Apparatus and process for separating bone fragments, gristle and sinews from meat as the meat is being ground

Patrick H. Huebner
Joseph G. Sebranek
Iowa State University, sebranek@iastate.edu
Dennis G. Olson
Iowa State University, dgolson@iastate.edu
Eugene A. Anderson

Follow this and additional works at: http://lib.dr.iastate.edu/patents
Part of the Animal Sciences Commons, Food Science Commons, and the Human and Clinical Nutrition Commons

Recommended Citation
Huebner, Patrick H.; Sebranek, Joseph G.; Olson, Dennis G.; and Anderson, Eugene A., "Apparatus and process for separating bone fragments, gristle and sinews from meat as the meat is being ground" (1990). Iowa State University Patents. 191.
http://lib.dr.iastate.edu/patents/191

This Patent is brought to you for free and open access by the Iowa State University Research Foundation, Inc. at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Patents by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Apparatus and process for separating bone fragments, gristle and sinews from meat as the meat is being ground

Abstract
A conventional meat grinder contains a chopper knife and a chopper plate, the chopper knife rides on the inner surface of the chopper plate and directs the bone fragments, sinews and gristle inwardly toward the central portion of the chopper plate as it chops the meat. The central portion of the chopper plate has a funnel-shaped, frusto-conical central passageway within which the bone fragments, gristle and sinews are collected and are urged outward, first passing through the frusto-conical passageway and out the small end of the passageway, into opposed discharge channels which passes through the hub of the plate and communicates with a discharge tube whose distal end is closed or partially closed by a removeable stopper or adjustable clamp.

Keywords
Animal Science, Food Science and Human Nutrition

Disciplines
Animal Sciences | Food Science | Human and Clinical Nutrition | Nutrition

This patent is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/patents/191
APPARATUS AND PROCESS FOR SEPARATING BONE FRAGMENTS, GRISTLE AND SINIEWS FROM MEAT AS THE MEAT IS BEING GROUND

Inventors: Patrick H. Huebner, Le Mars; Joseph G. Sebraneck; Dennis G. Olson, both of Ames, all of Iowa; Eugene A. Anderson, College Park, Ga.

Assignee: Iowa State University Research Foundation, Inc., Ames, Iowa

Filed: Oct. 14, 1988

References Cited

U.S. PATENT DOCUMENTS
3,847,360 11/1974 Seydelmann 241/82.5
4,315,604 2/1982 Meyenschein 241/82.5
4,852,817 8/1989 Tipton 241/260.1

FOREIGN PATENT DOCUMENTS
560070 3/1975 Switzerland 241/260.1

Primary Examiner—Mark Rosenbaum
Attorney, Agent, or Firm—Hurt, Richardson, Garner, Todd & Cadenhead

ABSTRACT

A conventional meat grinder contains a chopper knife and a chopper plate, the chopper knife rides on the inner surface of the chopper plate and directs the bone fragments, sinews and gristle inwardly toward the central portion of the chopper plate as it chops the meat. The central portion of the chopper plate has a funnel-shaped, frusto-conical central passageway within which the bone fragments, gristle and sinews are collected and are urged outward, first passing through the frusto-conical passageway and out the small end of the passageway, into opposed discharge channels which pass through the hub of the plate and communicates with a discharge tube whose distal end is closed or partially closed by a removable stopper or adjustable clamp.

13 Claims, 5 Drawing Sheets
APPARATUS AND PROCESS FOR SEPARATING BONE FRAGMENTS, GRISTLE AND SINEWS FROM MEAT AS THE MEAT IS BEING GROUND

BACKGROUND OF THE INVENTION

This invention relates to a meat grinder and is more particularly concerned with an apparatus and process for separating bone fragments, gristle and sinew from meat as the meat is ground.

DESCRIPTION OF THE PRIOR ART

Ground or comminuted meat has come to be a very popular food item in recent years as demonstrated by frequency of consumer use and the rapid development of fast food chains. Per capita consumption of hamburger in 1986 was over 29 lbs. It has also been estimated that over 8 billion pounds of ground beef is produced annually.

In the grinding of this meat that the problem of bone chips or fragments entering into the product occurs. It is estimated that 0.1% of all meat being ground is bone that was not removed at the trimming tables. Therefore, at grinding, the bone chips that are larger than the final grind size will ride on the knife-plate interface with subsequent shearing of the bone and passage through the plate to the final product.

