10-26-2001

Welfare maximization, product pricing, and market allocation in the gasoline and additives market

Paul W. Gallagher
Iowa State University, paulg@iastate.edu

Hosein Shapouri
Office of Energy Policy and New Uses, USDA

Jeffrey Price
Department of Transportation, State of Virginia

Follow this and additional works at: http://lib.dr.iastate.edu/econ_las_workingpapers

Part of the Economics Commons

Recommended Citation
http://lib.dr.iastate.edu/econ_las_workingpapers/207

This Working Paper is brought to you for free and open access by the Economics at Iowa State University Digital Repository. It has been accepted for inclusion in Economics Working Papers (2002–2016) by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Welfare maximization, product pricing, and market allocation in the gasoline and additives market

Abstract
Programming models approximate market prices and quantities when regulations constrain firm choices, because market outcomes result when welfare is appropriately defined and includes performance and environmental constraints. This study discusses market operation in quality-constrained sectors, like gasoline and additives; processors expand output until marginal processing cost equals the processing margin between product revenues and raw material costs; retailers who buy gasoline and additives from processors and sell blended retail gasoline price sales at a marginal cost that includes the blended input value plus adjustments for values of constrained attributes; and market supplies and demands of measurable attributes like octane are balanced. This method can enhance predictions about the effects of new policies that regulate product quality. Analysis can now include price and output adjustment in factor and product markets, and the competitiveness of new processes and products.

Keywords
processing, blending, pricing, regulation, gasoline additives, ethanol

Disciplines
Economics

This working paper is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/econ_las_workingpapers/207
Welfare Maximization, Product Pricing, and Market Allocation in the Gasoline and Additives Market

Paul W. Gallagher, Hosein Shapouri, Jeffrey Price

July 2003

Working Paper # 03021

Department of Economics
Working Papers Series

Ames, Iowa 50011

Iowa State University does not discriminate on the basis of race, color, age, national origin, sexual orientation, sex, marital status, disability or status as a U.S. Vietnam Era Veteran. Any persons having inquiries concerning this may contact the Director of Equal Opportunity and Diversity, 3680 Beardshear Hall, 515-294-7612.
Welfare Maximization, Product Pricing, and Market Allocation in the Gasoline and Additives Market

by

Paul Gallagher, Hosein Shapouri and Jeffrey Price
October 26, 2001
Welfare Maximization, Product Pricing, and Market Allocation in the Gasoline and Additives Market

Some energy Policy analyses focus on the effects of large price changes in international markets. Multi-sector econometric models (Broadman and Hogan) or Computable General Equilibrium models (Uri; Kemfert and Welsch; Breuss and Steininger) help to evaluate the overall consequences for a country’s energy sector and macro economy. Mathematical programming models also remain useful, especially when environmental or performance constraints limit production choices in the energy sector. But sector models are typically extensions of firm problems, in that the objective function concerns processor profits or costs, input prices are given, and product demands are taken as inelastic (Vlachou, Basso, and Andrikopoulos; Manne). Under these assumptions, consumer price adjustments are synonymous with firm cost adjustments. For better understanding of markets and price relationships in the presence of environmental regulation, inelastic factor supplies and price responsive demands should be taken into account.

Mathematical programming models of markets have also been a mainstay in applied economic research. These models exploit the fact that the equilibrium of a perfectly competitive market or sector is implied by maximum welfare allocations (Samuelson). One advantage of spatial equilibrium models is estimation of market entry and exit prices (Takayama and Judge). Similarly, sector models evaluate the competitiveness of value-added enterprises such as processing sectors in a market setting (McCarl and Spreen, Takayama and Judge (1964)).

In some cases where constraints are imposed by a government policy, programming models suggest that markets maximize the welfare that can be obtained with the policy in place.
For instance, Bawden and Takayama/Judge have shown that welfare maximization, constrained by trade policy, is consistent with market equilibrium; many of the situations encountered in international trade have been considered, including the fixed import duty, the variable levy, the fixed export subsidy, and the fixed import quota. Cox and Chavez show the equivalence of welfare maximization and market outcomes, when welfare is constrained by a government sanctioned system of price wedges and the net extractions of taxes (contributions of subsidies) are subtracted from (added to) sector welfare. Research on the relevance of programming models for situations where the market must perform in harmony with a government policy, however, is limited.

This paper demonstrates the usefulness of programming models for markets where quality and environmental restrictions impinge on market outcomes. Quality standards are an increasingly common form of market intervention, as a means of ensuring product performance, food safety, and environmental compatibility. The case of fuels and additive markets, where agricultural products are becoming important, is emphasized in this paper. First, a model of the consumer demand for gasoline, the production and blending of the intermediate products (additives and refinery gasoline), and the demand/supply for inputs to gasoline production (petroleum, natural gas and byproducts, and biomass) is discussed. Second, a welfare function and a quality restriction on the octane of gasoline is specified for the fuel sector. The first order conditions for this problem are shown consistent with a competitive market and the effects of the quality constraint on market pricing of gasoline is discussed. Third, a three good numerical example is presented to illustrate the tractability of the programming problem, and to indicate the effects of quality restriction on market pricing.
Factor-Product Relationships in the Fuel and Additives Market

