




initial probabilistic assignment of forest types. By

contrast, the aggregation of fir shown for the initial

condition of the contemporary scenario was based on

tree species-level mapping via remote sensing. This

moderate level of mapped fir aggregation was most

similar to the simulated patterns of fir when spruce

budworm disturbance was applied (Fig. 8). Sensitivity

and uncertainty analyses applied to forest types showed

that the parameters and assumptions affecting budworm

disturbance corresponded strongly with those parame-

ters affecting the relative abundance of balsam fir

(Appendix B).

DISCUSSION

Fire–insect interactions

Conventional wisdom has held that tree mortality

caused by insect disturbance enhances fire risk (McCul-

lough et al. 1998). Empirical evidence from spruce

budworm disturbance supports this viewpoint over short

(i.e., year to decade) time scales. Experimental burns in

mixed-wood stands similar to those found within the

BWCA demonstrated that budworm-caused mortality

increased spread rates and facilitated escalation of

surface fires to crown fires (Stocks 1987). Fleming et

al. (2002) found that the incidence of large fires (.200

ha) in Ontario occurred disproportionately during a

limited time window following budworm outbreaks, and

that this bias lasted the longest in the western part of the

province in the immediate vicinity of the BWCA. Yet

Fleming et al. (2002) also observed a decrease in fire

incidence immediately beyond this time window. Our

results were consistent with this latter result; composi-

tional changes associated with budworm disturbance

compensated for immediate fire risks associated with

outbreaks, to the extent that long-term fire risk was

reduced.

Based on the work of Fleming et al. (2002), we

anticipated greater area burned during decades with

simulated outbreaks in comparison with non-outbreak

decades. Yet the simulated area burned between

outbreak and non-outbreak decades were similar for

both contemporary and presettlement scenarios.

Though balsam fir is widespread across the BWCA, it

is rarely dominant (Wolter et al. 2008); hence part of the

discrepancy between Fleming’s study and ours may be

due to the mixed composition relative to true boreal

forests further north. A companion simulation study

FIG. 6. Tree species presence throughout the simulations for each time period 3 budworm treatment. Values represent the
landscape proportion of the BWCA averaged across the 12 replicates, with error bars representing 95% confidence intervals. Species
abbreviations are as in Fig. 5.
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from central Quebec indicated that budworm did not

influence area burned at the century scale, but did not

examine outbreak vs. non-outbreak periods with respect

to fire (James et al. 2011). While we did observe slightly

higher severity of simulated fires during outbreak

decades for the contemporary scenario, consistent with

the observations of Stocks (1987), this difference was

weak and not likely meaningful for either time period

scenario. Contemporary fires are predominantly caused

by humans and occur more often in spring in Minnesota

(Cardille and Ventura 2001). Stands affected by

budworm are most flammable in spring prior to the

green-up of shrubs that increase the moisture of the

forest floor within budworm-disturbed sites, reducing

flammability during summer months (Stocks 1987).

Presettlement fires, by contrast, were assumed to be

predominantly summer fires based on the seasonal

timing of lightning strikes in the region (Heinselman

1996). Lynch and Moorcroft (2008) found a decrease in

fire frequency following western spruce budworm

outbreaks in south-central British Columbia, and

speculated that this reduced fire risk may be due to

greater moisture on the forest floor within disturbed

stands. Western spruce budworm generally causes less

mortality in the overstory than eastern spruce budworm

(Cooke et al. 2007).

Our results parallel recent investigations of interac-

tions between bark beetle disturbance and fire in western

North America. Fire history studies in Colorado, USA,

found no evidence to support the traditional beliefs that

spruce beetle (Dendroctonus rufipennis) disturbance

enhanced fire frequency (Bebi et al. 2003) or spread

(Kulakowski and Veblen 2007). Kulakowski et al.

(2003) found that moderate to severe spruce beetle

disturbance reduced the likelihood of burning in a

subalpine forest, a result they attributed to enhanced

moisture at the forest floor. Under certain circumstanc-

es, tree mortality caused by mountain pine beetle

(Dendroctonus ponderosae) disturbance enhanced the

spread of the 1988 fires in Yellowstone National Park

(Lynch et al. 2006). Similar to our results, beetle-caused

mortality often increases fire severity when burned

(Turner et al. 1999, Kulakowski and Veblen 2007).