Since the development of meat grinders, a need has existed for an efficient and reliable way to separate the bone fragments, gristle and sinews (hard material) from the meat as the meat is ground or chopped by the meat grinder.

In the prior art there are a number of patents which attempt to remove the hard material, i.e., bone fragments, gristle and sinews, from meat in a meat grinder or chopper. For example U.S. Pat. No. 4,422,582 to Roeger et al., teaches a food processing machine in which the blades direct the hard material toward the radially outer peripheral region of the chopper plate or grinding plate where the hard material is removed. U.S. Pat. No. 4,153,208 to Vomhof et al., discloses a similar device in that the hard particles are discharged through an annular channel surrounding the chopper plate.

U.S. Pat. No. 4,699,325 to Hess, rather than discharging the bone chips outwardly, uses a tangential groove in the inner surface of a chopper plate to direct the hard material into a central cylindrical pocket, which has a flat bottom, where the hard material, thence is progressively moved through a single, smaller, asymmetrically positioned, discharge passageway, adjacent to the shaft of the auger. This Hess patent does teach that the small holes through which the meat is forced can be frusto-conically shaped, and states that such holes should widen in a downstream direction. This patent also shows a hub with a tube through which the bone is discharged separately from the ground meat. A second Hess U.S. Pat. No. 4,004,742 discloses an involute spiral channel in the grinder plate, through which bone fragments are swept to the center of a grinder plate for removal.

U.S. Pat. No. 4,358,061 to Richter discloses the use of three discharge passageways, radially spaced around the hub of the meat chopper and a rotatable pipe piece which can adjust the size of the passageways. This patent also discloses a cutting blade which directs the bone chips inwardly toward the hub of the perforated disc chopper plate.

U.S. Pat. No. 3,847,360 to Seydelmann discloses the use of a hollow groove in the blade of the chopper for directing the bone and gristle toward the hub of the chopper plate.

U.S. Pat. No. 4,202,502 to Laska discloses a central passage in a chopper plate formed by a flattened shaft of the auger received in the passage, the rejected hard and tough portions being discharged through this passage along the flattened sides of the shaft to an hub and, thence, to a discharge tube. Grooves in the blades direct the rejected material toward the passage.

U.S. Pat. No. 3,934,827 discloses a chopper plate or die with arcuate grooves for the bone chips, these grooves being progressively shallower as they feed toward the central part of the plate and communicate with the through-going holes in the central part of the chopper plate.

All of these central bone removal systems rely on the meat as a carrier for the bone fragments and connective tissue to the exterior where they can be discharged. However, red meat loss must be minimized. The prior art patents also recognize that it is necessary to provide an adequate back pressure on the accumulated bone, gristle and sinews (hard material) to prevent the discharge of appreciable meat; however, this back pressure was achieved by providing torturous paths through which the material traveled. In such prior art structures, the internal, forward pressure on the meat provided little force on the hard material for urging this material to change course from a central cup to pass through the relatively small central exit openings.

BRIEF SUMMARY OF THE INVENTION

Briefly described, the present invention, which efficiently removes the bone fragments, sinews and gristle, includes the usual meat grinder in which a helix or auger feeds the meat toward the chopper plate and a rotatable knife, chops or cutting the meat, as it is urged against the inner surface of the chopper plate and through the small holes of the body of the chopper plate. In the present invention the chopper plate is provided with a large frusto-conical, central, bone accumulating and discharging passageway which is defined by a symmetrically, uniformly, radially outwardly tapering, or converging surface, which in one embodiment, communicates with the inner ends of a pair of diametrically opposed, curvilinear, generally crescent shaped, discharge ports on the opposite sides of the central stub shaft of the auger. In a second embodiment, the bone discharging passageway is frusto-conical in shape throughout substantially its entire length tapering to a discharge port area in which three, thin equally circumferentially spaced struts support a central journal for the stub shaft of the auger.

In each embodiment the chopper plate is provided with an outwardly protruding central hub which, together with the central portion of the chopper plate defines the outer portion of the bone discharging passageway, the protruding hub terminating in an enlarged circumferential shoulder, over which is received at one end of a flexible bone discharge tube, the other end of which removably receives a conventional cork or stopper. The inner end portion of the discharge tube is retained in place by a clamp and an adjustable clamp, near the discharge end of the tube, deforms the tube to regulate the effective size of the tube.