The main material and product flows in the gasoline complex are shown in chart 1. Starting with the factor inputs on the LHS, crude petroleum \((Q_o)\) is the main input into the refinery. Several types of refinery gasoline \((Q_i)\) are produced and then blended into automobile fuel \((Q_s)\). Each type of refinery gasoline has unique qualities; some perform well (e.g., have high octane) in a gasoline engine but burn dirty from an environmental viewpoint; some have moderate performance characteristics and burn clean; some have marginal performance characteristics and still burn dirty. Gasoline additives \((Q_p)\) are produced because they have more desirable performance and/or environmental properties. The additives are blended into motor gasoline, sometimes at slightly higher cost than other gasoline components, to improve the characteristics of refinery gasoline. Several input chemicals \((Q_l)\) are used in the production of additives. Many of the input chemicals are byproducts of natural gas production. Others can be produced directly from natural gas. The supply of some input chemicals is also supplemented by the byproducts of petroleum refining. Biomass (including corn) is also an input for one gasoline additive. In chart 1, the natural gas and biomass blocks are shown by dotted lines because these factors are not explicitly included in the model.

Supply and Demand

Three sets of supply and Demand functions are needed to specify a maximization problem and market model: consumer demand, processing supply (marginal cost), and factor supply.

Consumers require different gasoline grades according to the performance characteristics
of their automobile. The price-dependent demand function for grade i is

$$P_{si} = \alpha_{si} - \beta_{si} Q_{si}.$$

No substitution between grades is assumed because technology defines an appropriate quality.

Fixed proportions production processes are adequate for this problem. Most additive processes combine two or more chemicals to make a third chemical, so they might be referred to as ‘constructive’ processes. Hence the supply (marginal cost) function for additives processing is stated in terms of the production of the additive output. The processing supply curve for additive i is

$$P_{pi}^* = \alpha_{pi} + \beta_{pi} Q_{pi}.$$

The marginal cost function includes wages and utilities but does not include the cost of material inputs. The cost of the input chemicals, expressed on a per unit output basis, must be added to the processing to obtain the marginal cost of additive production. In the case of constant marginal cost, the slope of the above supply function is zero ($\beta_{pi} = 0$).

A refinery breaks a petroleum molecule into many smaller molecules, making several types of refinery gasoline. So the refinery might be referred to as a destructive process. Here, the supply (marginal cost) for petroleum processing is stated in terms of the crude petroleum input as follows

$$P_{cpi}^* = \alpha_{cpi} + \beta_{cpi} Q_{cpi}.$$

Again, this marginal cost function does includes wages and utilities but excludes costs for material inputs. The refinery is actually a collection of fixed proportion production process (Gary and Handwerk). Most of the choices concerning the product mix coming from a barrel of oil are
set in the long-run period when the configuration of fixed proportion production processes is chosen. The remaining choices in short-run allocation decisions, the allocation of intermediate gas-oils for gasoline or diesel production, the sale or internal use of residual fuel oil, and the proportion of kerosine in the gasoline mix do not vary widely from year to year. Hence, the fixed proportions assumption is a good first approximation.

Most of the factor supply curves for additive inputs are likely upward sloping because they are the byproducts of natural gas production. Further, domestic production is supplemented by imports. The price-dependent supply for additive input i is

$$P_{ri} = \alpha_i + \beta_i Q_i$$

For the moment, assume that the factor supply curves include one biomass based input for the production of one additive. A processing complex for ethanol and a supply curve for crude petroleum will be important for large simulation models of this sector. For now, they just add complexity without changing the basic relationships developed here. Also, the price of crude petroleum (P_o) is taken as exogenous.

Maximizing Welfare

Sector welfare is consumer surplus less the operating and material costs associated with processing. The objective function states consumer welfare as the area under the product demand curves. Processing costs are given by the area under the appropriate processing supply function—processing costs for several additives processes and the refinery sector are given below. Factor costs for additive inputs are also given by the area under the appropriate supply function. Finally, expenditures defined by price times quantity are used for crude petroleum, since the petroleum price is exogenous to the refinery sector.
The lagrangian for the maximization problem also includes several constraints on sector welfare. Most of these constraints are (judicially stated) supply-utilization identities for the markets in the gasoline and additives sector. To illustrate performance and environmental constraints on the market, an octane constraint on gasoline grades is also included. The lagrangian for a three-dimensional example is given in equation (1): there are three gasoline products (regular, midgrade, premium), three additive inputs (isobutane, propylene, and corn), three additive processes (MTBE, alkylates and ethanol), and three types of refinery gasoline (catalytic cracker, reformer and coker). Further generalization is possible, but is more difficult to see the development of properties for this maximization problem.

The groups of supply-utilization identities are identified by the greek letter for the corresponding lagrange multiplier. All of these constraints follow the inequality convention of programming models of markets, that supply equals or exceeds demand. The constraints with \(\lambda \) state that the supply of a factor for additive production plus the factor supply derived as a byproduct of petroleum production equals or exceeds the demand for the factor. Further, the production of additive \(Q_{pi} \) times the input requirement of factor \(j \) in the production of additive \(i \) (\(r_{ij} \)) defines the demand for a particular factor arising from a given additive.

The other supply constraints concern blending. The variable \(Z_{ij} \) indicates the amount of gasoline component \(i \) used in product \(j \). There are six gasoline components in the example. Components 1, 2, and 3 are gasoline additives. Components 4, 5, and 6 are types of refinery gasoline. The equations with \(\phi_i \) state that the supply of gasoline components in a particular grade of fuel equals or exceeds the demand for that grade of fuel. The equations with \(\mu_i \) state that the supply of additive \(i \) equals or exceeds the demand for that additive in all grades of fuel. The equations with \(\theta_i \) state that the supply of each type of refinery gasoline equals or exceeds the demand for that type of refinery gasoline across all fuel grades. Notice that the subscript for \(\theta \) corresponds to the origin (first) index for the variable \(Z \). Blending is specified as a costless
activity here but, as the reader can verify, the main results are unchanged if a constant blending
cost term for is added for each Z_{ij}.

