Shape-Programmed Nanofabrication: Understanding the Reactivity of Dichalcogenide Precursors

Yijun Guo
Iowa State University, yijung@iastate.edu

Samuel R. Alvarado
Iowa State University

Joshua D. Barclay
Iowa State University

Javier Vela
Iowa State University, vela@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

Part of the [Chemistry Commons](http://lib.dr.iastate.edu/chem_pubs/124). For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Shape-Programmed Nanofabrication: Understanding the Reactivity of Dichalcogenide Precursors

Abstract
Dialkyl and diaryl dichalcogenides are highly versatile and modular precursors for the synthesis of colloidal chalcogenide nanocrystals. We have used a series of commercially available dichalcogenide precursors to unveil the molecular basis for the outcome of nanocrystal preparations, more specifically, how precursor molecular structure and reactivity affect the final shape and size of II-VI semiconductor nanocrystals. Dichalcogenide precursors used were diallyl, dibenzyl, di-tert-butyl, diisopropyl, diethyl, dimethyl, and diphenyl disulfides and diethyl, dimethyl, and diphenyl diselenides. We find that the presence of two distinctively reactive C-E and E-E bonds makes the chemistry of these precursors much richer and interesting than that of other conventional precursors such as the more common phosphine chalcogenides. Computational studies (DFT) reveal that the dissociation energy of carbon-chalcogen (C-E) bonds in dichalcogenide precursors (R-E-E-R, E = S or Se) increases in the order (R): diallyl < dibenzyl < di-tert-butyl < diisopropyl < diethyl < dimethyl < diphenyl. The dissociation energy of chalcogen-chalcogen (E-E) bonds remains relatively constant across the series. The only exceptions are diphenyl dichalcogenides, which have a much lower E-E bond dissociation energy. An increase in C-E bond dissociation energy results in a decrease in R-E-E-R precursor reactivity, leading to progressively slower nucleation and higher selectivity for anisotropic growth, all the way from dots to pods to tetrapods. Under identical experimental conditions, we obtain CdS and CdSe nanocrystals with spherical, elongated, or tetrapodal morphology by simply varying the identity and reactivity of the dichalcogenide precursor. Interestingly, we find that precursors with strong C-E and weak E-E bond dissociation energies such as Ph-S-S-Ph serve as a ready source of thiol radicals that appear to stabilize small CdE nuclei, facilitating anisotropic growth. These CdS and CdSe nanocrystals have been characterized using structural and spectroscopic methods. An intimate understanding of how molecular structure affects the chemical reactivity of molecular precursors enables highly predictable and reproducible synthesis of colloidal nanocrystals with specific sizes, shapes, and optoelectronic properties for customized applications.

Keywords
dichalcogenide precursors, bond dissociation energies, anisotropic structures, morphology control, selective growth

Disciplines
Chemistry

Comments
Reprinted (adapted) with permission from ACS Nano 7 (2013): 3616, doi: 10.1021/nn400596e. Copyright 2013 American Chemical Society.

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/chem_pubs/124
Shape-Programmed Nanofabrication: Understanding the Reactivity of Dichalcogenide Precursors

Yijun Guo,†,‡,§ Samuel R. Alvarado,†,‡,§ Joshua D. Barclay,† and Javier Vela†,‡,*

†Department of Chemistry, Iowa State University, and ‡Ames Laboratory, Ames, Iowa 50011, United States. §These authors contributed equally to this work.

ABSTRACT Dialkyl and diaryl dichalcogenides are highly versatile and modular precursors for the synthesis of colloidal chalcogenide nanocrystals. We have used a series of commercially available dichalcogenide precursors to unveil the molecular basis for the outcome of nanocrystal preparations, more specifically, how precursor molecular structure and reactivity affect the final shape and size of II–VI semiconductor nanocrystals. Dichalcogenide precursors used were diallyl, dibenzyl, di-tert-butyl, disopropyl, diethyl, dimethyl, and diphenyl disulfides and diethyl, dimethyl, and diphenyl diselenides. We find that the presence of two distinctively reactive C–E and E–E bonds makes the chemistry of these precursors much richer and interesting than that of other conventional precursors such as the more common phosphine chalcogenides. Computational studies (DFT) reveal that the dissociation energy of carbon—chalcogen (C–E) bonds in dichalcogenide precursors (R–E–E–R, E = S or Se) increases in the order (R): diallyl < dibenzyl < di-tert-butyl < disopropyl < diethyl < dimethyl < diphenyl. The dissociation energy of chalcogen—chalcogen (E–E) bonds remains relatively constant across the series. The only exceptions are diphenyl dichalcogenides, which have a much lower E–E bond dissociation energy. An increase in C–E bond dissociation energy results in a decrease in R–E–E–R precursor reactivity, leading to progressively slower nucleation and higher selectivity for anisotropic growth, all the way from dots to pods to tetrapods. Under identical experimental conditions, we obtain CdS and CdSe nanocrystals with spherical, elongated, or tetrapodal morphology by simply varying the identity and reactivity of the dichalcogenide precursor. Interestingly, we find that precursors with strong C–E and weak E–E bond dissociation energies such as Ph–S–S–Ph serve as a ready source of thiol radicals that appear to stabilize small CdE nuclei, facilitating anisotropic growth. These CdS and CdSe nanocrystals have been characterized using structural and spectroscopic methods. An intimate understanding of how molecular structure affects the chemical reactivity of molecular precursors enables highly predictable and reproducible synthesis of colloidal nanocrystals with specific sizes, shapes, and optoelectronic properties for customized applications.

