High Tunnel Pole Bean Production in 2008

Henry Taber
Iowa State University, taber@iastate.edu

Bernard J. Havlovic
Iowa State University, bhavlovi@iastate.edu

Nicholas P. Howell
Iowa State University, nhowell@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/leopold_pubspapers

Part of the _Agricultural Science Commons_, _Agriculture Commons_, and the _Horticulture Commons_

Recommended Citation

Taber, Henry; Havlovic, Bernard J.; and Howell, Nicholas P., "High Tunnel Pole Bean Production in 2008" (2009). _Leopold Center Pubs and Papers_. 184.

http://lib.dr.iastate.edu/leopold_pubspapers/184

This Report is brought to you for free and open access by the Leopold Center for Sustainable Agriculture at Iowa State University Digital Repository. It has been accepted for inclusion in Leopold Center Pubs and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
High Tunnel Pole Bean Production in 2008

Abstract
This report on pole bean production was originally published in the 2008 Annual Progress Reports for the Horticulture Research Station (ISRF 0008-36).

Keywords
Horticulture, Fruits and vegetables

Disciplines
Agricultural Science | Agriculture | Horticulture

This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/leopold_pubspapers/184
High Tunnel Pole Bean Evaluation

Horticulture and Armstrong Farms Annual Reports 2008

Henry G. Taber, professor, Department of Horticulture

Bernard Havlovic, superintendent, Armstrong Research Farm

Nick Howell, superintendent, Horticulture Research Farm

Introduction

There are two major types of green beans: bush or pole. Bush are short, erect plants (determinate) with a uniform pod set, resulting in a short harvest season. Pole beans are trained on poles, fence or string and grow 7 to 8 feet in height and bear fruit continuously (indeterminate), requiring only one field planting. Further, the consumer perceives pole beans, with its longer pod, to be of superior quality. Our objective was to evaluate two pole bean varieties: Fortex, an extra long pod (11-inch) 60-day maturity, and Blue Lake, a standard pole bean variety, 6 to 7 inch round pod with 55-day maturity. Also, we wished to compare high tunnel production with field production and obtain two crops in the high tunnel by double cropping.

Materials and Methods

The project was established at the Armstrong Research Farm (southwestern Iowa – a well-drained silt loam soil) and the Horticulture Research Station (central Iowa – a well-drained loam soil). The previous crop at both Armstrong and the Horticulture Station in the high tunnel was peppers. Previous crops at the outdoor site at Armstrong were cucurbits and at the Horticulture Station tomatoes. Both sites were fertilized according to soil test recommendations. The cultural system consisted of SRM-olive plastic mulch (wavelength selective) and trickle irrigation. Seeds were seeded in single rows with and in-row spacing of 8 inches on a single plastic row bed. Rows were 4.5-foot on center. Hog fence was used as training panels set about 61/2 feet in height. Irrigation scheduling was via tensiometers. Pest management practices for field production included Sevin insecticide for bean leaf beetle. However, the bean leaf beetle was not present inside the tunnel but leaf miner was. Insecticidal soap was used to keep the population at low levels at Armstrong, but Orthene 75S was necessary to reduce the population at the Horticulture Station. There were two replications of each variety at each site in the high tunnel and only one observational row for the outdoor field plantings.

Seeding dates were: Armstrong high tunnel on April 15 and Aug 1, and a field seeding date of May 20; Horticulture Station high tunnel on April 17 and Aug 5, and a field seeding date of May 15. For the high tunnel August production, the April plants were removed and seeds planted in the same planting hole.

Yield data consisted of harvesting twice a week from the high tunnels and field at both Armstrong and the Horticulture Station. Fruit were not always sorted into marketable and cull (rots, severely misshapen, small), but marketable bean pod length was determined when the harvest was sorted.
Results and Discussion