Nonetheless, this response is neither consistently signif-

icant nor positive: it depends on the time since beetle

disturbance, whether drought coincides with the burn,

and how beetle disturbance severity influences vertical

and horizontal connectivity of fuels (Knight 1987, Bigler

et al. 2005, Derose and Long 2009). Similar to the work

of Fleming et al. (2002) and the simulations presented

here, these empirical studies find that beetle-caused

changes in composition and structure have far more

influence on subsequent fire activity than tree mortality

per se (Bigler et al. 2005).

In summary, the combination of greater fir abundance

during modern times and the shift in the fire season

caused by humans does have the potential to enhance

fire severity during budworm outbreaks. However we

found this response to be weak when averaged across

multiple simulated outbreaks within the BWCA. Fur-

ther, the rank-order of budworm host quality roughly

corresponds with increasing flammability of fuel types in

terms of fire probability, spread rates, and fire severity

(Fig. 7, Table 5). Budworm disturbance therefore

reduces long-term fire risk at the landscape scale by

decreasing the area and relative dominance of primarily

fir and, to a lesser extent, white spruce.

Disturbance–vegetation interactions

The primary host of spruce budworm (balsam fir) has

several life history traits that make it a strong

competitor, including high shade tolerance, rapid

growth response to available light, and wide environ-

mental tolerance (Loehle 1988). These strengths are

counteracted by several weaknesses including short

longevity and sensitivity to both herbivory and fire

(MacLean 1980, Loehle 1988). Disturbance is therefore

fundamental to its distribution and relative dominance

(Bergeron 2000). Nonetheless, Frelich (2002) down-

played the relative importance of spruce budworm as a

factor affecting forest composition in the BWCA,

arguing that balsam fir abundance in the area remains

stable despite temporal fluctuations in age structure

caused by spruce budworm disturbance, because the

youngest cohorts generally survive the disturbance. This

prediction is consistent with our simulation results; we

found budworm had strong influence on the age

structure of balsam fir, but far less effect on its landscape

abundance. Further, mortality patterns caused by

budworm disturbance tend to be patchy at fine spatial

scales (Kneeshaw and Bergeron 1998), despite the

landscape-to-regional extent of the disturbance (Wil-

liams and Birdsey 2003). Such fine-scale heterogeneity in

mortality disaggregates balsam fir (Fig. 8), but also

places seed-producing and disturbed sites in closer

proximity than one might observe following a fire. We

suggest it is the combination of advance regeneration

and interspersion of seed sources with disturbed sites

that maintains balsam fir composition in spite of

repeated budworm disturbances. The cumulative re-

sponse to such budworm–vegetation interactions in our

study was a subtle compositional shift for both scenarios

(Figs. 5 and 6).

The host-specific nature of insect disturbances can

strengthen their dynamic interaction with forest condi-

tions relative to other disturbance types. Indeed,

empirical studies of budworm impacts indicate a range

of system responses to budworm defoliation disturbance

ranging from stand-replacing mortality to gap dynam-

ics, depending on the composition at the time of the

outbreak (Ostaff and MacLean 1989, Bergeron et al.

1995, Kneeshaw and Bergeron 1998, Belle-Isle and

Kneeshaw 2007). The relative severity of past outbreaks

can further influence damage caused by subsequent

outbreaks by affecting the landscape abundance of

susceptible host (Bouchard et al. 2006). Most of the
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variability in budworm damage observed between

replicates for a given outbreak (Fig. 4) was due to time

since the last outbreak and the fire disturbances in the

decades leading to the outbreak, affecting the availabil-

ity of susceptible fir.

Despite decades of academic discourse on the

dynamic feedback between spruce budworm population

dynamics and forest conditions (Holling 1973, Ludwig

et al. 1978, Blais 1983, Royama 1984) there is as of yet

no consensus regarding the explicit feedback between

forest conditions and budworm population dynamics at

landscape scales (Miller and Rusnock 1993, Royama et

al. 2005). The only feedback between insect disturbance

and forest conditions simulated within our scenarios was

the proportion of host as it affects the area disturbed by

the budworm. The recent integration of fire behavior

models and landscape disturbance and succession

models now allow dynamic feedback between forest

conditions and fire disturbance (Perera et al. 2003,

Sturtevant et al. 2009). Recent investigations of broad-

scaled budworm–forest interactions are beginning to lay

a foundation upon which analogous dynamic budworm

disturbance regimes may be parameterized in the future

(Candau and Fleming 2005, Gray 2008; Robert et al., in

press).

