Possible Breakdown of SCN Resistance Topic of New Webcast

Gregory L. Tylka
Iowa State University, gltylka@isastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Pathology Commons

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Possible Breakdown of SCN Resistance Topic of New Webcast

Abstract
Iowa farmers produce soybeans profitably in fields infested with the soybean cyst nematode (SCN) by growing SCN-resistant soybean varieties that yield well and prevent large increases in SCN egg population densities. There are hundreds of SCN-resistant soybean varieties for Iowa. Almost all of the varieties contain SCN resistance genes from a single breeding line, called PI 88788.

Keywords
Plant Pathology and Microbiology

Disciplines
Agricultural Science | Agriculture | Plant Pathology

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/152
Possible Breakdown of SCN Resistance Topic of New Webcast

By Greg Tylka, Department of Plant Pathology and Microbiology

Iowa farmers produce soybeans profitably in fields infested with the soybean cyst nematode (SCN) by growing SCN-resistant soybean varieties that yield well and prevent large increases in SCN egg population densities. There are hundreds of SCN-resistant soybean varieties for Iowa. Almost all of the varieties contain SCN resistance genes from a single breeding line, called PI 88788.

Because of widespread, repeated use of varieties with the same PI 88788 source of resistance, many SCN populations have developed increased reproduction on that type of resistance. It is no longer uncommon to see SCN females on roots of SCN-resistant soybean varieties in the Midwest (Figure 1).

Figure 1. SCN females on roots of an SCN-resistant soybean variety with PI 88788 SCN resistance.

How does increased SCN reproduction on soybean varieties with the PI 88788 source of resistance affect soybean yields and the buildup of SCN egg population densities (numbers) in the soil? Results of Iowa State University field experiments reveal the answers.

Experimental results show PI 88788 resistance is still working

Each year, SCN-resistant soybean varieties are studied intensively in nine experiments throughout Iowa as part of the Iowa State University SCN-resistant Soybean Variety Trial Program. The research is funded by the...
soybean checkoff through the Iowa Soybean Association. Since 2007, more than half of the fields in Iowa where variety trial experiments were conducted had SCN populations with elevated (greater than 10 percent) nematode reproduction on the PI 88788 source of resistance. The 10-percent level of SCN reproduction is a critical level above which plants are not considered resistant. Some of the SCN populations in the experimental fields had 35 to 50 percent reproduction on PI 88788.

But despite the increased SCN reproduction, soybean varieties with the PI 88788 source of SCN resistance in the experiments usually yielded the highest. Also, SCN population densities did not increase dramatically on the resistant varieties in the experiments. These results were fairly consistent throughout the past five years (results available online at www.isuscntrials.info).

Overall, the results indicate that SCN-resistant soybean varieties with the PI 88788 source of resistance are not “failing”. The resistant varieties are still producing profitable soybean yields and preventing large increases in SCN population densities.

Because SCN is considerably more damaging in hot, dry years than in growing seasons with more moderate weather, soybean varieties with PI 88788 SCN resistance may suffer significant yield loss due to nematode feeding this season in fields with SCN populations that have elevated reproduction on PI 88788. The 2012 growing season is the type of environmental conditions under which increased SCN reproduction on soybean varieties with PI 88788 SCN resistance may result in significant yield reductions.

New webcast puts situation in perspective

A new webcast explains the factors leading to the build up of SCN populations with elevated reproduction on PI 88788 and discusses the results of numerous variety trial experiments where high yields were produced by PI 88788 SCN-resistant soybean varieties in fields infested with such SCN populations. The webcast was developed and is hosted by the Focus on Soybean section of the Plant Management Network.

The full-length webcast is 25 minutes long and a 4½-minute-long executive summary webcast highlights the “take-home” points of the full-length presentation. Both webcasts are available here.

The webcasts are available for viewing free to the public through November 30, 2012. But a subscription is needed to access most content on the Plant Management Network.

Currently, soybean farmers and crop advisers can sign up for free, individual one-year subscriptions to the Plant Management Network sponsored by the United Soybean Board; simply establish a complimentary account by filling out this online form.

Greg Tylka is a professor with extension and research responsibilities in management of plant-parasitic nematode in the Department of Plant Pathology and Microbiology at Iowa State University. He can be reached at gltylka@iastate.edu or 515-294-3021.

This article was published originally on 7/28/2012. The information contained within the article may or may not be up to date depending on when you are accessing the information.

Links to this material are strongly encouraged. This article may be republished without further permission if it is published as written and includes credit to the author, Integrated Crop Management News and Iowa State University Extension. Prior permission from the author is required if this article is republished in any other manner.