Assessment of In-line Filter Type and Condition on Measurement of Ammonia Concentration

Zhiping Zhu
Chinese Academy of Agricultural Sciences

Hongwei Xin
Iowa State University, hxin@iastate.edu

Hong Li
Iowa State University

Robert T. Burns
Iowa State University

Hongmin Dong
Chinese Academy of Agricultural Sciences

Follow this and additional works at: http://lib.dr.iastate.edu/abe_eng_conf
Part of the [Bioresource and Agricultural Engineering Commons](http://lib.dr.iastate.edu/abe_eng_conf)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/abe_eng_conf/142. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Assessment of In-line Filter Type and Condition on Measurement of Ammonia Concentration

Abstract
Gas analyzers are commonly protected from impurities in air sampling via use of in-line filters to ensure operational performance and longevity of the instruments. This is especially true for extended period of air monitoring under conditions where airborne dust exists. Prices for commercially available filters vary substantially. A question that has often come up but has not received much investigation is how the filter media type (e.g., paper vs. Teflon) and condition (clean vs. dirty) impact measurement of the gaseous concentration. The study reported here was conducted toward addressing this issue. Specifically, the study assesses the magnitude of ammonia (NH3) adsorption to different types of in-line filters and conditions often used or encountered in air sampling for animal feeding operation air emission studies. The type of filters evaluated in this study included Teflon (most expensive), paper (less expensive), and stand-alone fuel filters, being either clean (new) or dust-laden. Three nominal NH3 levels (20, 45, 90 ppm, generated with poultry manure) coupled with two nominal airflow rates (4 vs. 8 l/min or 8 vs. 16 l/min) through the filters were used in the evaluation. The type of dust used in this study included broiler house dust and starch. Simultaneous measurements of NH3 concentrations before and after the tested filter were made with two photoacoustic gas spectrometers. The results revealed that initial NH3 adsorption was highest for the fuel filter but negligible for the Teflon filters. However, after 30-min exposure the relative NH3 adsorption by the filters were mostly below 1%. During fresh-air purging of the fuel filters laden with broiler house dust, ammonia was initially released but quickly diminished after 15 minutes. Flow rate was inversely related to NH3 adsorption by the filter, particularly dust-laden filters. The results suggest that when used properly, the in-line filters tested in this study (fuel, paper and Teflon) all offer viable options for air emission measurement applications.

Keywords
Ammonia adsorption, Dust filter, Air sampling integrity, Air quality, Air emissions

Disciplines
Bioresource and Agricultural Engineering

Comments
This is an ASAE Meeting Presentation, Paper No. 074130.
ASSESSMENT OF IN-LINE FILTER TYPE AND CONDITION ON MEASUREMENT OF AMMONIA CONCENTRATION

Zhiping Zhu, Assistant Professor (Former Visiting Researcher of ISU)
Institute of Environment and Sustainable Development in Agriculture
Chinese Academy of Agricultural Sciences, Beijing, China

Hongwei Xin, Professor
Department of Agricultural and Biosystems Engineering
3204 NSRIC, Iowa State University, Ames, Iowa, 50011-3310

Hong Li, Post-doctorial Research Associate
Department of Agricultural and Biosystems Engineering
1242 NSRIC, Iowa State University, Ames, Iowa, 50011-3310

Robert Burns, Associate Professor
Department of Agricultural and Biosystems Engineering
3224 NSRIC, Iowa State University, Ames, Iowa, 50011-3310

Hongmin Dong, Professor
Institute of Environment and Sustainable Development in Agriculture
Chinese Academy of Agricultural Sciences, Beijing, China

Written for presentation at the
2007 ASABE Annual International Meeting
Sponsored by ASABE
Minneapolis Convention Center
Minneapolis, Minnesota
17 - 20 June 2007