The chopper blade has a body with a central hub having an axial shaft receiving opening which is square
4,928,892

FIG. 4 is an enlarged vertical sectional view taken substantially along line 4—4 in FIG. 3;

FIG. 5 is a fragmentary rear elevational view of the central portion of the chopper plate of FIGS. 1—4, and

FIG. 6 is a fragmentary perspective view of a portion of an alternate embodiment of the chopper plate of the present invention.

DETAILED DESCRIPTION

Referring now in detail to the embodiments chosen for the purpose of illustrating the present invention, numeral 10 in FIG. 1 denotes generally the tubular body of a conventional meat grinder, this body 10 terminating in an annular chopper plate receiving end portion 11 provided with external teeth 12.

Within the central cavity of the meat grinder body 10 is the usual auger 15 having a helical blade 16 which sweeps along the inner periphery of the body 10 so as to feed the meat which is to be ground forwardly toward a chopper plate, denoted generally by the numeral 17. At the end of the blade 16, there is the usual square blade retaining block 18 and the stub shaft 19 which protrudes axially from the blade retaining block 18. A chopper blade, denoted generally by the numeral 20, is removably received on the blade retaining block 18 and the chopper plate 17 is fitted over and journals the stub shaft 19, the chopper plate 17 being urged against the chopper blade 20 by the retaining ring 14 when the retaining ring 14 is tightened onto the housing 10.

The peripheral area of the chopper plate 17, however, is essentially solid so as to form an annular ring 25, against which the retaining ring 14 abuts.

The central portion 26 of the chopper plate 17 is larger than the central portion of a conventional chopper plate and is solid, having no meat extruding holes, such as holes 24. Prominent forwardly, i.e., outwardly from the central portion 26 is an axially protruding hub 30 which is integral with central portion 26 being cylindrical along its outer surface and terminating in a circumferential flange 31. The intake end of a flexible, plastic, discharge tube or hose 32 is fitted over the circumferential flange 31 so as to terminate on the hub 30 and adjacent to the outer surface of the central portion 26. A strap or clamp 33 extends around the end portion of the discharge tube 32 and around the hub 30 so as to retain the end portion of the flexible discharge tube 32 on the hub 30. The tube 32 extends appreciably beyond the flange 31, into which is inserted a removable cork or stopper 36. Preferably the tube 32 is formed of clear plastic material so that the refuse, such as the bone chips or fragments, gristle and sinews may be observed as they pass through the tube 32.

A manually adjustable clamp 37, having set screws 38 passing through opposed clamp arms 39, fits over the
4,928,892

5 tube 32 for regulating the back pressure when the stopper 36 is removed.

According to the present invention the central portion 26 of the hopper plate 17 and the hub 30 is provided with a frusto-conical or funnel shaped bone discharging passageway, denoted generally by the numeral 40. The mouth 40a of this passageway 40 is circular and concentric with the main axis a of the grinder while the inner surface or wall means 40b of the entrance portion of the discharge passageway 40 is a smooth, axially extending, generally uniformly tapering or converging, surface through a substantial portion of the thickness of the hopper plate 17 at central portion 26. Thence, surface 40c converges to a discharge end 40d and, then merges gradually into the spaced, opposed, concaved, semi-cylindrical exit surfaces 41a which define the radially outer extremities of a pair of axially extending, diametrically opposed, crescent shaped, discharge channels, or passages 41 on opposite sides of the stub shaft 19. These concaved exit surfaces 41a extend through a forward portion of central portion 26 and entirely through hub 30. The edges of surfaces 41a extend around spaced parallel arcs on opposite sides of shaft 19 and circumferentially connected to the edges of diametrically opposed journalling surfaces 44 which are radially 90° from surfaces 41a and journal the stub shaft 19, when the meat grinder is assembled. The stub shaft 19 thus defines, with the surfaces 41a the pair of straight, crescent shaped, tubular, exit passages 41 the inner ends of which communicate with the discharge end or opening 40c of passageway 40.

