A Method to Quantify Mixing in a Two Component Fluidized Bed

Norman K. Keller
Iowa State University

Theodore J. Heindel
Iowa State University, theindel@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/me_conf

Part of the Acoustics, Dynamics, and Controls Commons, Biomaterials Commons, and the Fluid Dynamics Commons

Recommended Citation
http://lib.dr.iastate.edu/me_conf/122

This Conference Proceeding is brought to you for free and open access by the Mechanical Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Mechanical Engineering Conference Presentations, Papers, and Proceedings by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
A Method to Quantify Mixing in a Two Component Fluidized Bed

Abstract
Fluidized bed technology can be used for pyrolysis and gasification of solid fuel particles such as biomass, which is important to industry because of its potential as an alternative for petroleum-based fuels. To efficiently utilize a fluidized bed reactor it is necessary, among other factors, to investigate the mixing and segregation behavior of the fuel particles with the bed material. In order to characterize the material distribution, a technique to visualize the biomass inside a fluidized bed reactor has been developed using X-ray computed tomography (CT) scans. This paper presents an image analysis procedure that can be used to quantify and characterize the local mixing and segregation in a 3D fluidized bed.

Keywords
biomass processing, fluidized bed, hydrodynamics, mixing, segregation, x-ray computed tomography

Disciplines
Acoustics, Dynamics, and Controls | Biomaterials | Fluid Dynamics

Comments

This conference proceeding is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/me_conf/122
A METHOD TO QUANTIFY MIXING IN A TWO COMPONENT FLUIDIZED BED

Norman K. Keller and Theodore J. Heindel
Department of Mechanical Engineering
Iowa State University
Ames, Iowa 50011

ABSTRACT
Fluidized bed technology can be used for pyrolysis and gasification of solid fuel particles such as biomass, which is important to industry because of its potential as an alternative for petroleum-based fuels. To efficiently utilize a fluidized bed reactor it is necessary, among other factors, to investigate the mixing and segregation behavior of the fuel particles with the bed material. In order to characterize the material distribution, a technique to visualize the biomass inside a fluidized bed reactor has been developed using X-ray computed tomography (CT) scans. This paper presents an image analysis procedure that can be used to quantify and characterize the local mixing and segregation in a 3D fluidized bed.

Keywords: biomass processing, fluidized bed, hydrodynamics, mixing, segregation, X-ray computed tomography

INTRODUCTION
With expected shortages in fossil fuel supplies and due to legislation efforts promoting ‘green’ energy, renewable energies such as biomass, converted to different forms of fuels, have gained a lot of interest in the past decade. Studies on the potential of biomass to serve as a sustainable and economical energy source have addressed many important aspects that must be considered [1-7]. According to these studies, the most promising technology to convert biomass into useful forms of fuels is thermochemical processing, utilizing a fluidized bed reactor for either pyrolysis or gasification. The advantages of a fluidized bed reactor are its high heat and mass transfer rates, low pressure drop and efficient mixing properties. Although many studies have been carried out on the characteristics of fluidized beds, with significant contributions as early as the 1970s [8-16], mixing and segregation are still poorly understood. The opaque nature of a fluidized bed reactor prohibits direct visual observations; therefore many findings of early studies have been either based on 2D reactors or carried out by means of invasive measurement techniques [17, 18].

This paper describes the use of 3D X-ray computed tomography scans of a laboratory scale fluidized bed reactor to study mixing and segregation in a two component bed of granular material. The bed is composed of glass beads (GB) representing inert bed material and ground walnut shell (GWS) as model biomass. The procedures outlined here will be used in future studies that address mixing and segregation in a fluidized bed.

EXPERIMENTAL SETUP
Fluidized bed reactor
As illustrated in Figure 1, the cold-flow fluidized bed used in this study is composed of a 10.2 cm inner diameter acrylic tube, and includes a plenum, bed chamber, and riser or freeboard region. The distributor, mounted between the plenum and bed chamber, is made of an acrylic plate containing 63 1 mm diameter holes drilled in concentric circles, giving the aeration plate an open area ratio of 0.62%. To prevent particles from falling through the holes or plugging them, a fine mesh screen is placed right above the distributor plate. Air enters the plenum through the inlet in the bottom of the plenum, which is filled with marbles to evenly disperse the air over the bottom of the aeration plate. The model reactor features various other taps for pressure transducers and side injection. Since these have not been used in this study, they have been plugged. Additionally, the method developed and described below was tested in a static bed, so no air flow was recorded. Future work will apply the analysis method in a fluidized bed.
Material selection

The materials selected for this study are based on what is used in large scale industrial fluidized beds. The inert bed material is represented by glass beads in the 500-600 μm range. The second component, modeling the biomass, is ground walnut shell also in the 500-600 μm range. The properties of the particles used in this study are summarized in Table 1.

