constitutive fat body expression (Fig. 3 B). The obp2 transcript level in the fat body may vary between larval stages. It increased as larvae moved from 4th instar to 5th instar wandering larvae, and remained high among 1 week old diapausing larvae. Assuming primers (DAP1-R, OBP1-F and OB2-F) anneal with equal efficiency, the level of Onobp2 transcription appears greater than Onobp1. Higher overall OBP2 expression may result, although eukaryotic transcriptional and translational efficiency are not always correlated. Transcription of Onobp2 across larval stages differed from the stage-specific expression of Onobp1 (Fig. 3 B) and M. sexta obp transcripts (Yepiz-Plascencia et al. 1993). Differential expression of Onobp1 and 2 among larval stages might suggest O. nubilalis paralogs might differ in developmental stage-specific enhancer elements (Ayer and Benyajati 1992).
Two differentially expressed ommochrome-binding protein-like genes (obp1 and obp2) in larval fat body of the European corn borer, Ostrinia nubilalis. 12pp. Journal of Insect Science, 5:19, Available online: insectscience.org/5.19

Figure 1. Ostrinia nubilalis ommochrome binding protein gene 1 (obp1) and 2 (obp2) alignments with O. furnacalis gene DAP (GenBank accession AF169311). The 350 nt sequence Onobp2-B4 (GenBank accession AY862870) is from pedigree 10b male parent. A partial signal sequence is double underlined, a conserved glycosyl hydrolases family 10 active site is enclosed in a box, and an N-glycosylation site overwritten with an asterisk (*). Polymorphic sites are highlighted. Primer binding regions are underlined by arrows indicating directions, restriction endonuclease sites underlined, and location of gene specific primer double underlined.

Figure 1. (Continued)

Figure 1. (Continued)
Figure 2. Ommochrome-binding protein gene (obp) phylogeny generated from a 516 nt consensus alignment from nucleotide positions 246 and 762 of the O. furnacalis diapause associated polypeptide (DAP; GenBank accession no. AF169311). Other OBP gene sequences include O. nubilalis obp1 alleles Onobp2-A1 and -A2, and obp2 alleles Onobp2-A1, -A2, and -A3 (See Fig. 1), M. sexta (M Sexta OBP; GenBank accession no. L00975), and Bombyx mori (Bm) expressed sequence tag sequences from fat body (fbVm022) and ovarian tissue (ovS318H0, and ovS10G0).

Ostrinia nubilalis ommochrome binding protein polymorphism

Four peptide sequence conflicts were identified within the first 31 residues of M. sexta OBP N-terminal sequence by comparing evidence from Martel and Law (1991) and Yepez-Plascencia et al. (1993). These data suggest variability exists even within the same species, and may contribute to low peptide-level similarity and identity between species. Two unique sequence types with similarity to the O. furnacalis DAP gene (reclassified as OBP1) were isolated from O. nubilalis by PCR, (GenBank accession nos. AY819651 to AY819655 and AY862870). No introns were predicted within either gene fragment. Intraspecific alignment of 775 to 778 bp Onobp1 (alleles Onobp1-A1, and -A2) and 782 to 785 bp Onobp2 gene fragments (alleles Onobp2-B1, -B2, and -B3) identified 21 and 23 single nucleotide polymorphisms, respectively (Fig. 1). Onobp1 single nucleotide polymorphisms within Hinfl or Tsp509I, and Onobp2 mutations within HaeIII, MseI or TaqI restriction endonuclease cleavage sites were observed (Fig. 1; Table 1).

The difference of three nucleotides was due to a Thr deletion near the N-terminus of Onobp1, and an Asp residue deletion among Onobp2 sequences. DNA sequence data indicated 97.0% and 97.3 to 98.3% similarity between Onobp1 and 2 alleles, respectively. Lower sequence similarity was observed between Onobp1 and 2 sequences (88.3 to 90.1%). The Onobp2-B4 sequencing fragment (GenBank accession no. AY862870) was not included in this analysis, but used to identify polymorphic nucleotides within pedigrees. Lower similarity between Onobp1 and Onobp2 might suggest sequences are from separate loci. Sequence differentiation can occur between alleles at the same locus, thus similarity comparisons between Onobp1 and Onobp2 do not prove they are unique genes with different genome positions. Fidelity of allelic inheritance was confirmed by pedigree analysis.