In producing the bone discharging passageway 40 for the \(\frac{5}{16} \) inch, 6 inch or \(\frac{3}{10} \) inch diameter plate 17, the angle incline \(\beta \) between main axis \(a \) and the frusto-conical wall means or surface 40a, may vary from about 30° to about 55°. Preferably, the angle \(\beta \) should be about 45°. The diameter of the throat, mouth or entrance 40a should be from about \(\frac{1}{2} \) inch to about \(\frac{3}{4} \) inches. Preferably, the throat, mouth or entrance 40a should be about 2 inches in diameter for the \(\frac{5}{16} \) inch or 6 inch plate 17. When the \(\frac{3}{4} \) inch plate 17 is used, the diameter of the throat 40a can be proportionally larger i.e., from about 2 inches to about \(\frac{5}{4} \) inches in diameter.

Each of the semi-cylindrical exit surfaces 41a of the \(\frac{5}{16} \) inch, 6 inch and \(\frac{3}{10} \) inch diameter plates 17 should have a diameter of from about 3/16 inch to about 7/16 inch and these surfaces 41a should be diametrically spaced apart by from about \(\frac{1}{4} \) inch to about \(\frac{1}{4} \) inch. Preferably, however, the diameter of each surface 41a should be \(\frac{5}{16} \) inch. The surfaces 41a should be enlarged proportionally for larger plates 17. The diameter of the central opening, as defined by the opposed journalling surfaces 44 should be about 9/16 inch for the three size plates 17, discussed above. The frusto-conical passageway 40 should protrude at least half way through plate 17 while the discharge passage 41 should protrude entirely through hub 30.

The hopper blade 20 includes a central hub 46 provided with a square or rectangular (non-circular central opening 47 of a shape to fit on blade receiving block 18 so that the blade 20 is rotated upon rotation of the auger 15. Protruding radially outwardly from the hub 46 are a plurality of equally spaced arms 50 which, in the present embodiment are disposed at 90° from each other, each arm 50 having a lower flat surface 48, which is in a common plane with the flat inner surface 49 of the hub 46. Each inner surface 48 of each arm 50 receives and retains in a fixed position, a knife 51 which is straight and generally triangular in cross-section, having a flat front surface 51a which is in a common plane with the flat front surface 50a of the arm 50. The front surfaces 50a and 51a are preferably perpendicular to surfaces 21 when the blade 20 is installed. Hence, the knife 51 can be ground by simply grinding this common front surface. Each knife 51 has a flat inclined rear surface 51b which converges toward edge 51a, terminating at a common straight cutting edge 51c with the front surface 51a. Each rear surface 51b diverges away from the interface of hopper plate surface 21 and cutting edges 51c and terminates in a straight back edge 51d.

The front surface 51a and cutting edge 51c of each knife 51 is disposed preferably at an angle \(\delta \) of about 2° from the radius of the blade 20 so as to have the radially extreme portion of each knife 51 leading the inner portion of each knife 51, thereby providing a straight front surface which directs the hard material, such as the bone, gristle and sinews, inwardly as the blade 20 rotates. Since the common angle of the front surfaces 50a and 51a is perpendicular to plate surface 21 or is at a very small obtuse incline angle to the surface 21, the hard material, which does not pass through the holes 24, is gradually urged upwardly toward the holes 24 as the blade 20 chops the meat which has been urged against the inner surface 21 of the hopper plate 17.

The inner ends of each knife 51 terminates outwardly of the mouth 40a of the bone discharge passageway 40 thereby permitting all blades to clear the bone, gristle and sinew which have been urged inwardly sufficiently that they are disposed over or within the mouth 40a.

It will be remembered that the auger 15, when rotating, applies a very substantial forward pressure to all of the material within the housing 10 so as to urge that material against the inner surface 21 of the hopper plate 17. The softer material, such as meat and fat, is thus urged sufficiently through the holes 24 that the knives 51 progressively chop the meat into the ground material which is discharged from the outer surface 22 of the hopper plate 17.