April High Tunnel Planting
Noticeable differences between the two production sites occurred in yield and fruit characteristics (Figures 1 and 2). At both locations, Fortex commenced production June 24 (70 days after seeding) and continued for 5 weeks. Blue lake maturity was similar to Fortex at the Horticulture Station but 12 days later at Armstrong. The 2008 spring weather conditions were cold and wet resulting in maturities about two weeks longer than listed in seed catalogs. Production peaked in weeks 3 and 4 and total yield of Blue Lake was 40 percent less than Fortex (1.03 lbs/foot vs. 1.68 lbs/foot) at Armstrong, while at the Horticulture Station both varieties yielded similarly (1.71 lbs/foot) (Figure 1). At both locations unmarketable beans (cullage) rose dramatically in the third week and was 72 to 100 percent by week 5. The second high tunnel planting (August) commenced September 30 at the Horticulture Station and October 7 at Armstrong for both varieties (56 days and 68 days, respectively). The harvest period was 4 weeks, terminated by freezing weather in late October. Interestingly, at Armstrong weekly fall production was lower for Fortex, compared with spring, while Blue Lake fall production was higher than spring. For the Horticulture Station both Fortex and Blue Lake fall production was considerably lower than spring, averaging only half of weekly spring production. This reduction was not due to plant population, which was near 100 percent, but some other factor perhaps such as shorter day lengths.

Fortex bean pod length was consistent at 10 inches for both locations and the two plantings, the exception being the mid-April planting at Armstrong where pod length was reduced from 10 to 8 inches (Figure 2). For the Blue Lake variety, bean pod length was stable at 5.5 inches for both locations and planting times.

Tunnel orientation did have an effect on production. The outside west row at Armstrong (N-S orientation) produced 28 percent fewer beans than the inside row. This was probably the result of wind speed coming from the southwest. At the Horticulture Station (E-W orientation) the north outside row produced 35 percent fewer beans. In this case, the effect may have been from shading from the inside south bean row.

May Field Planting
Horticulture Station production began July 22 for Fortex (68 days to maturity) and continued until September 8 while Blue Lake (81 days to maturity) was 13 days later (August 5) and continued until September 15 (Figure 3). Corresponding values for the Armstrong May 20 field seeding were: Fortex harvest began July 18 (59 days to maturity) and continued until September 25 while Blue Lake started August 4 (76 days to maturity) and continued until September 25. Blue Lake weekly production was similar for both locations, but Fortex yield was very low at Armstrong. This could have been the result of herbicide drift from nearby field crop fields. Even at the Horticulture Station, Fortex cullage was very high, 50 to 75 percent. Thus, Fortex is not adaptable to field production.

Blue Lake pod length was similar at both locations, averaging 5.5 inches or similar to high tunnel production (Figure 4). However, the Fortex pod length at Armstrong was greatly reduced from 9 to 6.4 inches at mid-harvest, then rising to 8 inch for the final four weeks of harvest. This reflects the yield reduction phenomenon associated with herbicide drift. In contrast, Fortex pod length at the Horticulture Station averaged 9.1 inch, similar to the 10 inch produced in the high tunnel.
Acknowledgements
We want to acknowledge the Leopold Center for Sustainable Agriculture for their support of this study. We appreciate the assistance of undergraduate Horticulture students Sabina Quint and Anna Webb in conducting this research.
Figure 1. Weekly total yield, pounds per foot, of Fortex and Blue Lake pole beans seeded mid-April (solid line) and first of August (dotted line) in a high tunnel at both Armstrong and the Horticulture Station, Iowa, 2008.
Figure 2. Marketable bean pod length, inches, for Fortex and Blue Lake pole beans grown in a high tunnel at Armstrong (AR) and the Horticulture Station (HS), Iowa, 2008. The number 1 indicates seeded mid-April and number 2 indicates seeded August 1.
Figure 3. Weekly total yield, pounds per foot, of Fortex (triangles) and Blue Lake (squares) pole beans field seeded late May at Armstrong (AR) and the Horticulture Station (HS), Iowa, 2008.

Figure 4. Marketable bean pod length, inches, for Fortex (triangles) and Blue Lake (squares) pole beans grown in the field at Armstrong (AR) and the Horticulture Station (HS), Iowa, 2008.
Pole beans seeded mid-April at the Horticulture Station high tunnel.

High tunnel seeding spacing equals one plant per 8 inches on wavelength selective plastic.

Blue Lake outdoor production at Horticulture Station trained on hog fence.

Fortex pole bean field planting at Horticulture Station.
Fortex at peak stage of harvest.