KEYWORDS: dichalcogenide precursors · bond dissociation energies · anisotropic structures · morphology control · selective growth

© 2013 American Chemical Society
cadmium complex (Cd(ODPA)₂) at 320 °C produces axially anisotropic CdS₁₋₆₇,₆₀ nanorods characterized by having a thick, CdSe-rich “head” and a thin, CdS-rich “tail”.¹⁴,¹⁵ Using a combined experimental and computational approach, we showed that the time evolution and, formation mechanism and the S-to-Se content of these compositionally graded CdS₁₋₆₇,₆₀ nanorods are direct consequences of relative phosphine chalcogenide precursor reactivity. Further, by tuning the steric and electronics of a family of closely related R₃P=E precursors (R = amide, alkyl, aryl or aryloxy; E = S or Se), we reproducibly and predictably synthesized CdE nanorods with controllable aspect (length-to-diameter) ratios between 10 and 100.¹⁶ These observations open new avenues for achieving “bottom-up” molecular-level control of composition, morphology, and properties at the nanoscale.

Unlike phosphine chalcogenides (R₃P=E), which contain only one type of reactive bond (P=E), dichalcogenide precursors (R−E−E−R) contain two different types of reactive bonds (C−E and E−E). We were intrigued by the inherent modularity of these molecular precursors and wondered how varying the substituents (R = alkyl, aryl) around the reactive −E−E− unit could affect dichalcogenide precursor reactivity and, ultimately, the outcome of nanocrystal preparations. Experimentally, we observe that differently substituted dichalcogenides lead to completely different nanocrystal morphologies, some lead to dots, others to rods or tetrapods. The selectivity for such anisotropic structures is obviously a direct consequence of chemical reactivity. Further, by tuning parameters such as reaction time,¹⁷ temperature,¹⁸,¹⁹ precursor concentration,²⁰ medium acidity,²¹ ligand type (amines,²²−²⁴ halides,²⁵ phosphonic acids,²⁵,²⁶ and chain length,²⁷,²⁸ common methods used to obtain II−VI and IV−VI rods and tetrapods include seeded growth,²⁹−³² continuous precursor injection,³³,³⁴ and noninjection routes.³⁵ Dichalcogenides offer a unique system where the selectivity for anisotropic structures under identical experimental conditions can be directly traced back to the molecular structure and chemical reactivity of the molecular precursor used. Here we present the results of a combined experimental and computational study aimed at addressing this question.

RESULTS AND DISCUSSION

Seeking a deeper understanding of how molecular structure affects chemical precursor reactivity, we subjected different substituted dichalcogenides to a consistent set of nanocrystal forming conditions (Scheme 1). Briefly, we injected individual dichalcogenide precursors (1 equiv) to a freshly generated solution of Cd(oleate)₂ (0.40 mol), oleic acid (20 equiv), and oleylamine (20 equiv) in 1-octadecene (ODE) (4.6 mL) at 250 °C. At regular intervals, we took small equal aliquots from the reaction mixture and monitored nanocrystal evolution (nucleation, growth, and ripening) by optical spectroscopy. After 40 min at 250 °C, we isolated and fully characterized the nanocrystalline products. We repeated this procedure for several different commercially available dichalcogenides having different alkyl and aryl substituents.

Dichalcogenide Precursor Chemistry: A Springboard to Nanocrystal Shape Diversity. Our experimental observations show that, in general, dichalcogenide precursors that reacted quickly produced spherical nanocrystals, while those that reacted more slowly produced nanocrystals of nonspherical morphology (often tetrapods). Figure 1 shows the time evolution of UV−vis absorption spectra as well as final (after 40 min) TEM images of CdS nanocrystals obtained with different dialkyl disulfides (R−S−S−R). UV−vis spectroscopy shows the appearance of the first absorption (15) peak characteristic of CdS nanocrystals within a few minutes for most precursors. Transmission electron microscopy (TEM) images show that some dichalcogenide precursors lead to the formation of CdS nanocrystals with a spherical morphology, while others lead to the formation of CdS nanocrystals with a tetrapod morphology.³⁶−³⁸ The majority of spherical CdS nanocrystals (dots) have a zinc blende (cubic) structure, while the CdS tetrapods comprise wurtzite (hexagonal) arms extending from the {111} facets of zinc blende (cubic) cores (seeds) (see Supporting Information).³⁹−⁴¹ On the basis of these results, it is clear that the structure of the molecular precursor has considerable influence on the rate of growth, size, and morphology of the resulting nanocrystals.