Relative to insect disturbances, fire and its interac-

tions with vegetation within the BWCA have been well

studied both empirically (Heinselman 1973, Grigal and

Ohmann 1975, Frelich and Reich 1995) and via

simulation experiments (Baker 1989, Scheller et al.

FIG. 7. (a) Forest type classified according to relative value as budworm host contrasted with (b) fuel types rank ordered by
relative fire probability across the four experimental treatments. Values represent the landscape proportion of the BWCA averaged
across the last five decades of the simulations and the 12 replicates.
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2005, Shinneman et al. 2010). Our observed trend in the

contemporary scenario toward a system with greater

dominance of shade-tolerant conifers and mixed forests

is broadly consistent with these studies. By explicitly

simulating reciprocal feedback between forest vegetation

and fire, our study quantified the extent to which such

compositional changes are expected to enhance future

fire risk. Mean fire rotations decreased to 240 and 275

years for contemporary scenarios without and with

budworm, respectively (Fig. 3a), compared with the

current fire rotation estimated at 426 years (Table 2).

Our results further indicate that fire severity will be

higher for future forests relative to the presettlement fire

regime (Fig. 3b). Such changes to the fire regime may

allow some fire-dependent communities such as jack

pine to persist, whereas ‘‘big pine’’ communities

dependent on frequent surface fires punctuated by

infrequent crown fire may continue to decline over time

(Fig. 6) (Palik and Gilmore 2005).

Contrary to our expectations, landscape structure of

seral stages did not differ substantially between time

period treatments (Fig. 5b). This result is especially

curious given that presettlement fires were over an order

of magnitude larger than those simulated for the

contemporary scenario (Table 2). However the lower

severity of presettlement fires allowed some older tree

cohorts to survive the disturbance, resulting in residual

forests that broke up the connectivity of the simulated

burn patterns. Budworm disturbance in these mixed

forests is best characterized as a partial disturbance,

affecting only the pattern of its host (Fig. 8). By

reducing area burned, and retaining old cohorts of

nonhost species, budworm disturbance therefore shifted

the landscape age structure toward more old-growth

forest (Fig. 5b).

Study limitations

Our simulation experiment was simplified to focus on
interactions among budworm, fire, and vegetation under

conditions for which we had a reasonable empirical basis
for comparison among treatments. Several potentially

important drivers were therefore excluded from the
experiment. Principle among these was climate change

both past and future. Other simulation studies have
examined the effects of future climate change on

vegetation dynamics in this area (Xu et al. 2007,
Ravenscroft et al. 2010). Under future warming

scenarios both fir and spruce are anticipated to decline
in dominance, although the results are sensitive to how

these species physiologically respond to enriched CO2

(Xu et al. 2007). While spruce budworm may exacerbate

this decline (Fleming 1996), budworm population
dynamics are also influenced by climate and recent

analysis suggests a decline in budworm activity along the
southern extent of its range (Gray 2008, Régnière et al.
2010). Analogously, the presettlement forests developed

under the cooler climate conditions of the Little Ice Age,
presumably affecting vegetation, fire, budworm, and

their interactions (Bergeron 1998, Weir et al. 2000,
Bouchard and Pothier 2008). Future warming effects on

precipitation and water budgets remain among the most
uncertain in climate model forecasts (IPCC 2007),

though most indications are that the BWCA region will
become drier (Frelich and Reich 2010). The direction of

such changes are critically important for vegetation
dynamics on the shallow soils characteristic of the

BWCA (Appendix A), and could substantially influence
future disturbance interactions (Frelich and Reich