ABSTRACT. Gas analyzers are commonly protected from impurities in air sampling via use of in-line filters to ensure operational performance and longevity of the instruments. This is especially true for extended period of air monitoring under conditions where airborne dust exists. Prices for commercially available filters vary substantially. A question that has often come up but has not received much investigation is how the filter media type (e.g., paper vs. Teflon) and condition (clean vs. dirty) impact measurement of the gaseous concentration. The study reported here was conducted toward addressing this issue. Specifically, the study assesses the magnitude of ammonia (NH₃) adsorption to different types of in-line filters and conditions often used or encountered in air sampling for animal feeding operation
air emission studies. The type of filters evaluated in this study included Teflon (most expensive), paper (less expensive), and stand-alone fuel filters, being either clean (new) or dust-laden. Three nominal NH$_3$ levels (20, 45, 90 ppm, generated with poultry manure) coupled with two nominal airflow rates (4 vs. 8 l/min or 8 vs. 16 l/min) through the filters were used in the evaluation. The type of dust used in this study included broiler house dust and starch. Simultaneous measurements of NH$_3$ concentrations before and after the tested filter were made with two photoacoustic gas spectrometers. The results revealed that initial NH$_3$ adsorption was highest for the fuel filter but negligible for the Teflon filters. However, after 30-min exposure the relative NH$_3$ adsorption by the filters were mostly below 1%. During fresh-air purging of the fuel filters laden with broiler house dust, ammonia was initially released but quickly diminished after 15 minutes. Flow rate was inversely related to NH$_3$ adsorption by the filter, particularly dust-laden filters. The result suggest that when used properly, the in-line filters tested in this study (fuel, paper and Teflon) all offer viable options for air emission measurement applications.

Keywords. Ammonia adsorption, Dust filter, Air sampling integrity, Air quality, Air emissions
INTRODUCTION

Ammonia (NH₃) generation and emission are associated with animal feeding operations due to biological decomposition of the manure. Because of its environmental impact, quantification and mitigation of NH₃ emissions for animal production systems continue to receive increasing attention from the animal industry, regulatory agencies and scientific communities (Li et al., 2006; Liang, et al., 2006; Wheeler et al., 2006; Xin, 2006). Reasonably accurate measurements of NH₃ emissions from animal feeding operations are critical for evaluating the effectiveness of potential mitigation techniques and for establishing fair and equitable regulations (Wathes et al., 1998). The two key elements in determining the magnitude of aerial emissions from animal facilities are concentration of the aerial pollutant and ventilation rate through the facilities. Although not the focus of this paper, considerable research has been conducted concerning quantification of animal building ventilation rate (Demmers et al., 2000, 2001; Gates et al., 2004; Li et al., 2005; Muhlbauer et al., 2006; Xin et al., 2006).

Previous studies have used different methods and instruments to measure gaseous, particularly NH₃ concentrations in animal facilities, including electrochemical sensors (Xin et al., 2002, 2003; Liang, et al., 2004, Gates, et al., 2005), chemiluminescence detector (Phillips, et al., 1998, Heber et al., 2001; Liang et al., 2004), and photoacoustic spectrometer (Zhang et al., 2005; Burns et al., 2006; Li et al., 2006). Regardless of the working principles of the gas analyzers, their operation must be protected from the dust-laden environment when sampling air streams in animal production facilities to ensure measurement performance and longevity of the instruments. Mukhtar et al. (2003) reported that NH₃ adsorption onto LDPE tubing was significantly higher than that of Teflon; and that tubing length was not significant in NH₃ adsorption onto Teflon. Capareda et al. (2004) reported the same result. It has also been reported that gaseous NH₃ will adsorb to dust particles (Takai et al., 2002; Lee and Zhang, 2006). However, research is meager that quantifies the impacts of media type and conditions of in-line dust filters on NH₃ adsorption.

The objective of this study was to evaluate the magnitude of NH₃ adsorption onto Teflon, fuel or paper type of filters under clean or dust-laden conditions over a range of NH₃ concentrations and in-line air flow rates.

