Expanding the one-dimensional CdS-CdSe composition landscape: Axially anisotropic CdS$_{1-x}$Sex nanorods

Thanthirige Purnima Anuththara Ruberu
Iowa State University, puruberu@iastate.edu

Javier Vela
Iowa State University, vela@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs
Part of the [Chemistry Commons](http://lib.dr.iastate.edu/chem_pubs)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/131. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Expanding the one-dimensional CdS-CdSe composition landscape: Axially anisotropic CdS\(_{1-x}\)Se\(_x\) nanorods

Abstract

We report the synthesis and characterization of CdS\(_{1-x}\)Se\(_x\) nanorods with axial anisotropy. These nanorods were synthesized via single injection of a mixture of trioctylphosphine sulfur and selenium precursors to a cadmium-phosphonate complex at high temperature. Transmission electron microscopy shows nanoparticle morphology changes with relative sulfur and selenium loading. When the synthetic selenium loading is between 5% and 10% of total chalcogenides, the nanorods exhibit pronounced axial anisotropy characterized by a thick ”head” and a thin ”tail”. The nanorods’ band gap red shifts with increasing selenium loading. X-ray diffraction reveals that CdS\(_{1-x}\)Se\(_x\) nanorods have a wurtzite crystal structure with a certain degree of alloying. High-resolution and energy-filtered transmission electron microscopy and energy-dispersive X-ray spectroscopy confirm the head of the anisotropic nanorods is rich in selenium, whereas the tail is rich in sulfur. Time evolution and mechanistic studies confirm the nanorods form by quick growth of the CdSe-rich head, followed by slow growth of the CdS-rich tail. Metal photodeposition reactions with 575 nm irradiation, which is mostly absorbed by the CdSe-rich segment, show effective electronic communication between the nanorod head and tail segments.

Keywords

axial anisotropy, cadmium chalcogenide, graded alloy, heterostructure, nanorod

Disciplines

Chemistry

Comments

Expanding the One-Dimensional CdS–CdSe Composition Landscape: Axially Anisotropic CdS$_{1-x}$Sex Nanorods

Author: T. Purnima A. Ruberu, Javier Vela

Publication: ACS Nano

Publisher: American Chemical Society

Date: Jul 1, 2011

Copyright © 2011, American Chemical Society

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.