Octane equations are included to illustrate the effects of performance or environmental
constraints. These equations, indicated by the lagrange multiplier ψ, are also a supply-demand
identity. They state that the supply of octane equals or exceeds the demand for octane. O_i
indicates the octane content of a particular gasoline component and K_j indicates the octane
performance standard. An conventional form for this quality constraint in firm lp models, which
states that recipe shares of gasoline components equals or exceeds the quality standard, can be
obtained by dividing both sides of the equation by Q_{sj}.

$$\mathcal{L} = \sum_{h=1}^{3} \left(\alpha_h Q_{eq} - \frac{p_h}{2} Q_{eq}^2 \right) - \sum_{i=1}^{3} \left(\alpha_i Q_{eq} + \frac{p_i}{2} Q_{eq}^2 \right) - \sum_{j=1}^{3} \left(\alpha_j Q_{eq} + \frac{p_j}{2} Q_{eq}^2 \right) - (\alpha_0 Q_{eq} + \frac{p_0}{2} Q_{eq}^2) - p_s Q_a$$

+ $\lambda_1 [Q_{eq} - (r_{11} Q_{p1} + r_{12} Q_{p2} + r_{13} Q_{p3}) + Q_0 z_1]$
+ $\lambda_2 [Q_{eq} - (r_{21} Q_{p1} + r_{22} Q_{p2} + r_{23} Q_{p3}) + Q_0 z_2]$
+ $\lambda_3 [Q_{eq} - (r_{31} Q_{p1} + r_{32} Q_{p2} + r_{33} Q_{p3}) + Q_0 z_3]$
+ $\mu_1 [Q_{eq} - (Z_{11} + Z_{12} + Z_{13})]$
+ $\mu_2 [Q_{eq} - (Z_{21} + Z_{22} + Z_{23})]$
+ $\mu_3 [Q_{eq} - (Z_{31} + Z_{32} + Z_{33})]$
+ $\theta_4 [Q_{eq} - (Z_{41} + Z_{42} + Z_{43})]$
+ $\theta_5 [Q_{eq} - (Z_{51} + Z_{52} + Z_{53})]$
+ $\theta_6 [Q_{eq} - (Z_{61} + Z_{62} + Z_{63})]$
+ $\phi_1 [(Z_{11} + Z_{12} + Z_{13} + Z_{41} + Z_{42} + Z_{43}) - Q_{41}]$
+ $\phi_2 [(Z_{21} + Z_{22} + Z_{23} + Z_{51} + Z_{52} + Z_{53}) - Q_{51}]$
+ $\phi_3 [(Z_{31} + Z_{32} + Z_{33} + Z_{61} + Z_{62} + Z_{63}) - Q_{61}]$
+ $\psi_1 [(O_1 Z_{11} + O_2 Z_{21} + O_3 Z_{31} + O_4 Z_{41} + O_5 Z_{51} + O_6 Z_{61}) - K_1 Q_{61}]$
+ $\psi_2 [(O_1 Z_{12} + O_2 Z_{22} + O_3 Z_{32} + O_4 Z_{42} + O_5 Z_{52} + O_6 Z_{62}) - K_2 Q_{61}]$
First Order Conditions

The first order conditions are derivatives with respect to quantity variables and lagrange multipliers that are determined in the market and processing system. The first order conditions for the three dimensional example are given below. Equations (a) through (e) are obtained by differentiating quantity variables. Equations (f) through (j) are supply-demand identities obtained by differentiating with respect to a lagrange multiplier for a constraint. The identities are stated as inequalities that allow supply to be greater than or equal to demand.

A. \[
\frac{\partial \psi}{\partial Q_a} = \left(a_a - \beta_a Q_a \right) - \phi_1 - \psi_1 K_a \geq 0; \quad i = 1, 2, 3
\]

B. \[
\frac{\partial \psi}{\partial Q_b} = -\left(a_b - \beta_b Q_b \right) - \mu_1 - \left(\lambda_1 x_2 + \lambda_2 x_3 \right) \geq 0
\]

C. \[
\frac{\partial \psi}{\partial Q_c} = -\left(a_c - \beta_c Q_c \right) + \lambda_1 \geq 0
\]

D. \[
\frac{\partial \psi}{\partial Q_o} = \left(a_o - \beta_o x_1 \right) + \left(\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 \right) + \left(\theta_1 y_1 + \theta_2 y_2 + \theta_3 y_3 \right) - P_s \geq 0
\]

E. \[
\frac{\partial \psi}{\partial z_q} = -\mu_1 + \phi_1 + \psi_1 Q_1 \geq 0 \quad i = 1, 2, 3
\]

F. \[
\frac{\partial \psi}{\partial \lambda_i} = Q_d + Q_o x_1 - \left(\alpha_1 Q_{11} + \alpha_2 Q_{12} + \alpha_3 Q_{13} \right) \geq 0 \quad i = 1, 2, 3
\]

G. \[
\frac{\partial \psi}{\partial \mu_i} = Q_d - \left(Z_{u1} + Z_{u2} + Z_{ud} \right) \geq 0 \quad i = 1, 2, 3
\]

H. \[
\frac{\partial \psi}{\partial \phi_i} = Q_o x_1 - \left(Z_{n1} + Z_{n2} + Z_{nc} \right) \geq 0 \quad i = 4, 5, 6
\]