<table>
<thead>
<tr>
<th>Particle properties</th>
<th>Glass beads</th>
<th>Ground walnut shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter [μm]</td>
<td>500-600</td>
<td>500-600</td>
</tr>
<tr>
<td>particle density [g/cm³]</td>
<td>2.6</td>
<td>1.2-1.4</td>
</tr>
</tbody>
</table>

The properties of glass beads are very similar to those of refractory sand, which is usually used in industrial reactors, but glass beads are better characterized and uniform. Figure 2a shows a high resolution photograph of the particles in the 500-600 μm size range. Most glass bead particles are spherical, smooth and solid.

The second component in the fluidized bed, which simulates the biomass, is ground walnut shell, also in the 500-600 μm size range. Figure 2b shows a high resolution photograph of the ground walnut shell particles. Note that the particles do not appear to be spherical although they are often modeled as such.

X-ray imaging facility

The X-ray imaging facility at Iowa State University is a unique, non-invasive measurement tool specifically developed for opaque, multiphase flows. Since it has been described elsewhere [19-22] only a brief description is given here.

As Figure 3 illustrates, two LORAD LPX200 X-ray sources are mounted perpendicular to each other on a 1m inner diameter gear ring that can rotate 360°. The sources allow for variable voltage (10–200 kV) and current (0.1–10 mA) up to a total power output of 900 W for each source. Low energy radiation is suppressed by a combination of 1 mm thick copper and aluminum filters. Mounted opposite of the X-ray sources are two image intensifier/CCD camera pairs. This system setup is capable of acquiring radiographs, stereographs and computed tomography scans.
For improved computed tomography scans, a 44x44 cm cesium-iodide scintillator screen is used in this study as the detector and transforms radiation into visible light. The image is captured by an Apogee Alta U9 system with a 50 mm Nikon lens. This system has 3072 x 2048 pixels and is thermoelectrically cooled to allow for long exposure times.

Computed tomography scans

To acquire X-ray CT data, the scanner rotates around the object of interest, taking a series of 2D projections at different angles which are later back-projected using a reconstruction algorithm and custom computer programs [19-21, 23, 24]. This procedure yields a digital 3D image for further analysis. The local variation of voxel intensity, where a voxel is a 3D pixel, in this 3D array corresponds to the attenuation variation of the X-ray beam as it passes through the object, which in turn is a function of density, material thickness and attenuation coefficient, this is later used to derive the material distribution inside the reactor.

The reconstructed 3D images of the object can be filtered (i.e., sliced) to show internal structure of the mixture as shown in Figure 4. Because the voxels hold intensity data, the slice images are in gray scale; however, images can be given a false color to improve contrast. All images reported in this study will only show x-slices. The reported CT values are averaged over concentric annuli or averaged over horizontal slices.

Beam hardening

The most commonly encountered artifact in X-ray CT imaging is beam hardening. It is caused by lower energy X-rays being more readily attenuated than higher energy X-rays. It is therefore a function of material density, material thickness, and attenuation coefficient. It causes the edges to appear lighter and the center to appear darker in the reconstructed image. Hence, for a cylindrical object of uniform density, the CT value would vary with radius. Figure 5 shows the effects of beam hardening for a full bed of glass beads (top curve) and a full bed of ground walnut shell (bottom curve). The higher density glass beads are more affected by beam hardening, while the lower density ground walnut shell show almost no effect at all. The values are the average for concentric annuli with one pixel wall thickness. The effects of beam hardening complicates the analysis when determining mixing and segregation between glass beads and ground walnut shell.

