Moisture Basis Conversions for Grain Composition Data

Charles R. Hurburgh Jr.
Iowa State University, tatry@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/extension_ag_pubs

Part of the Agricultural Education Commons, Agricultural Science Commons, and the Bioresource and Agricultural Engineering Commons

Recommended Citation
http://lib.dr.iastate.edu/extension_ag_pubs/135

Iowa State University Extension and Outreach publications in the Iowa State University Digital Repository are made available for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current publications and information from Iowa State University Extension and Outreach, please visit http://www.extension.iastate.edu.
Moisture Basis Conversions for Grain Composition Data

The rapid growth of specialty corn and soybean production has created a need for composition measurements to meet contract specifications. Composition includes protein, oil, starch, and fiber measured as percentages by weight. By fall 1995, more than 20 Iowa elevators will have the near-infrared test instruments for composition testing.

Weight percentages change with variations in moisture content. Dry samples have larger percentages of protein, oil, starch, and fiber than wet samples. Calculation of these percentages on a moisture basis other than the actual moisture at the time of test is strictly a mathematical formula. Composition data are meaningless and confusing if the moisture basis of the data is not clear. Think of moisture basis correction as if the grain were all at the same moisture.

There are three general methods for expressing moisture basis:

1. As-is: The moisture content at the time of the test. Nutritionists refer to this as “as-fed” moisture basis.

2. A fixed moisture basis, such as 15 percent or 13 percent. Percentages are converted mathematically to this basis.

3. Dry-basis. A special case of Item 2 in which the moisture basis is 0 percent moisture. Dry-basis percentages are percentages of the grain dry matter, water excluded.

Let’s compare some percentages by the three methods. Assume a high-oil corn sample is tested at 20 percent moisture content.

<table>
<thead>
<tr>
<th>Method</th>
<th>Moisture basis (%)</th>
<th>Percentage oil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-is</td>
<td>20</td>
<td>6.0</td>
</tr>
<tr>
<td>Fixed moisture basis</td>
<td>15</td>
<td>6.4</td>
</tr>
<tr>
<td>Fixed moisture basis</td>
<td>13</td>
<td>6.5</td>
</tr>
<tr>
<td>Dry-basis</td>
<td>0</td>
<td>7.5</td>
</tr>
</tbody>
</table>

All of these oil percentages correctly represent the sample. Confusion arises when various data sources (e.g. hybrid information, contractual requirements, etc.) use different moisture bases. When a purchase contract, such as a high-oil corn contract, has fixed specifications, different moisture basis figures can be hard to interpret.

One company’s contract currently specifies a sliding premium scale, starting at 6 percent dry-basis oil. If other moisture basis percentages are applied against the same six percent starting point, the premium will be different than if dry-basis oil percentages are used. Because there is no agreement on a universal moisture basis, handlers and producers will need to convert and interpret data on varying moisture bases.
Conversion Formula

\[P_2 = \frac{\left(\frac{100 - M_1}{100 - M_2}\right)}{P_1} \]

- \(P_2 \) = adjusted constituent percentages at moisture \(M_2 \) (percent)
- \(M_2 \) = moisture basis (percent)
- \(P_1 \) = original (as-is) constituent percentage
- \(M_1 \) = original moisture (percent)

For the example, if \(M_1 = 20.0 \) percent, \(P_1 = 6.0 \) percent, and \(M_2 = 0 \) percent (dry-basis):

\[P_2 = \frac{\left(\frac{100 - 0}{100 - 20}\right)}{6.0} = 7.5 \%
\]

This formula also will convert between two moisture basis percentages, \(M_2 \) being the final moisture basis, and \(M_1 \) being the initial moisture basis. For example, if \(M_1 = 0 \) percent, \(P_1 = 7.5 \) percent, and \(M_2 = 15.0 \) percent then:

\[P_2 = \frac{\left(\frac{100 - 15}{100 - 0}\right)}{7.5} = 6.4\%
\]

Moisture basis conversions are purely mathematical adjustments that do not change the fundamental quality of the grain. Contact your county extension office for more information.