MATERIALS AND METHODS

MEASUREMENT SYSTEM SETUP

Ammonia concentrations before and after the dust filter under evaluation was measured simultaneously using two photoacoustic multi-gas spectrometers (model 1412, Innova AirTech Instrument, Denmark). The evaluation system (fig.1) was located inside an environmentally controlled room where the air temperature was maintained at 21.1°C throughout the experiment. Prior to each evaluation trial, zero (N₂) and span (22.6 ppm NH₃ + N₂ balance, ±2% accuracy) calibration gases (Matheson Tri-Gas, Inc., La Porte, Texas, USA) were used to calibrate and check both gas analyzers to ensure their integrity and exchangeability. Performance of the two gas analyzers throughout the testing period (fig. 2) revealed that the differences between the two units were within their measurement sensitivity (1% or 0.2 ppm).
Figure 1. Schematic of the experimental apparatus for evaluating impact of in-line filters on ammonia adsorption.

Figure 2. Responses of the two Innova 1412 gas analyzers to daily ammonia span (22.6 ppm) check.

For the filter evaluation trials, poultry manure held in a sealed 19-liter container with a top-mounted mixing fan was used to generate ammonia (fig.1). Different NH$_3$ concentrations from the source were achieved by controlling the amount of fresh air into the manure container. Teflon tubing (0.64 mm OD, 0.32 mm ID) was used throughout the system. Airflow rate through the filter was measured using a mass flow meter (0-10 /min, McMillan Company, Georgetown, Texas). A programmable data acquisition system (model CR10X, Campbell Scientific, Inc, Logan, Utah, USA) was used to log the analog output from both gas analyzers, the mass flow meter and an ambient temperature and relative humidity probe. The output readings were sampled at 20-s intervals and stored as one-minute averages.

The testing conditions for the study are listed in Table 1, and are described below. Selection of the flow rate for each filter was based on their likely placement in the sample lines.

Dust Filters

Four types of in-line dust filters that may be used in air sampling were tested in this study, including two varieties of Teflon filter, a fuel filter and a paper filter. The two varieties of Teflon membrane filters were a) model 1141 featuring 47 mm O.D., 5-6 µm pore size, and 0.10 mm thick
membrane; and b) model 1151 featuring 47 mm O.D., 20-30 μm pore size, and 0.14 mm thick membrane (Savillex, Minnetonka, MN, USA). The fuel filter was a NAPA fuel filter (model 3011, made in Israel), and the paper filter had a 47 mm O.D. and a 20-25 μm pore size (model 41, Whatman International Ltd., England). The filter membrane was held in a Teflon filter holder. A photographic view of the filters is shown in Figure 3.

Table 1. Filter type, flow rate and ammonia concentrations used in the ammonia adsorption tests

<table>
<thead>
<tr>
<th>Filter type</th>
<th>Nominal Flow Rate, l/min*</th>
<th>Nominal NH₃ Concentration, ppm**</th>
<th>Dust Type/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>New fuel filter</td>
<td>4, 8</td>
<td>20, 45, 90</td>
<td>None or Starch</td>
</tr>
<tr>
<td>Dust-laden fuel filter</td>
<td>4, 8</td>
<td>20, 45, 90, fresh air</td>
<td>Broiler house dust</td>
</tr>
<tr>
<td>New Teflon filter</td>
<td>8, 16</td>
<td>20, 45, 90</td>
<td>None or Starch</td>
</tr>
<tr>
<td>Dust-laden Teflon filter</td>
<td>8, 16</td>
<td>20, 45, 90, fresh air</td>
<td>Broiler house dust</td>
</tr>
<tr>
<td>New Paper filter</td>
<td>8, 16</td>
<td>20, 45, 90</td>
<td>None or Starch</td>
</tr>
</tbody>
</table>

* The actual range of flow rate corresponding to the nominal values of 4, 8 and 16 l/min were 4.0–4.2, 7.9–8.3, and 14.0–15.7 l/min, respectively.