I. \[
\frac{\partial \psi}{\partial \phi_i} = \left(Z_{n1} + Z_{n2} + Z_{n3} + Z_{n4} + Z_{n5} \right) - Q_d \geq 0 \quad i = 1, 2, 3
\]

J. \[
\frac{\partial \psi}{\partial \phi_i} = O_1 Z_{u1} + O_2 Z_{u2} + O_1 Z_{u3} + O_1 Z_{u4} + O_2 Z_{u5} + O_2 Z_{u6} - K_i Q_d \geq 0 \quad i = 1, 2, 3
\]

Market Equilibrium

In the present case it turns out that market equilibrium results from welfare maximization with a quality constraint. Some dimensions of this result are apparent after straightforward inspection of first order conditions. Other aspects are more involved.

Direct inspection of equation c suggests that the marginal cost of inputs to additive production (the price dependent supply equation) equal to the marginal benefit (\(\lambda_i \)) from using another unit of the resource. Hence, the marginal value of additive production (\(\mu_i \)) equals the sum of marginal processing costs from the processing supply function plus factor costs (sum of input
requirements times input prices) from equations b.

Similarly, equation d states that the marginal cost of petroleum processing equals the net marginal revenue. The marginal cost comes directly from the petroleum processing equation. The revenues from byproduct processing are the sum of byproduct yields \((x_i)\) times the price of the corresponding factor \((\lambda_i)\) since the inputs of additive production are the byproducts of the refinery. Finally the sum of refinery gasoline yields \((y_i)\) times the lagrange multiplier \((\theta_i)\) represent revenues from processing a unit of petroleum because the multiplier \(\theta_i\) is the marginal increase in welfare (processor profit) from another unit of refinery gas type \(i\).

For product pricing, consider a profit maximizing firm that buys refinery gas and additives as inputs, and then blends them. This marketing/blending firm maximizes profits subject to several of the same constraints present in the maximum multane lagrangian. Specifically, supply conditions for additives \((\mu)\), refinery gas \((\theta)\), and consumer gasoline blending \((\phi)\), and the quality constraint \((\psi)\) must all be satisfied. The constrained profit function is the revenues from sale of consumer grade gasoline less input expenditures for additives and refinery gasoline:

\[
\pi = (P_{q1}Q_{q1} + P_{q2}Q_{q2} + P_{q3}Q_{q3}) \\
- (P_{p1}Q_{p1} + P_{p2}Q_{p2} + P_{p3}Q_{p3}) \\
- (P_{r1}Q_{r1} + P_{r2}Q_{r2} + P_{r3}Q_{r3}) \\
+ \mu_1 [Q_{p1} - (Z_{11} + Z_{12} + Z_{13})] \\
+ \mu_2 [Q_{p2} - (Z_{21} + Z_{22} + Z_{23})] \\
+ \mu_3 [Q_{p3} - (Z_{31} + Z_{32} + Z_{33})] \\
+ \theta_4 [Q_{r1} - (Z_{41} + Z_{42} + Z_{43})] \\
+ \theta_5 [Q_{r2} - (Z_{51} + Z_{52} + Z_{53})] \\
+ \theta_6 [Q_{r3} - (Z_{61} + Z_{62} + Z_{63})] \\
+ \phi_1 [(Z_{11} + Z_{21} + Z_{31} + Z_{41} + Z_{51} + Z_{61}) - Q_{s1}] \\
+ \phi_2 [(Z_{12} + Z_{22} + Z_{32} + Z_{42} + Z_{52} + Z_{62}) - Q_{s2}] \\
+ \phi_3 [(Z_{13} + Z_{23} + Z_{33} + Z_{43} + Z_{53} + Z_{63}) - Q_{s3}] \\
+ \psi_1 [(O_{1}Z_{11} + O_{2}Z_{21} + O_{3}Z_{31} + O_{4}Z_{41} + O_{5}Z_{51} + O_{6}Z_{61}) - K_{1}Q_{s1}] \\
+ \psi_2 [(O_{1}Z_{12} + O_{2}Z_{22} + O_{3}Z_{32} + O_{4}Z_{42} + O_{5}Z_{52} + O_{6}Z_{62}) - K_{2}Q_{s2}] \\
+ \psi_3 [(O_{1}Z_{13} + O_{2}Z_{23} + O_{3}Z_{33} + O_{4}Z_{43} + O_{5}Z_{53} + O_{6}Z_{63}) - K_{3}Q_{s3}] \\
\]

The marketer’s choice variables are: \(Q_{s1}, Q_{s2}, Q_{s3}, Q_{p1}, Q_{p2}, Q_{p3}, Q_{r1}, Q_{r2}, Q_{r3}, \text{ and } Z_{ij}\).
The first order conditions for the profit maximizing marketer/blender are:

\[
A'. \quad \frac{\partial \pi}{\partial Q_{x_i}} = P_{x_i} - \phi_{i} - \psi_{j} K_{i} \geq 0 ; \quad i = 1, 2, 3
\]

\[
B'. \quad \frac{\partial \pi}{\partial Q_{\pi}} = P_{\pi} + \mu_{j} \geq 0 ; \quad i = 1, 2, 3
\]

\[
C'. \quad \frac{\partial \pi}{\partial Q_{x_i}} = P_{x_i} + \theta_{i} \geq 0 ; \quad i = 4, 5, 6
\]

\[
E'. \quad \frac{\partial \pi}{\partial Z_{ij}} = -\mu_{j} + \phi_{j} + \psi_{j} O_{i} \geq 0 ; \quad i = 1, 2, 3
\]

\[-\theta_{i} + \phi_{j} + \psi_{j} O_{i} \geq 0 ; \quad i = 4, 5, 6
\]