Mendelian inheritance

Two sets of divergent yet similar genome sequences (Onobp1 and Onobp2) isolated from O. nubilalis by PCR constitute separate loci. Gene specific primer fidelity was inferred by calculating degree of mismatch and estimated melting temperature. The Onobp1 specific OnOBP1-F primer showed 25% mismatch to the homologous region of Onobp2 template sequence with an estimated annealing temperature ≅ 48 °C. The Onobp2 locus specific OnOBP2-F primer had 30% mismatch with homologous Onobp1 template with an estimated annealing temperature of ≅ 46 °C. Template (gene or locus) specificity of primers was shown empirically by failure of OnOBP1-F to prime PCR that used a cloned Onobp2 gene fragment as template, and OnOBP2-F primer to prime PCR that used a cloned Onobp1 gene fragment as template (58° C annealing;
significant allele frequency departures from expected was observed by chi-square (data not shown).

Observed F2 ratios indicated Onobp1 HinfI PCR-RFLP or Onobp2 HaeIII PCR-RFLP defined alleles did not deviate significantly from Mendelian expectation (Table 1). In combination with sequence specificity of forward primers, phylogeny, differential expression, Mendelian segregation of heterozygous allele states in Onobp1 and Onobp2 assays indicate PCR products are derived from unique loci, and show that null alleles were not present (Pemberton et al. 1995).

Concluding Remarks

Two O. nubilalis ommochrome binding protein paralogs, Onobp1 and Onobp2, are transcribed by fat body cells, suggesting retention of a shared fat body specific promoter elements (Ayre and Benyajati 1992). Contemporary status of gene duplication may be that, 1) both copies may retain similar function, 2) copies may have divergent function, or 3) one copy may have decayed or be in process of degrading into a pseudogene. Divergence in duplicate gene function encompasses the gain and division of function of which the latter includes temporal or tissue-specific expression (Force et al. 1999; Lynch and Force 2000). Changes in duplicated genes are more likely to be in the patterning of expression as opposed to diversification of protein or enzyme function (Purugganan 1998; Wendel 2000), and may explain the large eukaryotic gene families (Hartl and Clarke 1997).

Differences in temporal expression of O. nubilalis obp1 and obp2 may constitute an example of division of function and change in duplicate gene function by differential expression. Fifth instar specific transcription of Onobp1 may suggest a physiological requirement only prior to or during diapause induction (Fig. 3). Pre-diapause OBPI expression may coincide with increased larval metabolic activities when energy storage demands are highest. Triggering Onobp1 transcription may facilitate a greater detoxification capacity. Alternatively, Onobp1 expression might be an evolutionary flicker as promoter region mutations accumulate suggesting Onobp1 may be decaying into a pseudogene (Marshall et al. 1994; Nei et al. 1997). In contrast, constitutive expression of Onobp2 may indicate a universal physiological demand for OBPI2 function. Additional investigation into promoter region structure and function, and potential OBPI1 and OBPI2 function will be required to elucidate contemporary contribution to diapause physiology and maintenance of extended periods of diapause in univoltine ecotypes.

Table 1. Mendelian inheritance of obp1 (locus A) and obp2 (locus B) alleles in O. nubilalis pedigrees Ped10b and Ped24a. Observed genotypic ration among F2 offspring was compared to Mendelian expected F2 ratio based on parental genotypes using PCR-RFLP. Allele names correspond to sequences in Fig. 1. No significant allele frequency departures from expected was observed by chi-square (χ2) tests.

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Parental genotype</th>
<th>Observed PCR-RFLP genotype ratios among F2 progeny</th>
<th>Expected F2 ratio</th>
<th>chi²</th>
<th>p-value (df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ped10b</td>
<td>obp 1:</td>
<td>obp 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>♂A1A1</td>
<td>obp 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HaeIII</td>
<td>♂B1B4</td>
<td>obp 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>♂A1A1</td>
<td>A1A1 (9/33): A1A2 (10/33): A2A2 (6/33)</td>
<td>1:0:2:0:1</td>
<td>0.82</td>
<td>0.664</td>
</tr>
<tr>
<td></td>
<td>♂B1B4</td>
<td>No variation detected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ped24a</td>
<td>obp 1:</td>
<td>obp 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HinfI</td>
<td>♂A1A1</td>
<td>A1A1 (9/33): A1A2 (10/33): A2A2 (6/33)</td>
<td>1:0:2:0:1</td>
<td>0.82</td>
<td>0.664</td>
</tr>
<tr>
<td></td>
<td>♂A1A1</td>
<td>obp 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>♂B1B4</td>
<td>No variation detected</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Yin CM, Chippendale GM. 1976. Hormonal control of larval diapause