** The actual range of NH₃ concentration the nominal values of 20, 45, and 90 ppm were 18.5–26.7, 36.8–59.0, and 62.0–97.0 ppm, respectively. Fresh air had nearly zero NH₃.

Figure 3. A photographic view of the fuel filter (a), membrane filters (b) and filter holder (c) used in this study.

DUST GENERATION AND MEASUREMENT

To determine the NH₃ adsorption effect of dust on filter, two types of dust were examined: a) used filters laden with some amount of broiler housing dust; and b) new filters laden with NH₃-free starch. To load the new filters with the NH₃-free starch dust, starch was put in a sealed (19-liter) bucket and a mixing fan was used to generate dust. A new fuel filter or filter assembly was connected via Teflon tubing between the dust source and a vacuum pump that drew air from the dust-generation bucket. For the used dust-laden filters, they were from an ongoing project that monitored air emissions from broiler houses (Burns et al., 2006), and had been in operation (as the first-stage filtration) in the air sample lines for one week. For the new filters, they were oven-dried (model 650G, Fisher Scientific International Inc., USA) at 105°C for 24 hours before and after dust loading, and weighed using an electronic balance (accuSeries II, model accu-224,
Single Range, Weighing Range: 0 to 220 g, Fisher Scientific International Inc.) to determine the amount of dust on the filter. For the used filters, they were weighed before the test and weighed again following knock-out of the dust as much as possible to estimate the amount of dust carried on the filters. The absolute and relative reductions in \(\text{NH}_3 \) concentration before and after the tested filter were used to express the \(\text{NH}_3 \) adsorption onto the filter.

RESULTS AND DISCUSSION

AMMONIA ADSORPTION BY DIFFERENT FILTERS

Fuel Filter. The \(\text{NH}_3 \) adsorption profiles for the new, dust-free fuel filter over a 60-min exposure to the combinations of different \(\text{NH}_3 \) concentrations and flow rates are shown in Figure 4. It can be noted that for a given \(\text{NH}_3 \) concentration, higher flow rate through the filter generally led to less \(\text{NH}_3 \) adsorption, presumably a result of shorter contacting time. For a given flow rate, higher concentration led to greater \(\text{NH}_3 \) adsorption. The data also showed that \(\text{NH}_3 \) adsorption by the fuel filter was 1 ppm or less after 10 minutes of exposure for all the concentration-flow rate combinations except for the 90 ppm-4 \(\text{l/min} \) regimen which approached 1 ppm or lower after 50-min exposure.

![Figure 4. Ammonia absorption by dust-free new fuel filter at different combinations of \(\text{NH}_3 \) concentrations and flow rates (mean of 4 replicates per regimen).](image)

The \(\text{NH}_3 \) adsorption profiles for the fuel filter laden with starch dust over a 60-minute exposure to various \(\text{NH}_3 \) concentrations and flow rates are shown in Figure 5 and are further summarized in Table 2.
Table 2. Ammonia adsorption by new fuel filter laden with starch dust (n = 4, mean ± SD)

<table>
<thead>
<tr>
<th>Flow Rate (l/min)</th>
<th>Nominal inlet NH₃ (ppm)</th>
<th>NH₃ adsorption (mg over 1 hr)</th>
<th>Dust laden on filter (g)</th>
<th>Specific NH₃ adsorption by dust (mg·g dust⁻¹ over 1 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
<td>0.12(±0.02)</td>
<td>0.19(±0.03)</td>
<td>0.61(±0.10)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.18(±0.03)</td>
<td>0.34(±0.14)</td>
<td>0.60(±0.22)</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0.29(±0.07)</td>
<td>0.24(±0.04)</td>
<td>1.20(±0.24)</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>0.14(±0.02)</td>
<td>0.23(±0.06)</td>
<td>0.62(±0.08)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.21(±0.10)</td>
<td>0.35(±0.23)</td>
<td>0.69(±0.05)</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0.26(±0.12)</td>
<td>0.27(±0.13)</td>
<td>1.01(±0.32)</td>
</tr>
</tbody>
</table>