When the meat grinder is operating, meat is fed through the grinder, against plate 17 and as the meat is ground, the hard particles, such as bone, gristle and sinews which are larger than holes 24 are accumulated in front of the knives 50 and are fed inwardly thereby eventually passing from the inner ends of knives 50 into the mouth 40a of passageway 40. Thereafter, the bone, sinews and gristle progressively move into passageway 40 being urged by the pressure differential through passageway 40 and into and through the exit passages 41. When the initial start up of the meat grinder takes place, the cork 36 should be installed on the end 35 of the tube 32 so as to prevent any discharge of the material until the tube 32, the passages 41 and the discharge passageway 40 have been filled with meat and bone. This accumulation of meat and bone in the tube 32 creates a sufficient back pressure to enable the meat grinder to function quite efficiently, from then on since, thereafter, the hard material is essentially the only material urged toward the center of plate 17 and under the hub 46 while the meat is chopped as it is urged by the forward pressure through the holes 24.

Because of the funnel shaped, frusto-conical configuration of the bone discharge passageway 40, there is no area within the passageway 40 which will require the bone fragments, sinew and the gristle to change their direction of movement, to an appreciable extent. Thus, there is a progressive urging of the hard material in
generally an axial direction out through the discharge path defined by the passageway 40, the passages 41 and tube 32. The sharp fragments of bone, thus do not tend to arrest or cause excessive clogging of the entire discharge path and, indeed, slide smoothly with respect to each other since the material is progressively, gradually forced inwardly to a smaller cross-section, as it is progressively moved in the direction of axis a. Furthermore, the tube 32, when it becomes filled with the hard material, provides sufficient back pressure on the exit passages 41 and the communicating conical shaped, discharge passageway 40 that there is only a gradual movement of the material along the tube 32 after the cork 36 has been removed.

If too much meat is passing through the discharge path, with the hard material, the clamp 37 can be effectively used to restrict the travel along the discharge passageway. The end portions of clamp, arms or members 37 rotatably receive screws 38, which are threadedly received by the end portions of one clamp arm 39 so that when the screws 38 are rotated in one direction the arms 39 are progressively moved toward each other to progressively flatten opposite portions of the tube 32 and thereby restrict the effective cross-section of tube 32.

In FIG. 6 is a modified form ofapper plate 117 which has holes 124 through which the meat passes and a central hub 130 through which the hard material such as bone fragments, sinew and gristle is discharged all as in the preceding embodiment. In this embodiment, however, the funnel shaped opening includes an outwardly tapered central bone discharge passageway 140 in the central portion of the plate 117, the wall or surface 140B which defines the frusto-conical passageway 140 protruding into the hub 130. The hub 130, which protrudes from the outer surface of the central portion of the plate 117, is a hollow tubular member which concentrically surrounds a central smaller journal sleeve 142. Flat radially extending vanes 145 arranged 120° from each other protrude outwardly from sleeve 142 and connect to the inner surface of the hub 130. Vanes 145 extend axially through the hub 130 inwardly to terminate at the discharge passageway 140. Thus, the vanes 145 define, therebetween, three circumferentially spaced, discharge channels or passages 141 which communicate with the relatively small discharge end portion 141C of the frusto-conical passageway 140 to receive material urged into the mouth 140A of passageway 140 and then through the passageway 140. The outer walls or surfaces 141A defining the passages 141 are concentric about sleeve 142 and merge into the conical surface 140B at exit end 140C of the passageway 140. The stub shaft or stud (not shown) protrudes through and is journalled by sleeve 132.

Since the plate 117 operates in the same manner as the plate 17, no detailed description of its operating is deemed necessary.

It will be obvious to those skilled in the art that many variations may be made in the embodiments here chosen for the purpose of illustrating the present invention without departing from the scope thereof as defined by the appended claims.

We claim:

1. A meat grinder for comminuting meat while separating the bone fragments, gristle and sinews from the meat, the meat grinder being of the same type having a tubular housing, a rotatable auger within said housing rotatable about a longitudinal axis for urging meat toward one end of said housing, a rotatable shaft connected to said auger for rotation with said auger about said axis, a hopper plate disposed at said one end of said housing and toward which said meat is urged by said auger, said hopper plate having a central portion receiving said shaft and being provided with an inner surface and an outer surface, said hopper plate having a plurality of relatively small holes passing from one surface to the other surface through said hopper plate outwardly of said central portion, a rotatable hopper blade within said housing for riding against the inner surface of said hopper plate, said hopper blade urging the bone, gristle and sinews toward the central portion of said plate, the improvement comprising:

said central portion having a wall means defining a progressively tapering discharge passageway surrounding said rotatable shaft and being open except for said shaft, said discharge passageway having a relatively large throat on the inner side of said hopper plate and a smaller discharge end axially spaced and outwardly of said throat, said bore, gristle and sinews passing in generally an axial direction through said discharge end and outwardly of the outer periphery of said shaft for being discharged from said meat grinder.