Assessing the Strength of C−E and E−E Bonds from Computations. To better understand these observations, we computationally studied the different dichalcogenide precursors using the GAMESS software. We computed their carbon–chalcogen (C−E) and chalcogen–chalcogen (E−E) bond dissociation energies (BDEs, Scheme 2) using density functional theory (DFT) with the Boese–Martin Kinetics (BMK) functional, which has
been shown to be a viable method to calculate thermodynamic properties such as BDEs at a lower computational cost than high-precision methods such as G3. Table 1 and Figure 2 show the computed BDEs of all precursors we investigated. Full computational results, including bond distances and dihedral angles, are available in the Supporting Information.

C–E and E–E BDEs: Comparison to Prior Experimental and Computational Data. In terms of absolute value, our computational results appear to underestimate the experimentally measured values reported previously for disubstituted dichalcogenides, particularly in the case of E–E BDEs. For example, laser photofragmentation time-of-flight mass spectrometric studies of Me–S–S–Me, S–S–Me, and S–S–Me yielded at 0 K a C–S BDE of 55.0 kcal/mol and a S–S BDE of 72.4 kcal/mol at 0 K, compared to our calculated values of 59.03 and 58.04 kcal/mol, respectively (Table 1). This discrepancy could be due to either computational or experimental error. In terms of the trends observed, our computational results are in agreement with those observed experimentally. E–E BDEs measured experimentally are generally quoted in the range 51–72 kcal/mol; those derived from calorimetry are 66.1 kcal/mol for Et–S–S–Et, 65.2 kcal/mol for Me–S–S–Me, and 51.2 kcal/mol for Ph–S–S–Ph, compared to our calculated values of 59.48, 58.04, and 45.65 kcal/mol, respectively (Table 1). Our computational results compare well with previous calculations reported for disubstituted dichalcogenide compounds. Early computational references on C–S and S–S BDEs used a complete basis set approach instead of DFT. High-level ab initio approaches using G3, G3B3, CBS-Q, CBS-4M, CCSD(T), and ROMP2 were applied to S–S BDEs. A limited DFT study showed that the B3LYP functional provided accuracy close to composite methods, with S–S BDEs of 64.5 kcal/mol for tBu–S–S–tBu, 63.9 kcal/mol for iPr–S–S–iPr, 63.8 kcal/mol for Et–S–S–Et, 62.9 kcal/mol for Me–S–S–Me, and 48.3 kcal/mol for Ph–S–S–Ph. These values and trends roughly agree (within 2–5 kcal/mol) with our computational results of 59.39, 59.69, 59.48, 58.04, and 45.65 kcal/mol, respectively. Further, all previous computations also find the S–S bond in Ph–S–S–Ph to be significantly weaker than...
TABLE 1. Calculated Bond Dissociation (Homolysis) Energies (BDEs) for Dialkyl Dichalcogenide Precursors (R--E--E--R, E = S or Se) and Experimentally Observed Products from Their Reaction with Cd(oleate)₂.