Adsorption of ammonia generally decreased as flow rate increased or under lower NH₃ concentrations for a given flow rate. Initially, NH₃ adsorption by the (starch) dust-laden filter was high, up to 9.0 ppm for the 90 ppm-4 l/min regimen; but the difference decreased rapidly with time. After 30-min exposure, the difference was reduced to 1 ppm or less for all the testing regimens. The total amount of NH₃ adsorption by the (starch) dust-laden filter tended to increase with inlet NH₃ concentration.

Similar results for the used fuel filter laden with broiler house dust were observed (fig. 6 and Table 3) when NH₃-laden air passed through the filters. However, when fresh air passed through the used filters, there was an initial NH₃ release, with the magnitude of NH₃ difference somewhat depending on the flow rate. The 8 l/min flow rate led to smaller difference presumably due to more dilution (nearly zero after 20 min) than the 4 l/min flow rate (<0.5 ppm after 20 min).
Figure 6. Ammonia (NH₃) absorption by used fuel filter laden with broiler house dust for different combinations of NH₃ concentration and flow rate (mean of 4 replicates per regimen)

Table 3. Ammonia adsorption by used fuel filters laden with broiler house dust (n = 4, mean ± SD)

<table>
<thead>
<tr>
<th>Flow Rate (l/min)</th>
<th>Nominal inlet NH₃ (ppm)</th>
<th>NH₃ adsorption (mg over 1 hr)</th>
<th>Dust laden on filter (g)</th>
<th>Specific NH₃ adsorption by dust (mg·g dust⁻¹ over 1 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>0.16(±0.05)</td>
<td>0.11(±0.06)</td>
<td>2.32(±1.99)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.27(±0.03)</td>
<td>0.11(±0.04)</td>
<td>2.72(±1.05)</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0.31(±0.01)</td>
<td>0.20(±0.03)</td>
<td>1.60(±0.20)</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>0.06(±0.04)</td>
<td>0.15(±0.06)</td>
<td>0.15(±0.07)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.21(±0.10)</td>
<td>0.14(±0.03)</td>
<td>2.48(±0.28)</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0.41(±0.02)</td>
<td>0.24(±0.30)</td>
<td>1.75(±0.29)</td>
</tr>
</tbody>
</table>

Paper Filter. The NH₃ adsorption profiles for the new, dust-free paper filter over a 60-min exposure to the combinations of different NH₃ concentrations and flow rates are shown in Figure 7. The adsorption profiles for the new paper filter resembled those of the new fuel filter. However, comparing the fuel filter and the paper filter at the same flow rate of 8 l/min, the paper filter showed somewhat higher NH₃ adsorption. Nonetheless, the reduction mostly (except for 90 ppm-8 l/min) decreased to < 0.5 ppm after 30-min exposure for all the regimens.

Teflon Filters. Figures 8 and 9 show the NH₃ adsorption profiles for the new, dust-free Teflon filters with a pore size of 20µm or 5µm. The differences in NH₃ concentration between the inlet and the outlet air in all cases were well within the measurement sensitivity (0.2 ppm) of the gas analyzer. Similar results were observed for the used Teflon filters laden with broiler house dust (fig. 10). Since the pore size of 20µm or 5µm did not seem to impact the NH₃ adsorption characteristics of the Teflon filters, they were not differentiated. The filters had been in operation in our broiler air emission sampling lines for 14 days;
however no attempt was made to determine the amount of dust collected on the filters.