Usually, beam hardening can be accounted for by applying a correction algorithm for known material density. However, since this study deals with mixing and segregation of two components inside the bed, the density of any control volume will vary with time and location. Therefore, a primary objective of the analysis and development method has been to properly account for beam hardening.
RESULTS AND DISCUSSION

For this study all experiments have been conducted with a static fluidized bed. The X-ray source settings were 150 keV and 3.5 mA. The X-ray beam was filtered with one aluminum filter and one copper filter. Images were acquired for every degree, totaling 360 images, with the camera set at 4×4 binning. The system was configured to yield a voxel size of roughly 580 μm on a side. Figure 6 provides an illustration where the left side shows the x-slice or center plane of the bed material and the right side is a magnified voxel.

To calibrate voxel intensity to mixing composition, a series of CT scans were performed with different composition ratios of well-mixed systems. Eleven different bed compositions were scanned, ranging from pure glass beads to pure ground walnut shell, with a uniformly incremented volume ratio. Table 2 summarizes these experimental conditions.

As shown in Figure 5, the CT values are a function of bed radius, whereas Figure 7 shows the CT values, which are averaged horizontally, are not a function of bed height. The error bars in Figure 7 represent one standard deviation from the averaged values. In general, the average CT value is uniform through the entire bed height. The small variations in the 25% GWS - 75% GB system are attributed to small nonuniformities in the local mixing.

Assuming a homogeneous particle distribution, CT values were averaged over concentric radii and plotted as a function of radius. These data were used to generate a matrix that correlates the voxel values to the biomass volume fraction as a function of the distance to the center (radius) of the bed. The values in the matrix are the average CT values calculated for concentric annuli. This calibration is possible because the variation over the bed height is minimal (Figure 7) and beam hardening uniformly affects the values within the annulus.

![Figure 5: Average CT values for concentric annuli in the bed.](image)

![Figure 6: 3D CT image of a bed of granular material cut through the center (x-slice).](image)

![Figure 7: Variation of average CT values over bed height with standard deviation.](image)

<table>
<thead>
<tr>
<th>Table 2: Overview of Calibration Experiments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

Copyright © 2010 by ASME
Figure 8 shows a summary of the acquired data for the composition calibration. The curves are the CT values averaged for concentric annuli for mixture ratios in 10% steps by volume. The nonlinearity of the respective curves result from beam hardening. The top curve represents a bed of pure GB, showing the largest impact of beam hardening due to the high density of the material. This causes higher CT values towards the edge of the bed and lower CT values in the center. The almost flat curve on the bottom represents a bed of pure GWS, which has negligible beam hardening. The curves in between are for the different volume ratios between GB and GWS. Note that image saturation near the wall, where the X-ray path length through the bed is a minimum, results in increased noise in the data; these data are not shown in Figure 8.

Third order polynomial curve-fits have been generated from each curve in Figure 8 and summarized in Table 3. The curves have been extrapolated all the way to the bed wall. These curve-fits were used to generate a bed composition matrix for the respective CT value as a function of bed radius. The composition matrix is then used as a “look-up table” for the local voxel CT value at a particular radius to determine the voxel biomass composition on a volume basis. Hence, the 3D data are transformed from local CT value to local biomass composition within the entire 3D volume.

TABLE 3: POLYNOMIAL CURVE FIT CORRELATIONS FROM THE CURVES IN FIGURE 8.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Curve fit correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$y = 218x^3 + 91.2x^2 + 31.7x + 918$</td>
</tr>
<tr>
<td>2</td>
<td>$y = 63.1x^3 + 200x^2 + 11.6x + 889$</td>
</tr>
<tr>
<td>3</td>
<td>$y = 2.82x^3 + 249x^2 + 2.43x + 862$</td>
</tr>
<tr>
<td>4</td>
<td>$y = -49.6x^3 + 289x^2 + 49.6x + 835$</td>
</tr>
<tr>
<td>5</td>
<td>$y = -16.5x^3 + 238x^2 - 51.1x + 835$</td>
</tr>
<tr>
<td>6</td>
<td>$y = -30.3x^3 + 212x^2 - 59.9x + 806$</td>
</tr>
<tr>
<td>7</td>
<td>$y = 80.2x^3 + 23.8x^2 + 15.6x + 734$</td>
</tr>
<tr>
<td>8</td>
<td>$y = -34.4x^3 + 41.4x^2 + 37.4x + 693$</td>
</tr>
<tr>
<td>9</td>
<td>$y = -216x^3 + 277x^2 - 130x + 707$</td>
</tr>
<tr>
<td>10</td>
<td>$y = -154x^3 + 192x^2 + 3.93x + 578$</td>
</tr>
<tr>
<td>11</td>
<td>$y = -16.2x^3 + 15.7x^2 + 15.4x + 509$</td>
</tr>
</tbody>
</table>