<table>
<thead>
<tr>
<th>precursor(s) (E = S or Se)</th>
<th>C--E BDE (kcal/mol)</th>
<th>E--E BDE (kcal/mol)</th>
<th>C--E (E=E)</th>
<th>40 min product morphology (15 peak)</th>
<th>size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>allyl--S--S--allyl</td>
<td>45.71</td>
<td>61.33</td>
<td>15.62</td>
<td>nanocrystals¹ (480 nm)</td>
<td>9.4 ± 1.3</td>
</tr>
<tr>
<td>Bn--S--S--Bn</td>
<td>48.50</td>
<td>62.45</td>
<td>13.94</td>
<td>nanocrystals¹ (480 nm)</td>
<td>4.2 ± 0.6</td>
</tr>
<tr>
<td>tBu--S--S--tBu</td>
<td>52.81</td>
<td>59.39</td>
<td>6.59</td>
<td>quantum dots³ (430 nm)</td>
<td>2.2 ± 0.2</td>
</tr>
<tr>
<td>iPr--S--S--iPr</td>
<td>55.45</td>
<td>59.69</td>
<td>4.24</td>
<td>quantum dots³ (450 nm)</td>
<td>1.8 ± 0.3</td>
</tr>
<tr>
<td>Et--S--S--Et</td>
<td>58.13</td>
<td>59.48</td>
<td>1.35</td>
<td>tetrapods (450 nm)</td>
<td>10.3 ± 2.8</td>
</tr>
<tr>
<td>Me--S--S--Me</td>
<td>59.03</td>
<td>58.04</td>
<td>-0.99</td>
<td>tetrapods (465 nm)</td>
<td>19.5 ± 2.9</td>
</tr>
<tr>
<td>Ph--S--S--Ph</td>
<td>69.75</td>
<td>45.65</td>
<td>+24.11</td>
<td>no reaction (n.a.)</td>
<td></td>
</tr>
<tr>
<td>Bn--S--S--Bn + Ph--S--S--Ph (1:1)</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>rods (470 nm)</td>
<td>11.5 ± 1.5</td>
</tr>
<tr>
<td>tBu--S--S--tBu + Ph--S--S--Ph (1:1)</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>tetrapods (455 nm)</td>
<td>24.1 ± 4.7</td>
</tr>
<tr>
<td>iPr--S--S--iPr + Ph--S--S--Ph (1:1)</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>tetrapods (455 nm)</td>
<td>21.3 ± 4.3</td>
</tr>
<tr>
<td>Et--Se--Se--Et</td>
<td>52.01</td>
<td>56.41</td>
<td>-4.40</td>
<td>nanocrystals² (670 nm)</td>
<td>6.6 ± 0.6</td>
</tr>
<tr>
<td>Me--Se--Se--Me</td>
<td>53.76</td>
<td>51.94</td>
<td>-1.82</td>
<td>multipod clusters (685 nm)</td>
<td>65.7 ± 13.1</td>
</tr>
<tr>
<td>Ph--Se--Se--Ph</td>
<td>64.44</td>
<td>43.63</td>
<td>+20.80</td>
<td>quantum dots² (550 nm)</td>
<td>3.5 ± 0.5</td>
</tr>
</tbody>
</table>

*Conditions: 0.40 mol Cd(oleate)₂, 1.1 equiv of R--E--E--R, 20 equiv of oleic acid, 20 equiv of oleylamine, 4.6 ml of ODE, 250 °C, 40 min (except Et--Se--Se--Et, 10 min, Me--Se--Se--Me, 5 min). Average sizes (50–100 particles) ± one standard deviation. Quantum dots have average diameters smaller than the Bohr radius reported for CdS (2.5–3.0 nm) or CdSe (5.4 nm). Not applicable (used a mixture of two precursors, see first column).

Figure 2. Bond dissociation (homolysis) energies (BDEs) calculated using density functional theory (DFT) with the Boese–Martin Kinetics (BMK) functional in GAMESS. Full computational results, including bond distances and dihedral angles, are available in the Supporting Information.

The C–S bond and the S–S bonds of other disulfides. DFT with different functionals other than BMK gave a Se–Se BDE of 51.8 kcal/mol for Me–Se–Se–Me, which compares well with our value of 51.94 kcal/mol.52,53

Assessing Dichalcogenide Precursor Reactivity from C–S BDEs. As shown in Table 1 and Figure 2, C–S bond energies progressively increase across the following series: allyl–S–S–allyl < Bn–S–S–Bn < tBu–S–S–tBu < iPr–S–S–iPr < Et–S–S–Et < Me–S–S–Me < Ph–S–S–Ph. In contrast, S–S bond energies remain roughly similar along most of the same series from allyl–S–S–allyl through Me–S–S–Me but significantly drop (by about one-third) for Ph–S–S–Ph. These trends greatly help understand our experimental observations. Both of the C–S bonds as well as the S–S bond must break in order to form nanocrystalline CdS. Because the strength of the S–S bond remains fairly constant among most disulfides, the key factor that mainly determines the overall chemical reactivity of disulfide precursors is the strength of the C–S bond (Figure 2 and Chart 1).

To illustrate, allyl–S–S–allyl and Bn–S–S–Bn have the weakest C–S bonds (45.71 and 48.50 kcal/mol, respectively) and are therefore the most reactive precursors in the series (Chart 1); they quickly (5–10 min) react with Cd(oleate)₂ to form large, non-quantum-confined spherical CdS nanocrystals (Figure 2). After 40 min, allyl–S–S–allyl and Bn–S–S–Bn lead to CdS particle sizes of 9.4 ± 1.3 and 4.2 ± 0.6 nm, respectively. In comparison, tBu–S–S–tBu and iPr–S–S–iPr have intermediate C–S bond strengths (52.81 and 55.45 kcal/mol, respectively) and are more mildly reactive; they react less quickly (5–40 min) with Cd(oleate)₂ to form small, quantum-confined spherical CdS nanocrystals (Figure 2). After 40 min, tBu–S–S–tBu and iPr–S–S–iPr lead to CdS particle sizes of 2.2 ± 0.2 and 1.8 ± 0.3 nm, respectively. For reference, the Bohr radius reported for CdS is between 2.5 and 3.0 nm.54–56