![Graph](image1)

Figure 7. Ammonia (NH₃) absorption by new paper disk filter for different combinations of NH₃ concentration and flow rate (mean of 3 replicates per regimen)

The NH₃ adsorption or release characteristics of the tested filters are further summarized in Table 4. In addition to the absolute values in NH₃ concentration change between the inlet and outlet of the filter, the change was expressed as percentages of the inlet value. As it can be noted from the data in Table 4, the relative deviation caused by the filter media and operating condition was mostly less than 1% and occasionally as high as 3% after 60-min sample exposure. Hence, for practical purposes of monitoring air emissions in animal feeding operations, all the in-line filters tested in this study and their typical operating conditions are expected to function well.

![Graph](image2)

Figure 8. Ammonia absorption by dust-free Teflon filter with pore size of 20µm at different combinations of NH₃ concentrations and flow rates (mean of 3 replicates per regimen).
Figure 9. Ammonia absorption by dust-free Teflon filter with pore size of 5µm at different combinations of NH₃ concentrations and flow rates (mean of 3 replicates per regimen)

Figure 10. Ammonia absorption by used Teflon filter laden with broiler house dust for different combinations of NH₃ concentration and flow rate (mean of 3 replicates per regimen)

ASSESSMENT OF MAIN INFLUENCING FACTORS ON NH₃ ADSORPTION ONTO FILTERS

In an attempt to assess the impact of exposure time, inlet concentration and flow rate on NH₃ adsorption onto the filters, regression analysis was performed for the fuel and paper filters. Because NH₃ adsorption for the clean or dust-laden Teflon filters (both pore sizes) was lower than the sensitivity of the gas analyzer (<0.2 ppm), its regression analysis was omitted. Moreover, since differences in NH₃...
concentration approached stabilization and mostly less than 1% of the inlet value after 30 min of exposure for the tested filters and condition, regression was performed for the first 30-min exposure. The regression results for the fuel and paper filters are shown below. All the constant and coefficients in the equations are significant at the 0.15 level.

For new, dust-free fuel filter:

\[
\text{NH}_3\text{ diff} = 2.30473 - 0.01426 \cdot t + 0.00671 \cdot C_{\text{inlet}} - 0.27534 \cdot F \quad (R^2=0.85) \quad [1]
\]

For new fuel filter with NH$_3$-free (starch) dust:

\[
\text{NH}_3\text{ diff} = 2.92627 - 0.09042 \cdot t + 0.01491 \cdot C_{\text{inlet}} - 0.19412 \cdot F \quad (R^2=0.62) \quad [2]
\]

For used fuel filter with broiler house dust:

\[
\text{NH}_3\text{ diff} = 3.65595 - 0.12391 \cdot t + 0.02420 \cdot C_{\text{inlet}} - 0.25277 \cdot F \quad (R^2=0.51) \quad [3]
\]

For new, dust-free paper filter:

\[
\text{NH}_3\text{ diff} = 1.16256 - 0.02642 \cdot t + 0.00696 \cdot C_{\text{inlet}} - 0.06027 \cdot F \quad (R^2=0.67) \quad [4]
\]

Where \(\text{NH}_3\text{ diff} = \) difference in \(\text{NH}_3 \) concentration between inlet and outlet, ppm

\(t = \) exposure or run time, min \((t = 0-30 \text{ min})\)

\(C_{\text{inlet}} = \) actual ammonia concentration at the inlet of filter, ppm

\(F = \) actual air flow rate through the filter, l/min

Equations 1 to 4 depict that \(\text{NH}_3 \) adsorption was positively related to inlet concentration but negatively related to exposure time and flow rate. It should be noted that the above empirical equations are only valid for the range of exposure time (0-30 min), \(\text{NH}_3 \) concentration range (20-94 ppm), and flow rate (4-8 or 8-16 l/min) used in the experiment.
Table 4. Ammonia adsorption by in-line filters of different types and operating conditions (new vs. dust-laden), expressed in concentration change before and after the filter and percentage of the inlet value. Negative values represent release of ammonia by the filter laden with broiler house dust.