These conditions are the same as the welfare maximizing conditions. In fact, equation (A') is identical to equation (A), except that (A') contains one explicit price variable, while (A) contains the quantity dependent price function. Both versions state that the marginal benefit (price) of consumer gasoline equals or exceeds the marginal cost of producing another unit of consumer’s gasoline. In turn, the marginal cost consists of two components: the marginal value (ϕ_{i}) of another unit of blended gasoline supply and a quality adjustment that reflects the value of another unit of octane supplied ($\psi_{i} * K_{i}$). Next, equations (E) and (E') state that the marginal value of another unit of consumer gasoline equals the marginal cost of the corresponding additive or refinery gasoline less a correction for the value of the octane provided by additive or refinery gas i ($\psi_{i} * O_{i}$). Equations (B') and (C') merely assign a market price variable to a lagrange multiplier.

In the case where the quality constraint is not binding ($\psi_{i} = 0$), the production and consumer price revert to a more familiar form. Specifically, equations (A) and (A') state that the marginal benefit or price of another unit of consumer gasoline equals the marginal cost (ϕ_{i}).

Meanwhile, equations (E) and (E') state that the marginal cost of additive or refinery gasoline i equals the marginal cost of blended consumer gasoline of grade i. That is, the consumer price of all gasoline grades are equal, and all additives and all types of refinery gasoline have the same price. Hence, the welfare maximization problem gives a market equilibrium, regardless of whether a quality restriction is present.

Product Price and Quality Relationships
To investigate the price and quality relationships implied by market equilibrium, look at the marketer/blender margin between the sales price of blended gasoline and the purchase price for additives or refinery gasoline. Begin with the equation (A) for grade j of blended consumer gasoline when the octane constraint is binding:

\[P_{sj} = \phi_j + \psi_j K_j \]

The equation (E) for additive type i is:

\[\phi_j = P_{pi} - \psi_j O_i \]

Substituting yields and rearranging yields the marketing price relationship between consumer prices for gasoline and the prices paid for additives:

\[P_{sj} + \psi_j (O_i - K_j) = P_{pi} \]

The second term on the left hand side of the above equation defines a price premium (discount) that is paid for an additive i that has an octane above (below) the standard for grade j (K_j). For instance, \(O_i = 113 \) for ethanol and \(K_j = 87 \) for regular gasoline. If \(\psi_j = $.01/\text{octane.gallon} \), then the ethanol price \(P_{pj} \) will exceed the price of regular gasoline \(P_{sj} \) by $.52/gallon. A similar price relationship for the types of refinery gasoline can also be developed. The price for a low octane refinery gasoline, like coker gas, would have a price below blended consumer gasoline.

Usually, grade standards are associated with product performance or environmental attributes. Then the multiplier \(\psi_j \) represents a cost associated with producing quality. But standards are sometimes arbitrary. In this context the shadow value times octane differential represents the subsidy equivalent of the quality restriction for inputs having above average amounts of the restricted attribute. Similarly, the discount for below average inputs represents a tax associated with the quality restriction.
An Example

An example helps to demonstrate tractability of the programming problem and to illustrate operation of markets with a quality constraint. Modify a trade example from p. 143 of Takayama and Judge (1971). Three importing country demand equations from their example are used for consumer gasoline demand in the new example. Similarly, three exporting country supply equations from their example are used as equations of factor supply for the additives industry. Also, processing supply functions for additives were added. The reference point values of the processing functions corresponds to the magnitude of transport costs in the trade example. Then, a petroleum price and processing function that were lower than the other factor supplies was included, and the intercepts of factor supply equations were adjusted so that all factors and processes were used in the baseline solution. The assumed parameter values for supply and demand functions are given in appendix table a.

The processing technology and quality assumptions correspond roughly to the actual refinery and additives processes. The yields of refinery gasoline from petroleum roughly correspond to yields of coker gasoline, catalytic cracker gasoline, and reformer gasoline. The octane assumptions, low, medium, and high correspond to the same processes. The refinery yields of inputs for additives processing roughly correspond to the yields of iso-butane, butylene, and propylene from oil. There are three additives processes. The first process uses equal amounts of factor 1 and factor 2. The second additive process uses equal amounts of all three factors. The third Addie process uses only input three. Roughly, the first two processes correspond to the production of alkylates or polymer gasoline. The third process corresponds to iso-octane or perhaps ethanol. The assumed octane values also correspond to alkylates, polymers, and ethanol, respectively. The assumed parameter values for process yields, octane content, and octane standards are given in appendix b.

The results of two simulations are shown in table 1. The right column shows the results of
the market simulation without the octane constraint. The left column shows the market
simulation when the quality constraint is imposed. The content of the simulations is interesting
because it depicts the situation in the additives and refinery gasoline competition; the additives
have more scarce and higher quality attributes than the refinery qualities. Further, the average
quality of the refinery is below the performance standard set in the constraint.