Further increasing the C–S bond strength and, with it, decreasing chemical precursor reactivity results in slower reaction and the selective formation of anisotropic structures. Et–S–S–Et and Me–S–S–Me have strong C–S bonds (58.13 and 59.03 kcal/mol, respectively) and are only weakly reactive; they react very slowly (20–40 min) and selectively with Cd(oleate)₂ to grow multipod and tetrapod structures.
After 40 min, Et–S–S–Et and Me–S–S–Me lead to CdS pods and tetrapods, respectively. For Et–S–S–Et, the average pod length and diameter are 10.3 ± 2.8 and 5.1 ± 0.6 nm, respectively. For Me–S–S–Me, the average pod length and diameter are 19.5 ± 2.9 and 5.5 ± 0.5 nm, respectively. At the end of the series and in stark contrast to all other dichalcogenides we tested, Ph–S–S–Ph has the strongest C–S bond (69.75 kcal/mol) and is unreactive (Chart 1); Ph–S–S–Ph alone (by itself) does not react with Cd(oleate)₂ under identical conditions to those used above for the other precursors (Figure 2).

Compared to the rest of the dichalcogenide precursors we used, Ph–S–S–Ph is different not only because it contains the strongest C–S bond (69.75 kcal/mol) but also because it contains the weakest S–S bond (45.65 kcal/mol). On the contrary, for most of the other dichalcogenides in the series, the calculated S–S bond is either stronger than or as strong as the calculated C–S bonds (Table 1 and Figure 2). Examination of the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital diagrams of diphenyl disulfide (Ph–S–S–Ph) reveals a strong overlap between the π orbital on the chalcogen atoms and the π orbital of the adjacent phenyl carbon (Figure 3). This π–π overlap lends partial double bond character to the C–S bond, increasing the C–S bond strength (making it harder to break) and decreasing the C–S bond length (C–S 1.8085 Å for Ph–S–S–Ph vs C–S 1.8494–1.8721 Å for other disulfides; see Supporting Information). Other dialkyl dichalcogenides, such as diethyl disulfide (Et–S–S–Et), do not possess such overlap (Figure 3). On the basis of these differences, we hypothesized that the formation of anisotropic particles may arise from the relative ease (and rate) of C–S versus S–S bond breaking.

Understanding the Formation of Anisotropic Structures: Molecular Origin of Nanoscale Anisotropy. For allyl–S–S–allyl, Bn–S–S–Bn, tBu–S–S–tBu, and iPr–S–S–iPr, the C–S bonds are weaker than the S–S bond by at least 5 kcal/mol or more (Table 1 and Figure 2); therefore, by the time the S–S bond breaks in these precursors, the C–S bond has already broken, resulting in the release of S equivalents that can proceed to react with Cd(oleate)₂ to form spheroidal (0D) nanocrystals. In contrast, for Et–S–S–Et and Me–S–S–Me, the C–S
and S–S bonds are very similar in energy (only ca. 1.35–0.99 kcal/mol apart) (Table 1 and Figure 2); therefore, the C–S and S–S bonds break with similar ease and at roughly similar or comparable rates, resulting in the concomitant release of both S and R−S radicals (Scheme 2). We expect thiol radicals of the form R−S to act as excellent ligands due to their high affinity for soft cations and metal surfaces, for example, by binding at so-called “dangling bonds” or “surface traps”. The formation of radicals in these reactions is feasible given the high temperature (250 °C), long time (40 min), and nonpolar medium (octadecene and long chain surfactants) used here. Such harsh conditions are normally conducive to bond homolysis and radical chemistry. In situ generated R−S radical can act as capping ligands on the CdS surface, passivating the nanocrystals against further growth. Stabilizing and increasing the diradical, Cd(oleate)2, and NaHSe react very slowly (nanowires).58

A 1:1 mixture of BnPh/C0S and S-Cd nuclei could lead to slower and more selective against further growth. Stabilizing and increasing the diradical, Cd(oleate)2, and NaHSe react very slowly (nanowires).58

In situ generated R−S radicals can act as capping ligands on the CdS surface, passivating the nanocrystals against further growth. Stabilizing and increasing the diradical, Cd(oleate)2, and NaHSe react very slowly (nanowires).58