<table>
<thead>
<tr>
<th>Filter Type & Status</th>
<th>Flow Rate (l/min)</th>
<th>Nominal NH₃ Level (ppm)</th>
<th>NH₃ Concentration Change after Various Exposure Time, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 min</td>
</tr>
<tr>
<td>FF – new, dust free (n=4)</td>
<td>4</td>
<td>20</td>
<td>0.50(2.6%)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>45</td>
<td>1.77(3.9%)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>90</td>
<td>1.78(2.0%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>20</td>
<td>0.44(2.2%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>45</td>
<td>0.52(1.2%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>90</td>
<td>0.48(0.5%)</td>
</tr>
<tr>
<td>FF – new, laden with starch dust (n=4)</td>
<td>4</td>
<td>20</td>
<td>5.0(25.2%)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>45</td>
<td>3.68(8.2%)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>90</td>
<td>5.74(6.4%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>20</td>
<td>1.9(9.5%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>45</td>
<td>1.69(3.8%)</td>
</tr>
<tr>
<td>FF – used, laden with broiler house dust (n=4)</td>
<td>8</td>
<td>90</td>
<td>3.37(3.7%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>20</td>
<td>-0.56(N/A)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>45</td>
<td>-0.5(N/A)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>90</td>
<td>6.76(15%)</td>
</tr>
<tr>
<td>PF – new, dust free (n=3)</td>
<td>8</td>
<td>20</td>
<td>1.74(3.9%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>45</td>
<td>1.48(1.6%)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>20</td>
<td>0.73(0.8%)</td>
</tr>
<tr>
<td>TF – new, dust free, 20µm pore size (n=3)</td>
<td>16</td>
<td>90</td>
<td>0.73(0.8%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>20</td>
<td>-0.05(-0.2%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>45</td>
<td>0.09(0.2%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>90</td>
<td>0.26(0.3%)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>20</td>
<td>0.27(1.3%)</td>
</tr>
<tr>
<td>TF – new, dust free, 5µm pore size (n=3)</td>
<td>16</td>
<td>45</td>
<td>0.14(0.3%)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>90</td>
<td>-0.19(-0.2%)</td>
</tr>
<tr>
<td>TF – used, laden with broiler house dust (n=3)</td>
<td>8</td>
<td>Fresh air</td>
<td>0(N/A)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>20</td>
<td>0.58(2.9%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>45</td>
<td>0.75(1.6%)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>20</td>
<td>0.33(1.6%)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>45</td>
<td>0.21(0.5%)</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Ammonia adsorption characteristics for some common in-line air sampling filters at different operating conditions were investigated. The filter types tested included a fuel filter, a paper filter and two kinds of Teflon filters (5 or 20 µm pore size), being new or laden with either starch dust or broiler housing dust. The filters were subjected to combinations of three nominal inlet NH₃ concentrations (20, 45, 90 ppm) and two nominal flow rates (4 vs. 8 l/min or 8 vs. 16 l/min). The following conclusions were drawn:

- Ammonia adsorption by the filter was positively related to inlet concentration, but negatively related to exposure/run time and flow rate.
- When passing fresh air through the fuel filter laden with broiler house dust, ammonia release occurred initially but diminished to nearly zero after 15 min for the flow rate of 8 l/min.
- Ammonia adsorption to the Teflon filters was negligible regardless of the inlet concentration and flow rate. Following a 30-min exposure, relative adsorption of ammonia was below 1% in most cases for the fuel and paper filters. Hence the fuel and paper filters tested in the study offer viable, more economical options for use in air emission studies.

ACKNOWLEDGEMENTS

Funding for the study was provided in part by the Iowa State University College of Agriculture Air Quality Initiative and a USDA Special Research Project on AFO Air Quality.

REFERENCES

from agricultural operations held on October 11-14, 2003 in Raleigh, NC, organized by ASAE, St. Joseph, MI