Now, look at how the quality standard affects the market. First, note that the price and
production of two additives increases. Also note that the total additive output increases (table 2).
Hence the price and quantity of all inputs to additive production also increase. In contrast, the
consumption of petroleum decreases and the production of all types of refinery gas also falls.
However, the decline in output of refinery gasoline is smaller than the increase in output of
gasoline additives (table 2). Hence, the overall supply of gasoline to consumers increases and the
price for all grades of consumer gasoline falls.

The Processing and Marketing Costs and returns are shown in table 3. Three broad
categories of activities are organized. Notice and the expenditures on raw materials and
processing costs match intermediate product sales within one-half of one percent. Similarly, the
intermediate product sales match the revenues from sales of final consumer products. Hence, the
estimates show the processing and marketing system doing business at cost, which one would
expect in a competitive system.

Extensions

Constrained welfare maximization is still consistent with market equilibrium under a more
general set of policy assumptions that apply to the fuel and additives markets. Other types of
quality constraints and fuel sector fiscal policies are particularly relevant. Additional quality
constraints, such as vapor, oxygen and benzene content give constrained welfare maximization
conditions that are similar to equations (A)–(J) that have been discussed, except that a sum of
shadow values of quality constraints, instead of one shadow value, enter the first order conditions.
Nonlinear constraints also give similar equilibrium conditions, except that the partial derivative of a quality parameter with respect to a fuel type replaces the attribute concentration of the fuel type in equilibrium conditions.

Two important fiscal policies in the gasoline fuel sector are the federal excise tax on gasoline and the rebate for using ethanol blends. Welfare maximization again turns out to be consistent with market equilibrium, when the net revenue that the public sector extracts from the gasoline and additives sector is subtracted from sector welfare. First, consider the excise tax. Suppose the tax on consumer gasoline of grade i is T_{si}. Then the government’s revenue for grade i gasoline is $T_{si} \times Q_{si}$.

Second, retailers receive a rebate of S $\$$ for each gallon of grade i gasoline they sell that is a 10% ethanol blend. Further, a prorated subsidy is given for gasoline that contains less than a 10% blend. Suppose Z_{3i} is the quantity of ethanol blended into gasoline of grade i. Then the subsidy per gallon of gasoline is

$$(Z_{3i}/Q_{si}) (1/1.1) S$$

Notice that the full subsidy is given when Z_{3i}/Q_{si} equals 0.1 and is prorated proportionately otherwise. The government expenditure, or more precisely the excise tax loss, associated with the blending credit is

$$\frac{Z_{31}}{0.1Q_{3i}} S Q_{si} = 10S Z_{31}$$

which suggests that the blending credit is equivalent to a subsidy on additive 3 that is ten times the rebate level in the gasoline market. Hence, the government’s net revenue extraction from the fuel sector is the excise tax less the ethanol blending rebate, added across gasoline grades.

$$E = \sum_{i=1}^{3} T_{si} Q_{si} - 10S \sum_{i=1}^{3} Z_{3i}$$

When the revenue extraction is subtracted from the sector welfare function in the
lagrangian, the revised first order conditions give standard results for taxes and subsidies on market prices. For instance, the term T_u is subtracted from the LHS of the first order condition A. This gives the standard result for an excise tax in the marketplace, namely, that the producer price plus the excise tax (and quality adjustment) equals the consumer price. Similarly, the LHS of equation E for additive 3 now add the term $10S$. Combining equation A and additive 3’s equation E, gives the revised marketing margin from additive 3 to gasoline grade i

$$P_{ni} = \mu_3 - (10S - T_u) - \psi_i(a_3 - K_i)$$

Since additive 3 has the blending credit, the producer price of additive three will likely be above the consumer gasoline price by (ten times) the amount that the blending credit exceeds the excise tax collections. The price adjustment for additive qualities remains as before.

Summary and Conclusions

The markets for gasoline fuel factors, processing and consumption are amenable to mathematical programming models. It was shown that markets provide the best possible outcome, in the sense of maximizing sector welfare, in the presence of the performance and environmental constraints that characterize the gasoline fuel industry. For fiscal measures such as excise taxes and ethanol blending credits, the sector welfare function must be reduced to account for the government extraction of revenue from the sector. Then the Net welfare maximizing conditions are still the market equilibrium conditions. This means that programming models can anticipate the competitiveness of processes in the marketplace and evaluate policy changes with reasonable data requirements. The constrained welfare maximization equivalence to market outcomes in the presence of government policies is very robust. In fact, it seems to suggest a new Second Best Principle for markets that must function next to an intervening government: the market will provide the highest welfare for the sector, given the constraints imposed by
government policies.

The example problem is tractable. Solutions were routinely obtained without convergence problems and the results had magnitudes that corresponded roughly to Takayama and Judge trade example.

The results also shed some light on how quality regulations function in the market. Quality regulations provide a price incentive to expand output of additives and refinery gasolines with the desired attributes. They also reduce the price and output of gasoline components with less desirable attributes. As the example suggests, then it is possible that a consumer price decrease can accompany a quality restriction when the elasticity of supply for additives is large enough to offset the declining output of refinery gasoline.