The above situation reverses for the Ph−S−S−Ph precursor, where the calculated C−S bond is much stronger than the calculated S−S bond by 24.11 kcal/mol (Table 1 and Figure 2). This explains the apparent lack of reactivity of Ph−S−S−Ph: the S−S bond breaks very easily, but the C−S bond does not, resulting in the facile release of R−S radicals but not of S (Scheme 2). In fact, even though by itself it does not appear to react with Cd(oleate)2, we reasoned that Ph−S−S−Ph should be extremely efficient at generating R−S radicals. Because such thiol radicals can serve as surface-passivating ligands, we hypothesized that repeating CdS forming reactions using a mixture of the apparently “unreactive” Ph−S−S−Ph with a reactive dichalcogenide such as tBu−S−S−tBu or iPr−S−S−iPr should induce the formation of anisotropic structures. As noted above, reacting Cd(oleate)2 with tBu−S−S−tBu or iPr−S−S−iPr normally results in CdS dots (Figure 1b,c). However, mixing any of these two precursors with Ph−S−S−Ph could mimic the situation where a very slowly reacting (and selective) precursor such as Et−S−S−Et or Me−S−S−Me is used; more specifically, tBu−S−S−tBu or iPr−S−S−iPr would serve as a source of S, while Ph−S−S−Ph would serve as a source of surface-stabilizing R−S radicals.

Inducing Anisotropy: Testing the Role of In Situ Generated Thiol Radicals. Figure 4 shows representative data confirming this prediction: while Ph−S−S−Ph alone is unreactive against Cd(oleate)2, and Bn−S−S−Bn alone leads to quick formation of CdS nanocrystals (Figure 4a,b), a 1:1 mixture of Bn−S−S−Bn and Ph−S−S−Ph leads to the sole, highly selective formation of CdS rods (Figure 4c). In turn, while tBu−S−S−tBu alone leads to quick CdS dot formation (Figure 4d), a 1:1 mixture of tBu−S−S−tBu and Ph−S−S−Ph leads to highly selective formation of CdS tetrapods (Figure 4e). Similarly, while iPr−S−S−iPr alone leads to quick CdS dot formation (Figure 4f), a 1:1 mixture of iPr−S−S−iPr and Ph−S−S−Ph leads to highly selective formation of CdS tetrapods. These reactions cleanly and reproducibly produce anisotropic CdS structures (only rods or tetrapods), without the need for any of the widespread and commonly used size- and/or shape-selective purification protocols. In addition, pod branching depends on the ratio of precursors used (for example, the amount of tBu−S−S−tBu compared to that of Ph−S−S−Ph; see Supporting Information).

These results strongly support and are consistent with our hypothesis above that in situ generated thiol radicals (R−S radicals) serve as efficient surface-passivating ligands, increasing the lifetime of small CdS nuclei long enough to allow for slow (and selective) heterogeneous (epitaxial) growth of new CdS (pods). Dichalcogenide precursors with intermediate S−S and C−S bond strengths such as Et−S−S−Et and Me−S−S−Me are good at generating R−S radicals, and they are also mild (slowly releasing) sources of S; therefore, these precursors are ideal for selective anisotropic growth (Figure 1e,f). With a much weaker S−S bond, the ability to generate R−S radicals is even higher for Ph−S−S−Ph, but this precursor has a prohibitively strong C−S bond and is unable to serve as a source of S (Figures 1g and 4a); however, when mixed with other precursors that are good S sources such as Bn−S−S−Bn, tBu−S−S−tBu, or iPr−S−S−iPr, Ph−S−S−Ph allows the generation of anisotropic structures such as rods and tetrapods where usually only dots would form (Figure 4c,e,g). In these mixed precursor experiments, the degree of anisotropy is a direct result of an exquisite interplay between the ability of Ph−S−S−Ph to give off surface-stabilizing R−S radicals and the chemical reactivity of a second precursor (namely, the latter’s ability to give off S as measured by its relative C−S BDE). We are currently pursuing further mechanistic and spectroscopic studies that will help to better delineate the effect of in situ generated thiol radicals on the rate of growth, shape selectivity, and overall outcome of colloidal nanocrystal preparations, and this will be the topic of a separate paper in the future.