Concept validation

The procedures outlined above have been validated using a mixture of known composition of glass beads and ground walnut shell. In this way, the total volume of biomass present in a random mixture of known composition is compared to the initial biomass volume. To verify that independently acquired data can be analyzed with this concept, a series of experiments with two component static beds, varying in composition and material distribution, have been carried out and analyzed. Example results are summarized in Table 4. The variation listed with the initial volume was determined by estimating the potential height variation of ± 1-2 mm. With a 10.2 cm diameter bed, a variation of biomass volume is expected to be on the order of ± 16 cm³. The absolute error reported is associated with the calculated volume of biomass.

TABLE 4: VALIDATION OF CONCEPT.

<table>
<thead>
<tr>
<th>Bed composition</th>
<th>Condition</th>
<th>Initial volume [cm³]</th>
<th>Calculated vol [cm³]</th>
<th>Absolute Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25% GWS + 75% GB</td>
<td>I</td>
<td>208 ± 16</td>
<td>248</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>208 ± 16</td>
<td>211</td>
<td>1.67</td>
</tr>
<tr>
<td>50% GWS + 50% GB</td>
<td>I</td>
<td>415 ± 16</td>
<td>416</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>415 ± 16</td>
<td>409</td>
<td>1.46</td>
</tr>
<tr>
<td>75% GWS + 25% GB</td>
<td>I</td>
<td>623 ± 16</td>
<td>664</td>
<td>6.62</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>623 ± 16</td>
<td>636</td>
<td>2.29</td>
</tr>
</tbody>
</table>
As shown in Table 4, the majority of the calculated biomass volume in the random mixtures are well within the initial volume. A significant source of potential error is the flange region at the base of the bed, which affects the X-ray absorption in this region. For example, Figure 9 shows sample results for 50% GWS and 50% GB. The reconstructed 3D image sliced through the center is shown on the top with added false-color. The reconstructed x-slice is shown on the bottom left and the transformed data is shown on the bottom right with white representing 100% biomass and black indicating 100% glass beads, and the gray-scale indicating the local variation between the two. The flange region identified by the red oval causes false biomass identification because of the thicker flange region. This causes a false identification of biomass in this region. Depending on the amount of model biomass within the region of the flange, the associated error can be significant. For this reason, the flange region was omitted from the analysis summarized in Table 4. We are currently modifying the bed chamber such that the aeration plate is above the flange region to eliminate this error.

Figures 10-12 represent x-slices from the various mixtures identified in Table 4. Mix I and mix II identify two different random mixtures of the same composition. The analyzed region omitted the flange region. In general, the procedures outlined above identify the mixture biomass regions, and from this identification, provide a good estimate of the known biomass content (i.e., Table 4). The most significant error (i.e., 25% GWS + 75% GB, mix I) occurs when the biomass remains outside the flange region (see mix I in Figure 10) resulting in an overestimation of biomass in the entire mixture. This is the primary reason for the large error identified in Table 4 for mix I of the 25% GWS and 75% GB mixture. The calculated biomass volume improves when it appears a uniform amount of biomass is in the flange region. The modified aeration plate identified above will improve the analysis procedures by eliminating the flange from the region of interest.

An additional source of error is in the generation of the transformation matrix. A homogenous mixture was assumed, but local variations, if they exist, can produce false calibration values.
CONCLUSIONS

A process using X-ray computed tomography has been outlined to systematically quantify mixing and segregation in a two component fluidized bed. It has been shown that by this process, spatial analysis of a fluidized bed is possible. Although only one system is considered in this paper, GWS and GB, investigation in other systems is ongoing.

It is important to note that although it has been shown that the principal method is feasible, errors associated with bed geometry must be addressed. Specifically, a modified bed aeration plate is proposed to eliminate the flange from the region of interest.

Future work will address mixing and segregation in an operating fluidized bed that undergoes sudden collapse to “freeze” the particle distribution.

ACKNOWLEDGMENTS

Support for portions of the work described in this paper from ConocoPhillips Company is acknowledged.

REFERENCES