The conventional view holds that a quality and environmental standard increases a firm’s costs at fixed input price, and therefore raises consumers’ prices by a corresponding amount. The results of this paper show that market-level effects, such as adjusting factor prices, will offset or maybe even reverse the conclusions of the firm-level analysis.
References

Table 1. The Effect of an Octane Standard on a Hypothetical Gasoline/Additive Sector

<table>
<thead>
<tr>
<th>Variable Description (Example Classification)</th>
<th>With Constraint</th>
<th>No Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product (Gasoline) Consumption (Qₚ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Regular) S1</td>
<td>48.160</td>
<td>47.081</td>
</tr>
<tr>
<td>(Mid) S2</td>
<td>23.892</td>
<td>23.540</td>
</tr>
<tr>
<td>(Premium) S3</td>
<td>37.928</td>
<td>37.664</td>
</tr>
<tr>
<td>Processed Product (Additive) Production (Qₚₚ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MTBE) P1</td>
<td>28.463</td>
<td>21.291</td>
</tr>
<tr>
<td>(Alkylate) P2</td>
<td>10.318</td>
<td>19.428</td>
</tr>
<tr>
<td>(Ethanol) P3</td>
<td>20.807</td>
<td>15.812</td>
</tr>
<tr>
<td>Factor (Nat. Gas/Chemical) Supply (Qₗ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Butane) L1</td>
<td>13.437</td>
<td>12.744</td>
</tr>
<tr>
<td>(Butylene) L2</td>
<td>15.537</td>
<td>14.900</td>
</tr>
<tr>
<td>(Nat. Gas) L3</td>
<td>20.955</td>
<td>18.967</td>
</tr>
<tr>
<td>Factor (Petroleum) Supply (Qₗₗ)</td>
<td>172.518</td>
<td>167.975</td>
</tr>
<tr>
<td>Processed Product (Refinery) Production (Qₜ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cat. Crack) 01</td>
<td>25.169</td>
<td>25.878</td>
</tr>
<tr>
<td>(Coker) 02</td>
<td>8.390</td>
<td>8.644</td>
</tr>
<tr>
<td>(Reformer) 03</td>
<td>16.780</td>
<td>17.252</td>
</tr>
<tr>
<td>Product (Gasoline) Consumer Price (Pₚₚ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>15.184</td>
<td>15.292</td>
</tr>
<tr>
<td>S2</td>
<td>15.222</td>
<td>15.292</td>
</tr>
<tr>
<td>S3</td>
<td>15.229</td>
<td>15.292</td>
</tr>
<tr>
<td>Product (Gasoline) Supply Price (Marginal Cost) (ϕₚₚ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>13.476</td>
<td>15.292</td>
</tr>
<tr>
<td>S2</td>
<td>13.476</td>
<td>15.292</td>
</tr>
<tr>
<td>S3</td>
<td>13.476</td>
<td>15.292</td>
</tr>
<tr>
<td>F.O.B. (Additive) Supply Price (μ or Pₚₚ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>15.522</td>
<td>15.292</td>
</tr>
<tr>
<td>P2</td>
<td>15.165</td>
<td>15.292</td>
</tr>
<tr>
<td>P3</td>
<td>15.616</td>
<td>15.292</td>
</tr>
<tr>
<td>F.O.B. (Refinery Gas) Supply Price (θ, or Pₚₚ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>14.790</td>
<td>15.292</td>
</tr>
<tr>
<td>02</td>
<td>14.658</td>
<td>15.292</td>
</tr>
<tr>
<td>03</td>
<td>15.165</td>
<td>15.292</td>
</tr>
<tr>
<td>Factor (Chem/net. Gas) Supply Price (λₗₗ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>16.344</td>
<td>16.274</td>
</tr>
<tr>
<td>L2</td>
<td>11.277</td>
<td>11.245</td>
</tr>
<tr>
<td>L3</td>
<td>14.096</td>
<td>13.897</td>
</tr>
<tr>
<td>Processing, Additive, Price (Pₗₘₗ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>1.712</td>
<td>1.532</td>
</tr>
<tr>
<td>P2</td>
<td>1.258</td>
<td>1.486</td>
</tr>
<tr>
<td>P3</td>
<td>1.520</td>
<td>1.396</td>
</tr>
<tr>
<td>Processing, Petroleum, Price (Pₗₗₗ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>4.299</td>
<td>4.413</td>
</tr>
<tr>
<td>Value of Octane Constraint (Ψₚₚ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>0.012</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>0.012</td>
<td>0</td>
</tr>
<tr>
<td>S3</td>
<td>0.012</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2. Origin and Distribution of Refinery Gasoline and Additives to Gasoline by Grade

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td>8.247</td>
<td>8.799</td>
<td>11.417</td>
<td>28.463</td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td>0</td>
<td>10.318</td>
<td>0</td>
<td>10.318</td>
</tr>
<tr>
<td>p3</td>
<td>8.041</td>
<td>0</td>
<td>12.766</td>
<td>20.807</td>
<td>additives 59.588</td>
</tr>
<tr>
<td>o1</td>
<td>15.075</td>
<td>4.775</td>
<td>5.345</td>
<td>25.195</td>
<td></td>
</tr>
<tr>
<td>o2</td>
<td>0</td>
<td>0</td>
<td>8.399</td>
<td>8.399</td>
<td></td>
</tr>
<tr>
<td>o3</td>
<td>16.797</td>
<td>0</td>
<td>0</td>
<td>16.797</td>
<td>refinery 50.391</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>48.16</td>
<td>23.892</td>
<td>37.927</td>
<td>109.979</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td>15.567</td>
<td>0</td>
<td>5.724</td>
<td>21.291</td>
</tr>
<tr>
<td>p2</td>
<td>14.635</td>
<td>0</td>
<td>4.792</td>
<td>19.427</td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td>12.827</td>
<td>0</td>
<td>2.984</td>
<td>15.811</td>
<td>additives 56.529</td>
</tr>
<tr>
<td>o1</td>
<td>0</td>
<td>10.988</td>
<td>14.89</td>
<td>25.878</td>
<td></td>
</tr>
<tr>
<td>o2</td>
<td>4.051</td>
<td>4.575</td>
<td>0</td>
<td>8.626</td>
<td></td>
</tr>
<tr>
<td>o3</td>
<td>0</td>
<td>7.981</td>
<td>9.274</td>
<td>17.255</td>
<td>refinery 51.759</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>47.08</td>
<td>23.544</td>
<td>37.664</td>
<td>108.288</td>
</tr>
</tbody>
</table>
Table 3. Processing and Marketing Costs and Revenues