Other Effects of Dichalcogenide Reactivity: Understanding Nucleation, Growth, and Ripening. Our calculations and experimental observations also help understand the relative rates of nucleation, growth, and ripening of CdS nanocrystals made with different dichalcogenides (Figure 5). As judged from the position of the first 1S absorption peak (Figure 5a),59 62 Bn−S−S−Bn (C−S BDE 48.50 kcal/mol) reacts with Cd(oleate)2 to form
larger CdS nanocrystals than tBu–S–S–tBu (C–S BDE 52.81 kcal/mol) or iPr–S–S–iPr (C–S BDE 55.45 kcal/mol). Interestingly, increasing the initial dialchalcogenide concentration also results in an increase in the size of the CdS nanocrystals (iPr–S–S–iPr (×2) vs iPr–S–S–iPr in Figure 5a). These observations suggest that the rate of nanocrystal growth (heterogeneous nucleation of new CdS material epitaxially on existing CdS particles)63 is directly dependent on dialchalcogenide reactivity and concentration. Dividing the CdS particle size (derived from the position of the 1S peak) by its size-specific absorption coefficient or “cross section” (ε) is proportional to the number of CdS particles present in the reaction at any given time (Figure 5b).68–71 Interestingly, reaction of Cd(oleate)$_2$ with Bn–S–S–Bn (C–S BDE 48.50 kcal/mol) initially forms approximately twice as many initial nuclei as tBu–S–S–tBu (C–S BDE 52.81 kcal/mol) and ca. 7 times as many nuclei as iPr–S–S–iPr (C–S BDE 55.45 kcal/mol) (short reaction times ≤5 min, Figure 5b). However, increasing the initial dialchalcogenide concentration does not affect the number of initially formed CdS nuclei (iPr–S–S–iPr (×2) vs iPr–S–S–iPr in Figure 5b). Therefore, the rate of nanocrystal nucleation (homogeneous nucleation of new CdS nuclei) is extremely sensitive to, and directly dependent on, the reactivity of the dialchalcogenide precursor used but not its concentration. Once the initial nucleation event has occurred, the change
in the number of CdS particles over time (i.e., ripening) does not appear to be directly affected by precursor reactivity but rather appears to be a simple consequence of the initial CdS particle size (Figure 5b).

Comparing Diselenide with Disulfide Precursors. The diselenide precursors reacted more quickly than the analogous disulfide precursors. We previously observed similar behavior in trialkylphosphine chalcogenide precursors (R$_3$P→, E = Se vs S),$^{14-16}$ and we attribute this difference to the fact that Se forms weaker and longer (C–E and E–E) bonds compared to S (see Supporting Information). Et–Se–Se–Et has weak C–Se bonds (52.01 kcal/mol) and reacts quickly with Cd(oleate)$_2$ to form CdSe quantum dots in ~2 min; these become non-quantum-confined CdSe nanocrystals with a particle size of 6.6 ± 0.6 nm after 10 min (Figure 6a). For reference, the Bohr radius reported for CdSe is ca. 5.4 nm.17 Me–Se–Se–Me has stronger C–Se bonds (53.76 kcal/mol) and reacts more slowly and selectively with Cd(oleate)$_2$ to form CdSe multipods; these show significant clustering after 5 min (Figure 6b). Ph–Se–Se–Ph has even stronger C–Se bonds (64.44 kcal/mol) and barely reacts with Cd(oleate)$_2$ to form very small CdSe quantum dots (Figure 6c). We attribute the difference between Ph–S–S–Ph (unreactive) and Ph–Se–Se–Ph (marginally reactive) to the difference in C–E bond dissociation energies between these two precursors (C–S BDE 69.75 kcal/mol in Ph–S–S–Ph vs C–Se BDE 64.44 kcal/mol in Ph–Se–Se–Ph) (Table 1). Thus, although more reactive, the diselenide (R–Se–Se–R) precursors show similar reactivity patterns as those observed for the disulfide (R–S–S–R) precursors above.

CONCLUSION

By studying a variety of commercially available dichalcogenides and the outcome of their solution-phase reaction with a cadmium oleate complex under identical conditions, we have demonstrated that the formation and degree of anisotropy of different nanocrystalline products can be traced back to the precise molecular structure, bonding energetics, and chemical reactivity of the different dichalcogenides used. Using DFT, we showed that the main factor that determines overall dichalcogenide precursor reactivity is the carbon–chalcogen (C–S or C–Se) bond dissociation energy, while the chalcogen–chalcogen (S–S or Se–Se) bond dissociation energy remains more or less constant across a series of dichalcogenides (disulfides or diselenides). The only exceptions to this trend are diphenyl dichalcogenides, which exhibit the weakest chalcogen–chalcogen bond and the strongest carbon–chalcogen bond due to strong π orbital interaction between the first carbon atom in the phenyl ring and the adjacent chalcogen atom. The presence of this strong C–S bonding interaction causes Ph–S–S–Ph to appear unreactive when used alone. Conversely, allyl–S–S–allyl has the weakest C–S bond and reacts quickly to produce large aggregated CdS nanocrystals. Similar trends in bond dissociation energies and reactivity hold for the diselenide precursors, although their longer and weaker bonds lead to increased reactivity and more aggregated particles compared to disulfide precursors.