2010).
Explicit feedback between forest conditions and

budworm outbreaks in our simulations were limited to
defoliator impacts given local and neighborhood forest

composition (Table 6). While these relationships are
well documented, relative susceptibility of some tree

species, particularly black spruce, may be dependent on
the amplitude of the budworm population outbreak
(Régnière and Nealis 2008). Recent research in the study

region suggests that landscape-scale forest conditions
may additionally influence the spatial scale (i.e.,

synchrony), frequency, and intensity of budworm
outbreaks (Candau and Fleming 2005; Robert et al., in

press). Budworm outbreak patterns result from complex,
multi-scaled interactions among budworm populations,

weather, tree communities, and a complicated food web
of predators, parasitoids, hyperparasitoids, and patho-

gens (Eveleigh et al. 2007), making predictions of
outbreak response to future forest conditions problem-

atic (Gray 2008). Nonetheless, both relative tree species
susceptibility and spatiotemporal outbreak patterns may

change dynamically depending on forest conditions,
suggesting potentially stronger feedback processes than
those simulated here.

Application of a presettlement fire regime to preset-

tlement vegetation should theoretically lead to stable

FIG. 8. Aggregation index (AI) applied to balsam fir .10
years old measured at 150-year intervals for contemporary
(black) and presettlement (gray) scenarios. Circles represent
scenarios without budworm disturbance, and squares represent
scenarios with budworm disturbance. Error bars represent 95%
confidence intervals.
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forest conditions at the landscape scale. While simulated

forest conditions were broadly consistent with our

understanding of presettlement forests of the region

(Friedman et al. 2001), some observed trends suggested

potential discrepancies between actual drivers and

simulated processes. For example, tamarack was rela-

tively common as an upland species based on the GLO

data, perhaps due to a lack of competition from other

species (Gower and Richards 1990). Thus the decline in

tamarack (Fig. 6a and b) indicates we may have under-

simulated presettlement surface fire history. Indeed,

Heinselman’s (1973) fire data represent stand-replacing

fires, whereas our fires included both surface and crown

fire impacts. Decreasing fire rotations to account for

surface fire activity may have promoted more tamarack

as well as pine. Nutrient-cycling dynamics also influence

composition, particularly between conifer and hard-

wood species (Reich et al. 2001). By ignoring such

feedbacks, the balance between conifer and hardwood

species may have been affected; this may explain the

increasing trend in presettlement birch and aspen (Fig.

6a and b). Forest composition estimated by the GLO

data is of course only a short-term indicator of past

conditions, and evidence from Baker (1989) suggests

that the BWCA landscape is not in equilibrium with its

fire regime. Nonetheless, our simulations should not be

interpreted as a direct representation of presettlement

forest dynamics, nor an actual projection of future forest

conditions. Rather our results provide insights into the

long-term nature of the insect–budworm–vegetation

interaction difficult or impossible to examine using

traditional empirical methods alone.

Conclusions

Budworm disturbance has traditionally been viewed

as a symptom of past fire suppression policies (Heinsel-

man 1996) and its impacts are clearly visible to a

concerned public. Popular perception that such insect

disturbances enhance wildfire risk further contributes to

the perception of budworm as a ‘‘forest health problem’’

to be solved (Dombeck et al. 2004). Yet evidence of

budworm outbreaks in the immediate vicinity of the

BWCA has been dated to the early 19th century (Blais

1983), and in other regions spruce budworm outbreaks

have affected spruce–fir forests for millennia (Simard et

al. 2006). Our study suggests that budworm serves as a

natural thinning agent that decreases live ladder fuels by

periodically reducing balsam fir content. Returning to

the relationships depicted in Fig. 1, the dead ladder fuels

contributed by the budworm disturbance have a

transient and variable effect on area burned, while the

live ladder fuels have a longer-lasting and consistent

effect on area burned. The net effect is a reduction of fire

risk over long time scales (decades to centuries).

Budworm influence on forest composition is subtle

relative to fire, to the extent that budworm disturbance

is unlikely to change the direction of compositional

change now occurring in the BWCA. Our projected

trend, in the absence of climate change, indicates a

system dominated by late-successional conifers, more
severe fire, and more extensive budworm damage

relative to presettlement forests. The combination of
changing environment, disturbance regimes, and their
interactions with the vegetation of the BWCA presents a

formidable challenge to managers seeking to restore
forest communities. Similar challenges face land man-

agers across the boreal forest, while analogous chal-
lenges face land managers across the globe. Modeling

approaches such as this can help tease apart such
interactions to provide strategic management guidance

in the face of local, regional, and global change.
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