SELL FINAL CONSUMER PRODUCTS

<table>
<thead>
<tr>
<th>P_s</th>
<th>Q_s</th>
<th>REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.184</td>
<td>48.16</td>
<td>731.2614</td>
</tr>
<tr>
<td>15.222</td>
<td>23.892</td>
<td>363.684</td>
</tr>
<tr>
<td>15.229</td>
<td>37.92</td>
<td>577.4837</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>1672.429</td>
</tr>
</tbody>
</table>

SELL INTERMEDIATE PRODUCTS (ADDITIVES AND REFINERY GAS)

<table>
<thead>
<tr>
<th>P_p</th>
<th>Q_p</th>
<th>REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.222</td>
<td>28.463</td>
<td>433.2638</td>
</tr>
<tr>
<td>15.165</td>
<td>10.318</td>
<td>156.4725</td>
</tr>
<tr>
<td>15.616</td>
<td>20.807</td>
<td>324.9221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P_r</th>
<th>Q_r</th>
<th>REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.79</td>
<td>24.169</td>
<td>357.4595</td>
</tr>
<tr>
<td>14.658</td>
<td>8.39</td>
<td>122.9806</td>
</tr>
<tr>
<td>15.165</td>
<td>16.78</td>
<td>254.4687</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>1649.567</td>
</tr>
</tbody>
</table>

PURCHASE RAW MATERIALS AND PAY FOR PROCESSING COSTS

<table>
<thead>
<tr>
<th>P^*</th>
<th>Q_o</th>
<th>REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>167.975</td>
<td>167.975</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P^*_r</th>
<th>Q_p</th>
<th>REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.299</td>
<td>167.975</td>
<td>722.1245</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P^*_f</th>
<th>Q_p</th>
<th>REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.172</td>
<td>28.463</td>
<td>33.35864</td>
</tr>
<tr>
<td>1.258</td>
<td>10.318</td>
<td>12.98004</td>
</tr>
<tr>
<td>1.52</td>
<td>20.807</td>
<td>31.62664</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>77.96532</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P_t</th>
<th>P_t</th>
<th>REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.344</td>
<td>13.437</td>
<td>219.6143</td>
</tr>
<tr>
<td>11.277</td>
<td>15.537</td>
<td>175.2107</td>
</tr>
<tr>
<td>14.096</td>
<td>20.955</td>
<td>295.3817</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>690.2068</td>
</tr>
</tbody>
</table>
Appendix Table A. Supply and Demand Parameters

Product (Gasoline) Demand:

<table>
<thead>
<tr>
<th>α_{s1}</th>
<th>β_{s1}</th>
<th>α_{s2}</th>
<th>β_{s2}</th>
<th>α_{s3}</th>
<th>β_{s3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0</td>
<td>0.1</td>
<td>20.0</td>
<td>0.2</td>
<td>20.0</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Processed (Additives) Services Supply:

<table>
<thead>
<tr>
<th>α_{p1}</th>
<th>β_{p1}</th>
<th>α_{p2}</th>
<th>β_{p2}</th>
<th>α_{p3}</th>
<th>β_{p3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.025</td>
<td>1.0</td>
<td>0.025</td>
<td>1.0</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Processed (Oil) Services Supply:

<table>
<thead>
<tr>
<th>α_{o}</th>
<th>β_{o}</th>
<th>P_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.025</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Factor (Chemical) Supply:

<table>
<thead>
<tr>
<th>α_{s1}</th>
<th>β_{s1}</th>
<th>α_{s2}</th>
<th>β_{s2}</th>
<th>α_{s3}</th>
<th>β_{s3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0</td>
<td>0.1</td>
<td>15.0</td>
<td>0.05</td>
<td>15.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Appendix Table B. Technology and Quality Parameters

Refining gasoline yields per unit of oil processed

\[y_1 = 0.15 \]
\[y_2 = 0.05 \]
\[y_3 = 0.10 \]

Refinery by product yields per unit of oil processed

\[x_1 = 0.025 \]
\[x_2 = 0.0125 \]
\[x_3 = 0.020 \]

Requirement of input \(\ell_1 \) per unit output of additives type \(p_i \)

\[\begin{array}{cccc}
\ell_1 & 0.5 & 0.33 & 0.0 \\
\ell_2 & 0.5 & 0.33 & 0.0 \\
\ell_3 & 0.0 & 0.34 & 1.0 \\
\end{array} \]

Octane standard by grade of gasoline

\[k_1 = 91 \]
\[k_2 = 93 \]
\[k_3 = 95 \]

Octane content of gasoline components

01 70
02 63
03 90
P1 109
P2 90
P3 114

Crude Petroleum (Q_o)

Refining Process

Refinery Gasoline (Q_i)

Natural Gas

Nat. Gas byproduct (Q_i)

Blending

Automobile Fuel (Q_o)

Additives (Q_p)

Additives Processes

Biomass

Environmental And Performance Constraints