To understand the formation of anisotropic structures from disulfides containing roughly equal C–S and S–S bond strengths (Et–S–S–Et or Me–S–S–Me), we carried out reactions employing 1:1 mixtures of a thiol radical source (Ph–S–S–Ph) and a sulfur monomer source (Bn–S–S–Bn, tBu–S–S–tBu, or iPr–S–S–iPr). Ph–S–S–Ph by itself yielded no nanocrystalline products, and the sulfur sources alone yielded only spherical nanocrystals. However, the mixed precursor experiments resulted in the exclusive formation of anisotropic structures (rods or tetrapods). Our present hypothesis is that the disulfide bond of Ph–S–S–Ph homolyzes to produce PhS radicals which passivate and stabilize small zinc blende CdS nuclei. These core nuclei arise from the reaction between the second sulfur (Bn–S–S–Bn, tBu–S–S–tBu, or iPr–S–S–iPr) and cadmium precursors, which can then slowly and selectively grow wurtzite arms on the (111) facets of the initial zinc blende cores. Our computations shed light on the experimentally observed rates of nucleation, growth, and ripening of CdS nanocrystals. The rates of CdS nanocrystal nucleation and growth are directly
depend on dichalcogenide chemical reactivity or inversely proportional to C–S bond strength. Increasing the initial dichalcogenide concentration increases CdS nanocrystal size but does not affect the number of CdS particles already present after the initial nucleation stage. This implies that the observed sizes and morphology are not a function of precursor concentration but only its characteristic reactivity. By applying our understanding of the chemistry of molecular precursors, we may begin to rationalize and predict desirable nanocrystalline properties such as morphology, composition, and optoelectronic properties. This “bottom-up” approach to controllable and predictable nanocrystal synthesis allows for the preparation of a diverse array of morphologies based on fundamental, tangible, and measurable molecular properties such as bond energies. We believe this and similar efforts will lead to the reliable syntheses of colloidal nanomaterials for customized applications.

METHODS

Materials. Cadmium oxide (CdO, 99.99%) and oleic acid (90%) were purchased from Alfa Aesar; diphenyl disulfide (PhS–S–Ph, 99%); 1-octadecene (ODE, 90%); and oleylamine (80–90%) from Acros; diethyl diselenide (EtS–Se–Et), and diphenyl diselenide (PhS–Se–Ph, 98%) from Strem.

Synthesis. *Dichalcogenide Addition Solution.* Inside a glovebox filled with dry N2, the dichalcogenide precursor (0.42 mmol) was thoroughly dissolved in ODE (1.00 g, 1.27 mL) to afford a clear solution. The solution became a homogeneous, optically clear solution. The solution was cooled to 80 °C, degassed under vacuum at 80 °C for 30 min, refilled with Ar, and heated to 180 °C for 10 min until the mixture became a homogeneous, optically clear solution. The solution was cooled to 80 °C, degassed under vacuum at 80 °C for 30 min, refilled with Ar, and heated to 250 °C. After 5 min, the dichalcogenide addition solution (above) was quickly injected. Aliquots (0.10 mL) were taken at different times, added to the same amount of toluene (3 mL) every time, and analyzed by UV–vis absorption and PL. After 40 min (disulfides) or 5 min (disthelenes), the mixture was allowed to cool to room temperature. Nanocrystals were isolated and purified twice by washing with a 1:2 v/v acetone/methanol mixture and centrifugation at 4900 rpm for 5 min.

Optical Characterization. Absorption spectra were measured with a photodiode array Agilent 8453 UV–vis spectrophotometer. Steady-state PL spectra were measured with a Horiba-Jobin Yvon Nanolog scanning spectrophotometer equipped with a photomultiplier detector.

Structural Characterization. Powder X-ray Diffraction. XRD was measured using Cu Kα radiation on a Scintag XDS-2000 diffractometer. Transmission Electron Microscopy (TEM) was conducted on carbon-coated copper grids using a FEI Tecnai G2 F20 field emission scanning transmission electron microscope (STEM) at 200 kV (point-to-point resolution <0.25 nm, line-to-line resolution <0.10 nm). Particle dimensions were measured manually and/or with ImageJ for >50–100 particles. Averages are reported ± one standard deviation.

Computational Methods. Bond dissociation energies (BDEs) were calculated using GAMESS11,12 at the DFT9 level of theory with the BMK (Boese–Martin Kinetics) functional,13 which has been shown to provide accuracy near that of high-precision complete basis set (CBS) methods.65 Geometries were optimized using the 6-31G(d) basis set14 followed by single-point calculations with the 6–311G(dp) basis set15 to determine BDEs.16 Frequency calculations were performed to obtain zero point energies and enthalpies at 273 K and to ensure that the Hessian matrices of the optimized geometries contained no negative eigenvalues.17

REFERENCES AND NOTES

13. Schlecht, S.; Budde, M.; Kienle, L. Nanocrystalline Tin as a Preparative Tool: Synthesis of Unprotected Nanoparticles...