2. The meat grinder defined in claim 1 including a hub protruding from said central portion of said hopper plate outwardly of said outer surface and wherein said hub defines an exit passageway communicating with said discharge end of said passageway, the cross sectional area of said exit passage being smaller than the cross sectional area of said discharge end of said tapering passageway.

3. The meat grinder defined in claim 1 wherein said discharge passageway is frusto-conical.

4. The meat grinder defined in claim 3 wherein said exit passageway includes a plurality of radially spaced passages communicating with said discharge end.

5. A hopper plate for use in a meat grinder, comprising:

a disc shaped member having an axis at its central portion, an outer surface and a flat inner surface; said member having holes offset from said central portion extending through said member from said inner surface to said outer surface and through which meat is urged when said plate is in use; said central portion of said disc being provided with a central bone collecting passageway, recessed into the central portion of said member, said central bone collecting passageway being defined by an inwardly tapering wall extending into said member; and said central portion of said member having a journaling surface for journaling a rotatable stub shaft connected to an auger of said grinder, when said hopper plate is installed in said grinder and said disc shaped member having a plurality of axially extending surfaces outwardly of the shaft when said plate is installed in said grinder for defining exit passages communicating at their inner ends with the inner end portion of said bone collecting passageway.

6. The hopper plate defined in claim 5, wherein said member includes a hub protruding from its central portion, said hub having said journaling surface for receiving the stub shaft of the meat grinder, said exit passages being disposed so as to be on diametrically opposite sides of the stub shaft when the stub shaft is received in
said chopper plate for defining with the stub shaft, a pair of crescent shaped holes which pass through said hub.

7. The chopper plate defined in claim 5 in which said inwardly tapering wall is frusto-conical and disposed at about 30° to about 55°.

8. The chopper plate defined in claim 5 including a hub connect by one end to the central portion of said member, said exit passages passing through said hub.

9. A meat grinder for comminuting meat while separating the bone fragments from the meat comprising a meat grinder of the type having a tubular housing, a rotatable auger within said tubular housing and rotatable about a longitudinal axis for urging said meat toward one end of said housing, a blade retaining block connected to the end of said auger and a shaft extending from said nut along the axis of said auger, a chopper blade removably received on said blade retaining block for rotation about said axis, said chopper blade having a blade hub at its central portion and a plurality of radially extending blades protruding from said blade hub, a chopper plate removably received within the end of said housing, said chopper plate having a central portion and an outer portion, said outer portion being provided with a plurality of small holes which protrude through said plate, the central portion of said housing receiving said shaft, a plate hub connected to said central portion and protruding outwardly from the outer surface of said chopper plate, said plate hub receiving a portion of said shaft, said central portion of said chopper plate including wall means defining a frusto-conical progressively inwardly tapering discharge passageway surrounding said shaft, said passageway being essentially open except for said shaft throughout its length, said wall means defining a relatively large throat beneath said blade hub for receiving the bone directed by said radially extending blades toward the central portion of said chopper plate, said wall means also defining a smaller discharge end axially spaced from said throat and a plurality of discharge passages surrounding a portion of said shaft and communicating at their inner ends with said smaller discharge end of said passageway, whereby bone received in said throat will be progressively moved in an axial path adjacent to said shaft and outwardly through said passages, conduit means connected to said hub for receiving said bone as it emerges from said passages.

10. The meat grinder defined in claim 9 wherein said conduit means includes a transport tube connected by one end to said plate hub and including a stopper at the other end of said tube, said stopper causing said bone to be accumulated in said tube and to exert a back pressure on said bone in said passages and said passageway.

11. The meat grinder defined in claim 9 wherein said conduit means includes a tube connected to said plate hub and a clamp for restricting the cross-sectional area of said tube when said clamp is tightened.

12. The meat grinder defined in claim 11 wherein said shaft and inner portions of said plate hub define said discharge passages.

13. The meat grinder defined in claim 9 wherein said radially extending blades have cutting edges at their foremost portions and the cutting edges are each at an acute angle to the radial axis of such radially extending blade for directing the bone toward the center of rotation of said radially extending blades.